Liu-Hy's picture
Add files using upload-large-folder tool
5bd5338 verified
raw
history blame contribute delete
7.42 kB
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Esophageal_Cancer"
cohort = "GSE77790"
# Input paths
in_trait_dir = "../DATA/GEO/Esophageal_Cancer"
in_cohort_dir = "../DATA/GEO/Esophageal_Cancer/GSE77790"
# Output paths
out_data_file = "./output/preprocess/3/Esophageal_Cancer/GSE77790.csv"
out_gene_data_file = "./output/preprocess/3/Esophageal_Cancer/gene_data/GSE77790.csv"
out_clinical_data_file = "./output/preprocess/3/Esophageal_Cancer/clinical_data/GSE77790.csv"
json_path = "./output/preprocess/3/Esophageal_Cancer/cohort_info.json"
# Get relevant file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get dictionary of unique values per row in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("Background Information:")
print("-" * 50)
print(background_info)
print("\n")
# Print clinical data unique values
print("Sample Characteristics:")
print("-" * 50)
for row, values in unique_values_dict.items():
print(f"{row}:")
print(f" {values}")
print()
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Create trait column from cell line information
cell_lines = clinical_data.iloc[0]
clinical_df = pd.DataFrame(index=cell_lines.index)
clinical_df[trait] = cell_lines.str.contains('TE8|TE9').astype(int)
# Normalize gene symbols and save to file
normalized_gene_data = normalize_gene_symbols_in_index(genetic_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)
# Save clinical data to file
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
clinical_df.to_csv(out_clinical_data_file)
# Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)
# Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# Detect bias in trait and demographic features, remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# Validate data quality and save cohort info
note = ("This dataset studies gene expression changes in cancer cell lines after miRNA/siRNA treatments. "
"Data quality evaluation indicates the trait distribution is biased.")
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note=note
)
# Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)
else:
print(f"Dataset {cohort} did not pass quality validation and will not be saved.")
# Set initial availability flags
is_gene_available = False # Cannot determine without data
# No data available yet
trait_row = None
age_row = None
gender_row = None
def convert_trait(x):
return None
def convert_age(x):
return None
def convert_gender(x):
return None
# Save initial metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=False # Since trait_row is None
)
# Check gene expression data availability (GPL570 platform indicates gene expression data)
is_gene_available = True
# Data availability from sample characteristics
trait_row = 2 # "source name: esophageal tumor or paired normal"
age_row = 9 # "age (years): [numeric values]"
gender_row = 8 # "sex: male/female"
def convert_trait(val: str) -> Optional[int]:
if val is None:
return None
val = val.split(":")[-1].strip().lower()
if "tumor" in val:
return 1
elif "normal" in val:
return 0
return None
def convert_age(val: str) -> Optional[float]:
if val is None:
return None
val = val.split(":")[-1].strip()
try:
return float(val)
except:
return None
def convert_gender(val: str) -> Optional[int]:
if val is None:
return None
val = val.split(":")[-1].strip().lower()
if "female" in val:
return 0
elif "male" in val:
return 1
return None
# Save metadata for initial filtering
_ = validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None))
# Extract gene expression data
genetic_data = get_genetic_data(matrix_file_path)
genetic_data.index = genetic_data.index.astype(str) # Convert probe IDs to strings
# Print first 20 probe IDs
print("First 20 probe IDs:")
print(genetic_data.index[:20])
# The indices appear to be just sequential numbers rather than any meaningful gene identifiers
# This indicates the gene identifiers need to be mapped to proper gene symbols
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)
# Preview column names and first few values
preview_dict = preview_df(gene_annotation)
print("Column names and preview values:")
for col, values in preview_dict.items():
print(f"\n{col}:")
print(values)
# Extract probe-gene mapping columns
mapping_data = get_gene_mapping(gene_annotation, 'ID', 'GENE_SYMBOL')
# Apply gene mapping to convert probe data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Define clinical data parameters based on sample characteristics
trait_row = 1 # cell type row
def convert_trait(x):
if not isinstance(x, str):
return None
x = x.lower()
return 1 if 'esophageal cancer' in x else 0
# Extract clinical features
clinical_df = geo_select_clinical_features(
clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait
)
# Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
# Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# Detect bias in trait and demographic features, remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# Validate data quality and save cohort info
note = ("This dataset studies gene expression in esophageal cancer cell lines. "
"Data quality evaluation indicates potential trait distribution bias.")
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note=note
)
# Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)
else:
print(f"Dataset {cohort} did not pass quality validation and will not be saved.")