|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Celiac_Disease" |
|
cohort = "GSE87629" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Celiac_Disease" |
|
in_cohort_dir = "../DATA/GEO/Celiac_Disease/GSE87629" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Celiac_Disease/GSE87629.csv" |
|
out_gene_data_file = "./output/preprocess/3/Celiac_Disease/gene_data/GSE87629.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Celiac_Disease/clinical_data/GSE87629.csv" |
|
json_path = "./output/preprocess/3/Celiac_Disease/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file) |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("=== Dataset Background Information ===") |
|
print(background_info) |
|
print("\n=== Sample Characteristics ===") |
|
print(json.dumps(unique_values_dict, indent=2)) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = 5 |
|
age_row = None |
|
gender_row = None |
|
|
|
|
|
def convert_trait(x): |
|
"""Convert villus height to crypt depth ratio to continuous value""" |
|
try: |
|
|
|
val = float(x.split(': ')[1]) |
|
return val |
|
except: |
|
return None |
|
|
|
def convert_age(x): |
|
return None |
|
|
|
def convert_gender(x): |
|
return None |
|
|
|
|
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=trait_row is not None |
|
) |
|
|
|
|
|
if trait_row is not None: |
|
|
|
clinical_features = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
preview = preview_df(clinical_features) |
|
print("Preview of clinical features:") |
|
print(preview) |
|
|
|
|
|
clinical_features.to_csv(out_clinical_data_file) |
|
|
|
genetic_df = get_genetic_data(matrix_file) |
|
|
|
|
|
print("DataFrame shape:", genetic_df.shape) |
|
print("\nFirst 20 row IDs:") |
|
print(genetic_df.index[:20]) |
|
|
|
print("\nPreview of first few rows and columns:") |
|
print(genetic_df.head().iloc[:, :5]) |
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
gene_metadata = get_gene_annotation(soft_file) |
|
|
|
|
|
gene_metadata = gene_metadata[gene_metadata['Species'] != 'ILMN Controls'] |
|
|
|
|
|
print("Column names and preview of gene annotation data:") |
|
print(preview_df(gene_metadata)) |
|
|
|
|
|
prob_col = 'ID' |
|
gene_col = 'Symbol' |
|
|
|
|
|
gene_mapping = get_gene_mapping(gene_metadata, prob_col, gene_col) |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_df, gene_mapping) |
|
|
|
|
|
print("\nShape before mapping (probes x samples):", genetic_df.shape) |
|
print("Shape after mapping (genes x samples):", gene_data.shape) |
|
print("\nFirst few mapped gene symbols:") |
|
print(gene_data.index[:5]) |
|
print("\nPreview of gene expression data:") |
|
print(gene_data.head().iloc[:, :5]) |
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
note = "Gene expression data from B and T cells of celiac disease patients during six-week gluten challenge. Contains continuous trait data (villus height to crypt depth ratio)." |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note=note |
|
) |
|
|
|
|
|
if is_usable: |
|
print("\nFinal linked data shape:", linked_data.shape) |
|
print("\nPreview of linked data:") |
|
print(preview_df(linked_data)) |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |