Liu-Hy's picture
Add files using upload-large-folder tool
4c09b1c verified
raw
history blame contribute delete
6.43 kB
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Alopecia"
cohort = "GSE81071"
# Input paths
in_trait_dir = "../DATA/GEO/Alopecia"
in_cohort_dir = "../DATA/GEO/Alopecia/GSE81071"
# Output paths
out_data_file = "./output/preprocess/3/Alopecia/GSE81071.csv"
out_gene_data_file = "./output/preprocess/3/Alopecia/gene_data/GSE81071.csv"
out_clinical_data_file = "./output/preprocess/3/Alopecia/clinical_data/GSE81071.csv"
json_path = "./output/preprocess/3/Alopecia/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Yes, this is gene expression data from RNA as mentioned in Series_overall_design
is_gene_available = True
# 2.1 Data Availability
trait_row = 1 # disease state indicates Alopecia status through DLE/sCLE which cause alopecia
age_row = None # Age information not available
gender_row = None # Gender information not available
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> Optional[int]:
"""Convert disease state to binary value:
1 for DLE/SCLE (presence of lupus with alopecia)
0 for healthy/normal (control)
"""
if not value or ':' not in value:
return None
value = value.split(':')[1].strip().lower()
if value in ['dle', 'scle']:
return 1
elif value in ['healthy', 'normal']:
return 0
return None
# Since age and gender data not available, their conversion functions not needed
convert_age = None
convert_gender = None
# 3. Save Metadata
is_trait_available = trait_row is not None
is_initial = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
preview = preview_df(clinical_features)
print("Preview of clinical features:")
print(preview)
# Save to CSV
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# These identifiers (e.g. '100009613_at', '100009676_at') are Affymetrix probe IDs
# They need to be mapped to human gene symbols for proper analysis
requires_gene_mapping = True
# Extract gene annotation from SOFT file and get meaningful data
gene_annotation = get_gene_annotation(soft_file)
# Examine all columns to identify gene symbol information
print("Gene annotation shape:", gene_annotation.shape)
print("\nAll column names:")
print(gene_annotation.columns.tolist())
# Print a few complete rows to see all available information
print("\nFirst few complete rows:")
print(gene_annotation.head(3).to_string())
# Print out some useful statistics
print("\nNumber of non-null values in each column:")
print(gene_annotation.count())
# Since this printout may be needed for next steps
print("\nNote: Gene mapping will need probe IDs and gene symbols")
print("Currently found columns:")
print("'ID' column: Contains probe identifiers")
print("Will need to identify appropriate column for gene symbols")
# Get probe ID to Entrez ID mapping from annotation data
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='ENTREZ_GENE_ID')
# Use NCBI's Entrez Gene IDs to map to gene symbols
mapped_gene_data = apply_gene_mapping(gene_data, mapping_df)
# Normalize gene symbols in the index to standardize and aggregate values
gene_data = normalize_gene_symbols_in_index(mapped_gene_data)
# Save processed gene expression data
gene_data.to_csv(out_gene_data_file)
# Reload clinical data from source
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Extract clinical features with the corrected trait conversion
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
# Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# Determine if features are biased
is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# Validate and save cohort info
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_trait_biased,
df=linked_data,
note="Gene expression data successfully mapped and linked with clinical features"
)
# Save linked data only if usable AND trait is not biased
if is_usable and not is_trait_biased:
linked_data.to_csv(out_data_file)