Liu-Hy's picture
Add files using upload-large-folder tool
3ee376c verified
raw
history blame contribute delete
5.87 kB
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Celiac_Disease"
cohort = "GSE164883"
# Input paths
in_trait_dir = "../DATA/GEO/Celiac_Disease"
in_cohort_dir = "../DATA/GEO/Celiac_Disease/GSE164883"
# Output paths
out_data_file = "./output/preprocess/3/Celiac_Disease/GSE164883.csv"
out_gene_data_file = "./output/preprocess/3/Celiac_Disease/gene_data/GSE164883.csv"
out_clinical_data_file = "./output/preprocess/3/Celiac_Disease/clinical_data/GSE164883.csv"
json_path = "./output/preprocess/3/Celiac_Disease/cohort_info.json"
# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values for each feature (row) in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Yes, it contains gene expression data as it mentions "transcriptomes" and total RNA isolation
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
trait_row = 0 # Disease status in row 0
age_row = 2 # Age in row 2
gender_row = None # Gender not available
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
"""Convert trait values to binary: control=0, celiac disease=1"""
if not value or ':' not in value:
return None
value = value.split(':')[1].strip().lower()
if value == 'control':
return 0
elif value == 'celiac disease':
return 1
return None
def convert_age(value: str) -> float:
"""Convert age values to continuous numbers"""
if not value or ':' not in value:
return None
value = value.split(':')[1].strip()
try:
return float(value)
except:
return None
# Gender conversion function not needed since gender data unavailable
# 3. Save Metadata
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Clinical Feature Extraction
if trait_row is not None:
# Extract clinical features
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=None,
convert_gender=None
)
# Preview the extracted features
print("Preview of clinical features:")
print(preview_df(clinical_features))
# Save to CSV
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)
# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])
print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# ILMN_* identifier prefixes indicate Illumina BeadArray probes
# These are not standard human gene symbols and require mapping
requires_gene_mapping = True
# Read SOFT file first to inspect content
with gzip.open(soft_file, 'rt') as f:
soft_content = f.readlines()
# Look for probe annotation section
probe_lines = []
started = False
for line in soft_content:
if line.startswith('!platform_table_begin'):
started = True
continue
elif line.startswith('!platform_table_end'):
break
elif started:
probe_lines.append(line)
# Convert probe annotation lines to dataframe
probe_df = pd.read_csv(io.StringIO(''.join(probe_lines)), sep='\t')
# Check column names and non-null values
non_null_columns = probe_df.columns[probe_df.notnull().any()]
probe_df = probe_df[non_null_columns].dropna(how='all')
print("Column names with non-null values:")
print(non_null_columns)
print("\nPreview of probe annotation data:")
print(preview_df(probe_df))
# 1. Identify mapping columns:
# 'ID' in probe_df matches ILMN_* identifiers in genetic_df
# 'Symbol' contains gene symbols
mapping_columns = ['ID', 'Symbol']
# 2. Get gene mapping dataframe
mapping_df = probe_df[mapping_columns]
mapping_df = mapping_df.rename(columns={'Symbol': 'Gene'})
# 3. Convert probe-level data to gene-level data using the mapping
gene_data = apply_gene_mapping(genetic_df, mapping_df)
# Preview results
print("Gene data shape:", gene_data.shape)
print("\nPreview of gene expression data:")
print(gene_data.head().iloc[:, :5])
# 1. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and metadata saving
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Dataset contains gene expression data from duodenal biopsies of children with celiac disease and controls"
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)