|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Esophageal_Cancer" |
|
cohort = "GSE66258" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Esophageal_Cancer" |
|
in_cohort_dir = "../DATA/GEO/Esophageal_Cancer/GSE66258" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Esophageal_Cancer/GSE66258.csv" |
|
out_gene_data_file = "./output/preprocess/3/Esophageal_Cancer/gene_data/GSE66258.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Esophageal_Cancer/clinical_data/GSE66258.csv" |
|
json_path = "./output/preprocess/3/Esophageal_Cancer/cohort_info.json" |
|
|
|
|
|
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Background Information:") |
|
print("-" * 50) |
|
print(background_info) |
|
print("\n") |
|
|
|
|
|
print("Sample Characteristics:") |
|
print("-" * 50) |
|
for row, values in unique_values_dict.items(): |
|
print(f"{row}:") |
|
print(f" {values}") |
|
print() |
|
|
|
|
|
is_gene_available = False |
|
|
|
|
|
|
|
|
|
|
|
|
|
trait_row = 0 |
|
age_row = None |
|
gender_row = None |
|
|
|
|
|
def convert_trait(value: str) -> int: |
|
"""Convert ESCC tumor status to binary""" |
|
if 'esophageal squamous cell carcinoma' in value.lower(): |
|
return 1 |
|
return None |
|
|
|
def convert_age(value: str) -> float: |
|
"""Convert age to float""" |
|
return None |
|
|
|
def convert_gender(value: str) -> int: |
|
"""Convert gender to binary""" |
|
return None |
|
|
|
|
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=trait_row is not None |
|
) |
|
|
|
|
|
selected_clinical = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait |
|
) |
|
|
|
|
|
print("Clinical data preview:") |
|
print(preview_df(selected_clinical)) |
|
|
|
|
|
selected_clinical.to_csv(out_clinical_data_file) |