|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Celiac_Disease" |
|
cohort = "GSE164883" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Celiac_Disease" |
|
in_cohort_dir = "../DATA/GEO/Celiac_Disease/GSE164883" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Celiac_Disease/GSE164883.csv" |
|
out_gene_data_file = "./output/preprocess/3/Celiac_Disease/gene_data/GSE164883.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Celiac_Disease/clinical_data/GSE164883.csv" |
|
json_path = "./output/preprocess/3/Celiac_Disease/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file) |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("=== Dataset Background Information ===") |
|
print(background_info) |
|
print("\n=== Sample Characteristics ===") |
|
print(json.dumps(unique_values_dict, indent=2)) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
|
|
trait_row = 0 |
|
age_row = 2 |
|
gender_row = None |
|
|
|
|
|
def convert_trait(value: str) -> int: |
|
"""Convert trait values to binary: control=0, celiac disease=1""" |
|
if not value or ':' not in value: |
|
return None |
|
value = value.split(':')[1].strip().lower() |
|
if value == 'control': |
|
return 0 |
|
elif value == 'celiac disease': |
|
return 1 |
|
return None |
|
|
|
def convert_age(value: str) -> float: |
|
"""Convert age values to continuous numbers""" |
|
if not value or ':' not in value: |
|
return None |
|
value = value.split(':')[1].strip() |
|
try: |
|
return float(value) |
|
except: |
|
return None |
|
|
|
|
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=trait_row is not None |
|
) |
|
|
|
|
|
if trait_row is not None: |
|
|
|
clinical_features = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=None, |
|
convert_gender=None |
|
) |
|
|
|
|
|
print("Preview of clinical features:") |
|
print(preview_df(clinical_features)) |
|
|
|
|
|
clinical_features.to_csv(out_clinical_data_file) |
|
|
|
genetic_df = get_genetic_data(matrix_file) |
|
|
|
|
|
print("DataFrame shape:", genetic_df.shape) |
|
print("\nFirst 20 row IDs:") |
|
print(genetic_df.index[:20]) |
|
|
|
print("\nPreview of first few rows and columns:") |
|
print(genetic_df.head().iloc[:, :5]) |
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
with gzip.open(soft_file, 'rt') as f: |
|
soft_content = f.readlines() |
|
|
|
|
|
probe_lines = [] |
|
started = False |
|
for line in soft_content: |
|
if line.startswith('!platform_table_begin'): |
|
started = True |
|
continue |
|
elif line.startswith('!platform_table_end'): |
|
break |
|
elif started: |
|
probe_lines.append(line) |
|
|
|
|
|
probe_df = pd.read_csv(io.StringIO(''.join(probe_lines)), sep='\t') |
|
|
|
|
|
non_null_columns = probe_df.columns[probe_df.notnull().any()] |
|
probe_df = probe_df[non_null_columns].dropna(how='all') |
|
|
|
print("Column names with non-null values:") |
|
print(non_null_columns) |
|
|
|
print("\nPreview of probe annotation data:") |
|
print(preview_df(probe_df)) |
|
|
|
|
|
|
|
mapping_columns = ['ID', 'Symbol'] |
|
|
|
|
|
mapping_df = probe_df[mapping_columns] |
|
mapping_df = mapping_df.rename(columns={'Symbol': 'Gene'}) |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_df, mapping_df) |
|
|
|
|
|
print("Gene data shape:", gene_data.shape) |
|
print("\nPreview of gene expression data:") |
|
print(gene_data.head().iloc[:, :5]) |
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note="Dataset contains gene expression data from duodenal biopsies of children with celiac disease and controls" |
|
) |
|
|
|
|
|
if is_usable: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |