Liu-Hy's picture
Add files using upload-large-folder tool
5bd5338 verified
raw
history blame contribute delete
5.28 kB
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Esophageal_Cancer"
cohort = "GSE100843"
# Input paths
in_trait_dir = "../DATA/GEO/Esophageal_Cancer"
in_cohort_dir = "../DATA/GEO/Esophageal_Cancer/GSE100843"
# Output paths
out_data_file = "./output/preprocess/3/Esophageal_Cancer/GSE100843.csv"
out_gene_data_file = "./output/preprocess/3/Esophageal_Cancer/gene_data/GSE100843.csv"
out_clinical_data_file = "./output/preprocess/3/Esophageal_Cancer/clinical_data/GSE100843.csv"
json_path = "./output/preprocess/3/Esophageal_Cancer/cohort_info.json"
# Get relevant file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get dictionary of unique values per row in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("Background Information:")
print("-" * 50)
print(background_info)
print("\n")
# Print clinical data unique values
print("Sample Characteristics:")
print("-" * 50)
for row, values in unique_values_dict.items():
print(f"{row}:")
print(f" {values}")
print()
# 1. Gene Expression Data Availability
# From background info, this is a microarray gene expression dataset
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# Trait (Barrett's esophagus):
# Available in field 0 as tissue type, where IM indicates disease and NSQ indicates normal
trait_row = 0
def convert_trait(value: str) -> int:
if not value or ':' not in value:
return None
value = value.split(':')[1].strip().lower()
if "barrett" in value:
return 1 # Disease tissue
elif "normal" in value:
return 0 # Normal tissue
return None
# Age: Not available in characteristics
age_row = None
convert_age = None
# Gender: Not available in characteristics
gender_row = None
convert_gender = None
# 3. Save metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Extract clinical features
if trait_row is not None:
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the selected features
print("Preview of selected clinical features:")
print(preview_df(selected_clinical))
# Save to CSV
selected_clinical.to_csv(out_clinical_data_file)
# Extract gene expression data
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 probe IDs
print("First 20 probe IDs:")
print(genetic_data.index[:20])
# The probe IDs are numeric identifiers from an Illumina array, not standard gene symbols
# They need to be mapped to proper human gene symbols
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)
# Preview column names and first few values
preview_dict = preview_df(gene_annotation)
print("Column names and preview values:")
for col, values in preview_dict.items():
print(f"\n{col}:")
print(values)
# Extract mapping between probe IDs and gene symbols
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')
# Apply gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Save the gene expression data
gene_data.to_csv(out_gene_data_file)
# Read the gene data that was saved in previous step
gene_data = pd.read_csv(out_gene_data_file, index_col=0)
# 1. Normalize gene symbols and save normalized gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
# Read the processed clinical and gene data files
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
gene_data = pd.read_csv(out_gene_data_file, index_col=0)
# Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
# Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# Detect bias in trait and demographic features, remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# Validate data quality and save cohort info
note = ("This dataset studies gene expression profiles in esophageal squamous cell carcinoma, "
"comparing tumor samples with matched nonmalignant mucosa. The sample size is moderate with paired samples.")
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note=note
)
# Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file)
else:
print(f"Dataset {cohort} did not pass quality validation and will not be saved.")