|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Celiac_Disease" |
|
cohort = "GSE112102" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Celiac_Disease" |
|
in_cohort_dir = "../DATA/GEO/Celiac_Disease/GSE112102" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Celiac_Disease/GSE112102.csv" |
|
out_gene_data_file = "./output/preprocess/3/Celiac_Disease/gene_data/GSE112102.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Celiac_Disease/clinical_data/GSE112102.csv" |
|
json_path = "./output/preprocess/3/Celiac_Disease/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file) |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("=== Dataset Background Information ===") |
|
print(background_info) |
|
print("\n=== Sample Characteristics ===") |
|
print(json.dumps(unique_values_dict, indent=2)) |
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = 1 |
|
age_row = 2 |
|
gender_row = 4 |
|
|
|
|
|
def convert_trait(value: str) -> int: |
|
"""Convert disease status to binary: CeD=1, others=0""" |
|
if not value or ':' not in value: |
|
return None |
|
val = value.split(':')[1].strip().lower() |
|
if 'ced' in val: |
|
return 1 |
|
elif 'control' in val or 'fdr' in val: |
|
return 0 |
|
return None |
|
|
|
def convert_age(value: str) -> float: |
|
"""Convert age to float""" |
|
if not value or ':' not in value: |
|
return None |
|
try: |
|
return float(value.split(':')[1].strip()) |
|
except: |
|
return None |
|
|
|
def convert_gender(value: str) -> int: |
|
"""Convert gender to binary: Female=0, Male=1""" |
|
if not value or ':' not in value: |
|
return None |
|
val = value.split(':')[1].strip().lower() |
|
if 'female' in val: |
|
return 0 |
|
elif 'male' in val: |
|
return 1 |
|
return None |
|
|
|
|
|
is_filtered = validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=trait_row is not None |
|
) |
|
|
|
|
|
selected_clinical = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
print("Preview of extracted clinical features:") |
|
print(preview_df(selected_clinical)) |
|
|
|
|
|
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) |
|
selected_clinical.to_csv(out_clinical_data_file) |
|
|
|
genetic_df = get_genetic_data(matrix_file) |
|
|
|
|
|
print("DataFrame shape:", genetic_df.shape) |
|
print("\nFirst 20 row IDs:") |
|
print(genetic_df.index[:20]) |
|
|
|
print("\nPreview of first few rows and columns:") |
|
print(genetic_df.head().iloc[:, :5]) |
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
gene_metadata = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Column names:") |
|
print(gene_metadata.columns) |
|
print("\nPreview of gene annotation data:") |
|
print(preview_df(gene_metadata)) |
|
|
|
|
|
|
|
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Symbol') |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_df, mapping_df) |
|
|
|
|
|
print("Mapped gene expression data shape:", gene_data.shape) |
|
print("\nPreview of mapped gene expression data:") |
|
print(gene_data.head().iloc[:, :5]) |
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note="Dataset contains gene expression data from intestinal mucus of celiac patients and controls" |
|
) |
|
|
|
|
|
if is_usable: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |