|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Esophageal_Cancer" |
|
cohort = "GSE107754" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Esophageal_Cancer" |
|
in_cohort_dir = "../DATA/GEO/Esophageal_Cancer/GSE107754" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Esophageal_Cancer/GSE107754.csv" |
|
out_gene_data_file = "./output/preprocess/3/Esophageal_Cancer/gene_data/GSE107754.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Esophageal_Cancer/clinical_data/GSE107754.csv" |
|
json_path = "./output/preprocess/3/Esophageal_Cancer/cohort_info.json" |
|
|
|
|
|
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Background Information:") |
|
print("-" * 50) |
|
print(background_info) |
|
print("\n") |
|
|
|
|
|
print("Sample Characteristics:") |
|
print("-" * 50) |
|
for row, values in unique_values_dict.items(): |
|
print(f"{row}:") |
|
print(f" {values}") |
|
print() |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = 2 |
|
|
|
age_row = None |
|
|
|
gender_row = 0 |
|
|
|
|
|
def convert_trait(value: str) -> int: |
|
"""Convert tissue type to binary indicating if it's esophageal cancer""" |
|
if not value or ':' not in value: |
|
return None |
|
tissue = value.split(':')[1].strip().lower() |
|
|
|
return 1 if 'esophagus cancer' in tissue else 0 |
|
|
|
def convert_age(value: str) -> float: |
|
"""Convert age string to float""" |
|
|
|
return None |
|
|
|
def convert_gender(value: str) -> int: |
|
"""Convert gender to binary (0=female, 1=male)""" |
|
if not value or ':' not in value: |
|
return None |
|
gender = value.split(':')[1].strip().lower() |
|
if gender == 'female': |
|
return 0 |
|
elif gender == 'male': |
|
return 1 |
|
return None |
|
|
|
|
|
_ = validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=trait_row is not None |
|
) |
|
|
|
|
|
if trait_row is not None: |
|
clinical_features = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
preview = preview_df(clinical_features) |
|
print("Preview of clinical features:") |
|
print(preview) |
|
|
|
|
|
clinical_features.to_csv(out_clinical_data_file) |
|
|
|
genetic_data = get_genetic_data(matrix_file_path) |
|
|
|
|
|
print("First 20 probe IDs:") |
|
print(genetic_data.index[:20]) |
|
|
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
gene_annotation = get_gene_annotation(soft_file_path) |
|
|
|
|
|
preview_dict = preview_df(gene_annotation) |
|
print("Column names and preview values:") |
|
for col, values in preview_dict.items(): |
|
print(f"\n{col}:") |
|
print(values) |
|
|
|
|
|
probe_col = 'ID' |
|
symbol_col = 'GENE_SYMBOL' |
|
|
|
|
|
gene_mapping = get_gene_mapping(gene_annotation, probe_col, symbol_col) |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_data, gene_mapping) |
|
|
|
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) |
|
normalized_gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) |
|
linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
note = ("This dataset studies gene expression profiles in esophageal squamous cell carcinoma, " |
|
"comparing tumor samples with matched nonmalignant mucosa. The sample size is moderate with paired samples.") |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=is_biased, |
|
df=linked_data, |
|
note=note |
|
) |
|
|
|
|
|
if is_usable: |
|
linked_data.to_csv(out_data_file) |
|
else: |
|
print(f"Dataset {cohort} did not pass quality validation and will not be saved.") |