|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Amyotrophic_Lateral_Sclerosis" |
|
cohort = "GSE212134" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis" |
|
in_cohort_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis/GSE212134" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/GSE212134.csv" |
|
out_gene_data_file = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/gene_data/GSE212134.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/clinical_data/GSE212134.csv" |
|
json_path = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file) |
|
|
|
|
|
sample_characteristics = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Dataset Background Information:") |
|
print(f"{background_info}\n") |
|
|
|
|
|
print("Sample Characteristics:") |
|
for feature, values in sample_characteristics.items(): |
|
print(f"Feature: {feature}") |
|
print(f"Values: {values}\n") |
|
|
|
is_gene_available = True |
|
|
|
|
|
trait_row = None |
|
age_row = None |
|
gender_row = 0 |
|
|
|
|
|
def convert_trait(value): |
|
return None |
|
|
|
def convert_age(value): |
|
return None |
|
|
|
def convert_gender(value): |
|
if not isinstance(value, str): |
|
return None |
|
value = value.lower().split(': ')[-1] |
|
if 'female' in value: |
|
return 0 |
|
elif 'male' in value: |
|
return 1 |
|
return None |
|
|
|
|
|
is_trait_available = trait_row is not None |
|
validate_and_save_cohort_info(is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available) |
|
|
|
|
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print("Shape of gene expression data:", gene_data.shape) |
|
print("\nFirst few rows of data:") |
|
print(gene_data.head()) |
|
print("\nFirst 20 gene/probe identifiers:") |
|
print(gene_data.index[:20]) |
|
|
|
|
|
import gzip |
|
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: |
|
lines = [] |
|
for i, line in enumerate(f): |
|
if "!series_matrix_table_begin" in line: |
|
|
|
for _ in range(5): |
|
lines.append(next(f).strip()) |
|
break |
|
print("\nFirst few lines after matrix marker in raw file:") |
|
for line in lines: |
|
print(line) |
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
gene_annotation = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Gene annotation shape:", gene_annotation.shape) |
|
print("\nGene annotation preview:") |
|
print(preview_df(gene_annotation)) |
|
|
|
print("\nNumber of non-null values in each column:") |
|
print(gene_annotation.count()) |
|
|
|
print("\nNote: Gene mapping will use:") |
|
print("'ID' column: Probe identifiers") |
|
print("'Symbol' column: Gene name mapping") |
|
|
|
|
|
|
|
|
|
|
|
def extract_gene_symbol(assignment): |
|
if pd.isna(assignment) or assignment == '---': |
|
return None |
|
|
|
parts = assignment.split('//') |
|
if len(parts) >= 2: |
|
return parts[1].strip() |
|
return None |
|
|
|
|
|
gene_annotation['Symbol'] = gene_annotation['gene_assignment'].apply(extract_gene_symbol) |
|
|
|
|
|
mapping_data = get_gene_mapping(gene_annotation, 'ID', 'Symbol') |
|
|
|
|
|
gene_data = apply_gene_mapping(gene_data, mapping_data) |
|
|
|
|
|
print("Gene expression data after mapping:") |
|
print("Shape:", gene_data.shape) |
|
print("\nFirst few rows:") |
|
print(gene_data.head()) |
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
|
|
|
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=False, |
|
is_biased=True, |
|
df=gene_data, |
|
note="Gene expression data successfully processed but no trait information available for analysis" |
|
) |