Liu-Hy's picture
Add files using upload-large-folder tool
5bd5338 verified
raw
history blame contribute delete
5.15 kB
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Esophageal_Cancer"
cohort = "GSE75241"
# Input paths
in_trait_dir = "../DATA/GEO/Esophageal_Cancer"
in_cohort_dir = "../DATA/GEO/Esophageal_Cancer/GSE75241"
# Output paths
out_data_file = "./output/preprocess/3/Esophageal_Cancer/GSE75241.csv"
out_gene_data_file = "./output/preprocess/3/Esophageal_Cancer/gene_data/GSE75241.csv"
out_clinical_data_file = "./output/preprocess/3/Esophageal_Cancer/clinical_data/GSE75241.csv"
json_path = "./output/preprocess/3/Esophageal_Cancer/cohort_info.json"
# Get relevant file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get dictionary of unique values per row in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("Background Information:")
print("-" * 50)
print(background_info)
print("\n")
# Print clinical data unique values
print("Sample Characteristics:")
print("-" * 50)
for row, values in unique_values_dict.items():
print(f"{row}:")
print(f" {values}")
print()
# 1. Gene Expression Data Availability
# From title and summary, this is a gene expression profile dataset
is_gene_available = True
# 2.1 Data Availability
# trait (cancer status) is in row 1 (tissue type)
trait_row = 1
# age and gender not available in characteristics
age_row = None
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(value):
if pd.isna(value):
return None
# Extract value after colon and strip whitespace
value = value.split(':')[1].strip()
# Convert to binary: nonmalignant (0) vs tumor (1)
if 'nonmalignant' in value.lower():
return 0
elif 'tumor' in value.lower():
return 1
return None
def convert_age(value):
return None # Not used since age data not available
def convert_gender(value):
return None # Not used since gender data not available
# 3. Save Metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Clinical Feature Extraction
# Since trait_row is not None, we extract features
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
preview_result = preview_df(selected_clinical)
# Save clinical data
selected_clinical.to_csv(out_clinical_data_file)
# Extract gene expression data
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 probe IDs
print("First 20 probe IDs:")
print(genetic_data.index[:20])
# These probes appear to be numerical IDs from Illumina platform
# rather than standardized gene symbols like "BRCA1", "TP53" etc.
# Therefore mapping to gene symbols will be required
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)
# Preview column names and first few values
preview_dict = preview_df(gene_annotation)
print("Column names and preview values:")
for col, values in preview_dict.items():
print(f"\n{col}:")
print(values)
# 'ID' in gene_annotation matches the probe IDs in genetic_data
# 'gene_assignment' contains gene symbol information
mapping_data = get_gene_mapping(gene_annotation, 'ID', 'gene_assignment')
# Apply gene mapping to get gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Save gene data
gene_data.to_csv(out_gene_data_file)
# Preview the gene data
preview_result = preview_df(gene_data)
# Read the processed clinical and gene data files
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
gene_data = pd.read_csv(out_gene_data_file, index_col=0) # Already normalized in step 6
# Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
# Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# Detect bias in trait and demographic features, remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# Validate data quality and save cohort info
note = ("This dataset studies gene expression profiles in esophageal squamous cell carcinoma, "
"comparing tumor samples with matched nonmalignant mucosa. The sample size is moderate with paired samples.")
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note=note
)
# Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file)
else:
print(f"Dataset {cohort} did not pass quality validation and will not be saved.")