|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Canavan_Disease" |
|
cohort = "GSE41445" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Canavan_Disease" |
|
in_cohort_dir = "../DATA/GEO/Canavan_Disease/GSE41445" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Canavan_Disease/GSE41445.csv" |
|
out_gene_data_file = "./output/preprocess/3/Canavan_Disease/gene_data/GSE41445.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Canavan_Disease/clinical_data/GSE41445.csv" |
|
json_path = "./output/preprocess/3/Canavan_Disease/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file) |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("=== Dataset Background Information ===") |
|
print(background_info) |
|
print("\n=== Sample Characteristics ===") |
|
print(json.dumps(unique_values_dict, indent=2)) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = 2 |
|
|
|
age_row = None |
|
|
|
gender_row = 0 |
|
|
|
|
|
def convert_trait(value: str) -> int: |
|
"""Convert disease information to binary: 1 for Canavan disease, 0 for others""" |
|
if not value or ':' not in value: |
|
return None |
|
disease = value.split(':', 1)[1].strip().lower() |
|
if 'canavan disease' in disease: |
|
return 1 |
|
return 0 |
|
|
|
def convert_age(value: str) -> float: |
|
"""Convert age to continuous value""" |
|
|
|
return None |
|
|
|
def convert_gender(value: str) -> int: |
|
"""Convert gender to binary: 0 for female, 1 for male""" |
|
if not value or ':' not in value: |
|
return None |
|
gender = value.split(':', 1)[1].strip().lower() |
|
if gender == 'female': |
|
return 0 |
|
elif gender == 'male': |
|
return 1 |
|
return None |
|
|
|
|
|
is_trait_available = trait_row is not None |
|
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available) |
|
|
|
|
|
clinical_df = geo_select_clinical_features(clinical_data, trait, trait_row, convert_trait, |
|
gender_row=gender_row, convert_gender=convert_gender) |
|
print("Preview of extracted clinical data:") |
|
print(preview_df(clinical_df)) |
|
|
|
|
|
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) |
|
clinical_df.to_csv(out_clinical_data_file) |
|
|
|
genetic_df = get_genetic_data(matrix_file) |
|
|
|
|
|
print("First 20 gene/probe IDs:") |
|
print(list(genetic_df.index)[:20]) |
|
|
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
gene_metadata = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Column names and preview of gene annotation data:") |
|
print(preview_df(gene_metadata)) |
|
|
|
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol') |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_df, mapping_df) |
|
|
|
|
|
print("Preview of gene expression data after mapping:") |
|
print(preview_df(gene_data)) |
|
|
|
|
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
note = "Clinical data structure: binary disease status (Canavan disease) with gender information. Gender distribution is biased with a significant imbalance." |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note=note |
|
) |
|
|
|
|
|
if is_usable: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |