Liu-Hy's picture
Add files using upload-large-folder tool
5bd5338 verified
raw
history blame contribute delete
6.04 kB
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Esophageal_Cancer"
cohort = "GSE218109"
# Input paths
in_trait_dir = "../DATA/GEO/Esophageal_Cancer"
in_cohort_dir = "../DATA/GEO/Esophageal_Cancer/GSE218109"
# Output paths
out_data_file = "./output/preprocess/3/Esophageal_Cancer/GSE218109.csv"
out_gene_data_file = "./output/preprocess/3/Esophageal_Cancer/gene_data/GSE218109.csv"
out_clinical_data_file = "./output/preprocess/3/Esophageal_Cancer/clinical_data/GSE218109.csv"
json_path = "./output/preprocess/3/Esophageal_Cancer/cohort_info.json"
# Get relevant file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get dictionary of unique values per row in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("Background Information:")
print("-" * 50)
print(background_info)
print("\n")
# Print clinical data unique values
print("Sample Characteristics:")
print("-" * 50)
for row, values in unique_values_dict.items():
print(f"{row}:")
print(f" {values}")
print()
# 1. Gene Expression Data
is_gene_available = True # Based on Series_title and Series_summary, this contains transcriptional profiling data
# 2.1 Data Availability
trait_row = 5 # p53 status indicates cancer condition
age_row = 1 # Age data available
gender_row = 0 # Sex data available
# 2.2 Data Type Conversion Functions
def convert_trait(value):
if pd.isna(value):
return None
value = value.split(': ')[-1].lower()
if 'ns+' in value or 'nuclear-stabilized' in value:
return 1
elif 'ns-' in value or 'unstable' in value:
return 0
return None
def convert_age(value):
if pd.isna(value):
return None
try:
return float(value.split(': ')[1])
except:
return None
def convert_gender(value):
if pd.isna(value):
return None
value = value.split(': ')[1].upper()
if value == 'F':
return 0
elif value == 'M':
return 1
return None
# 3. Save Initial Metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Extract Clinical Features
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
print(preview_df(selected_clinical))
# Save clinical data
selected_clinical.to_csv(out_clinical_data_file)
# Extract gene expression data
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 probe IDs
print("First 20 probe IDs:")
print(genetic_data.index[:20])
# These probes appear to be numerical identifiers rather than standard human gene symbols
# Human gene symbols typically follow a specific format (e.g., BRCA1, TP53, IL6)
# Therefore gene mapping will be required
requires_gene_mapping = True
# Since the SOFT file doesn't contain usable annotation data, load platform annotation from external source
annotation_file = "./metadata/GPL4133.tsv"
# Load and preview the platform annotation
gene_annotation = pd.read_csv(annotation_file, sep='\t', comment='#')
# Show column names and preview the data
print("Platform Annotation Preview:")
print("-" * 50)
print(f"Number of rows: {len(gene_annotation)}")
print(f"\nColumns:")
for col in gene_annotation.columns:
print(col)
print("\nFirst few rows:")
print(preview_df(gene_annotation))
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)
# Preview the data
print("Gene Annotation Preview:")
print("-" * 50)
print(f"Number of rows: {len(gene_annotation)}")
print(f"\nColumns:")
for col in gene_annotation.columns:
print(col)
print("\nFirst few rows:")
print(preview_df(gene_annotation))
# 1. The 'ID' column in gene annotation matches the gene expression data indices
# The 'GENE_SYMBOL' column contains the gene symbols we want to map to
mapping_df = get_gene_mapping(gene_annotation, 'ID', 'GENE_SYMBOL')
# 2. Apply gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Preview results
print("Gene Expression Data Preview:")
print("-" * 50)
print(f"Number of genes: {len(gene_data)}")
print("\nFirst few rows:")
print(preview_df(gene_data))
# 1. Normalize gene symbols and save
normalized_gene_data = normalize_gene_symbols_in_index(genetic_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)
# 3. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# 4. Detect bias in trait and demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate data quality and save cohort info
note = ("This dataset studies gene expression profiles in esophageal squamous cell carcinoma tumors, "
"comparing nuclear-stabilized p53 (NS+) versus unstable p53 (NS-) protein tumor samples.")
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note=note
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)
else:
print(f"Dataset {cohort} did not pass quality validation and will not be saved.")