|
import gzip |
|
import io |
|
import json |
|
import os |
|
import re |
|
from typing import Callable, Optional, List, Tuple, Dict, Union, Any |
|
|
|
import pandas as pd |
|
|
|
|
|
def geo_get_relevant_filepaths(cohort_dir: str) -> Tuple[str, str]: |
|
"""Find the file paths of a SOFT file and a matrix file from the given data directory of a cohort. |
|
If there are multiple SOFT files or matrix files, simply choose the first one. Used for the GEO dataset. |
|
""" |
|
files = os.listdir(cohort_dir) |
|
soft_files = [f for f in files if 'soft' in f.lower()] |
|
matrix_files = [f for f in files if 'matrix' in f.lower()] |
|
assert len(soft_files) > 0 and len(matrix_files) > 0 |
|
soft_file_path = os.path.join(cohort_dir, soft_files[0]) |
|
matrix_file_path = os.path.join(cohort_dir, matrix_files[0]) |
|
|
|
return soft_file_path, matrix_file_path |
|
|
|
|
|
def tcga_get_relevant_filepaths(cohort_dir: str) -> Tuple[str, str]: |
|
"""Find the file paths of a clinical file and a genetic file from the given data directory of a cohort. |
|
If there are multiple clinical or genetic data files, simply choose the first one. Used for the TCGA Xena dataset. |
|
""" |
|
files = os.listdir(cohort_dir) |
|
clinical_files = [f for f in files if 'clinicalmatrix' in f.lower()] |
|
genetic_files = [f for f in files if 'pancan' in f.lower()] |
|
clinical_file_path = os.path.join(cohort_dir, clinical_files[0]) |
|
genetic_file_path = os.path.join(cohort_dir, genetic_files[0]) |
|
return clinical_file_path, genetic_file_path |
|
|
|
|
|
def line_generator(source: str, source_type: str) -> str: |
|
"""Generator that yields lines from a file or a string. |
|
|
|
Parameters: |
|
- source: File path or string content. |
|
- source_type: 'file' or 'string'. |
|
""" |
|
if source_type == 'file': |
|
with gzip.open(source, 'rt') as f: |
|
for line in f: |
|
yield line.strip() |
|
elif source_type == 'string': |
|
for line in source.split('\n'): |
|
yield line.strip() |
|
else: |
|
raise ValueError("source_type must be 'file' or 'string'") |
|
|
|
|
|
def filter_content_by_prefix( |
|
source: str, |
|
prefixes_a: List[str], |
|
prefixes_b: Optional[List[str]] = None, |
|
unselect: bool = False, |
|
source_type: str = 'file', |
|
return_df_a: bool = True, |
|
return_df_b: bool = True |
|
) -> Tuple[Union[str, pd.DataFrame], Optional[Union[str, pd.DataFrame]]]: |
|
""" |
|
Filters rows from a file or a list of strings based on specified prefixes. |
|
|
|
Parameters: |
|
- source (str): File path or string content to filter. |
|
- prefixes_a (List[str]): Primary list of prefixes to filter by. |
|
- prefixes_b (Optional[List[str]]): Optional secondary list of prefixes to filter by. |
|
- unselect (bool): If True, selects rows that do not start with the specified prefixes. |
|
- source_type (str): 'file' if source is a file path, 'string' if source is a string of text. |
|
- return_df_a (bool): If True, returns filtered content for prefixes_a as a pandas DataFrame. |
|
- return_df_b (bool): If True, and if prefixes_b is provided, returns filtered content for prefixes_b as a pandas DataFrame. |
|
|
|
Returns: |
|
- Tuple: A tuple where the first element is the filtered content for prefixes_a, and the second element is the filtered content for prefixes_b. |
|
""" |
|
filtered_lines_a = [] |
|
filtered_lines_b = [] |
|
prefix_set_a = set(prefixes_a) |
|
if prefixes_b is not None: |
|
prefix_set_b = set(prefixes_b) |
|
|
|
|
|
for line in line_generator(source, source_type): |
|
matched_a = any(line.startswith(prefix) for prefix in prefix_set_a) |
|
if matched_a != unselect: |
|
filtered_lines_a.append(line) |
|
if prefixes_b is not None: |
|
matched_b = any(line.startswith(prefix) for prefix in prefix_set_b) |
|
if matched_b != unselect: |
|
filtered_lines_b.append(line) |
|
|
|
filtered_content_a = '\n'.join(filtered_lines_a) |
|
if return_df_a: |
|
filtered_content_a = pd.read_csv(io.StringIO(filtered_content_a), delimiter='\t', low_memory=False, |
|
on_bad_lines='skip') |
|
filtered_content_b = None |
|
if filtered_lines_b: |
|
filtered_content_b = '\n'.join(filtered_lines_b) |
|
if return_df_b: |
|
filtered_content_b = pd.read_csv(io.StringIO(filtered_content_b), delimiter='\t', low_memory=False, |
|
on_bad_lines='skip') |
|
|
|
return filtered_content_a, filtered_content_b |
|
|
|
|
|
def get_background_and_clinical_data(file_path: str, |
|
prefixes_a: List[str] = ['!Series_title', '!Series_summary', |
|
'!Series_overall_design'], |
|
prefixes_b: List[str] = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] |
|
) -> Tuple[str, pd.DataFrame]: |
|
"""Extract background information and clinical data from a matrix file.""" |
|
background_info, clinical_data = filter_content_by_prefix(file_path, prefixes_a, prefixes_b, unselect=False, |
|
source_type='file', |
|
return_df_a=False, return_df_b=True) |
|
return background_info, clinical_data |
|
|
|
|
|
def get_gene_annotation(file_path: str, prefixes: List[str] = ['^', '!', '#']) -> pd.DataFrame: |
|
"""Extract gene annotation data from a SOFT file.""" |
|
gene_metadata = filter_content_by_prefix(file_path, prefixes_a=prefixes, unselect=True, source_type='file', |
|
return_df_a=True) |
|
return gene_metadata[0] |
|
|
|
|
|
def get_gene_mapping(annotation: pd.DataFrame, prob_col: str, gene_col: str) -> pd.DataFrame: |
|
"""Process gene annotation to get mapping between gene names and probes.""" |
|
mapping_data = annotation.loc[:, [prob_col, gene_col]] |
|
mapping_data = mapping_data.dropna() |
|
mapping_data = mapping_data.rename(columns={gene_col: 'Gene'}).astype({'ID': 'str'}) |
|
|
|
return mapping_data |
|
|
|
|
|
def get_genetic_data(file_path: str, marker: str = "!series_matrix_table_begin") -> pd.DataFrame: |
|
"""Read the gene expression data into a dataframe, and adjust its format""" |
|
|
|
with gzip.open(file_path, 'rt') as file: |
|
for i, line in enumerate(file): |
|
if marker in line: |
|
skip_rows = i + 1 |
|
break |
|
else: |
|
raise ValueError(f"Marker '{marker}' not found in the file.") |
|
|
|
|
|
genetic_data = pd.read_csv(file_path, compression='gzip', skiprows=skip_rows, comment='!', delimiter='\t', |
|
on_bad_lines='skip') |
|
genetic_data = genetic_data.rename(columns={'ID_REF': 'ID'}).astype({'ID': 'str'}) |
|
genetic_data.set_index('ID', inplace=True) |
|
|
|
return genetic_data |
|
|
|
|
|
def extract_human_gene_symbols(text: str) -> List[str]: |
|
""" |
|
Extract a list of likely human gene symbols from (often messy) GEO annotation text. |
|
Includes both canonical symbols and the C#orf# pattern (e.g., C10orf54). |
|
Excludes transcripts/predictions starting with NR_, XR_, LOC\d+, LINC\d+. |
|
Filters out a few trivial lab terms (DNA, RNA, PCR, EST, CHR). |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pattern = ( |
|
r"\b" |
|
r"(?!NR_|XR_|LOC\d+|LINC\d+)" |
|
r"(?:[A-Z][A-Z0-9-]{1,9}|C\d+orf\d+)" |
|
r"\b" |
|
) |
|
|
|
if not isinstance(text, str): |
|
return [] |
|
|
|
candidates = re.findall(pattern, text) |
|
|
|
|
|
exclude_simple = {"DNA", "RNA", "PCR", "EST", "CHR"} |
|
filtered = [c for c in candidates if c not in exclude_simple] |
|
|
|
|
|
return list(dict.fromkeys(filtered)) |
|
|
|
|
|
def apply_gene_mapping(expression_df: pd.DataFrame, mapping_df: pd.DataFrame) -> pd.DataFrame: |
|
""" |
|
Convert measured data about gene probes into gene expression data. |
|
If a probe maps to n genes, each gene gets expression / n. Then we sum across all probes for each gene. |
|
|
|
Parameters: |
|
expression_df (DataFrame): A DataFrame with gene expression data, indexed by 'ID'. |
|
mapping_df (DataFrame): A DataFrame mapping 'ID' to 'Gene', with 'ID' as a column. |
|
|
|
Returns: |
|
DataFrame: A DataFrame with summed gene expression values, indexed by 'Gene'. |
|
""" |
|
mapping_df = mapping_df[mapping_df['ID'].isin(expression_df.index)].copy() |
|
mapping_df['Gene'] = mapping_df['Gene'].apply(extract_human_gene_symbols) |
|
|
|
|
|
mapping_df['num_genes'] = mapping_df['Gene'].apply(len) |
|
mapping_df = mapping_df.explode('Gene') |
|
|
|
mapping_df = mapping_df.dropna(subset=['Gene']) |
|
mapping_df.set_index('ID', inplace=True) |
|
|
|
|
|
merged_df = mapping_df.join(expression_df) |
|
expr_cols = [col for col in merged_df.columns if col not in ['Gene', 'num_genes']] |
|
merged_df[expr_cols] = merged_df[expr_cols].div(merged_df['num_genes'].replace(0, 1), axis=0) |
|
|
|
|
|
gene_expression_df = merged_df.groupby('Gene')[expr_cols].sum() |
|
|
|
return gene_expression_df |
|
|
|
|
|
def normalize_gene_symbols_in_index(gene_df: pd.DataFrame) -> pd.DataFrame: |
|
"""Use gene synonym information extracted from the NCBI Gene database to normalize gene symbols in dataframe index, |
|
and aggregate rows with same normalized symbol. |
|
""" |
|
with open("../../metadata/gene_synonym.json", "r") as f: |
|
synonym_dict = json.load(f) |
|
gene_df.index = gene_df.index.str.upper().map(lambda x: synonym_dict.get(x)) |
|
gene_df = gene_df[gene_df.index.notnull()] |
|
gene_df = gene_df.groupby(gene_df.index).mean() |
|
|
|
return gene_df |
|
|
|
|
|
def get_feature_data(clinical_df: pd.DataFrame, row_id: int, feature: str, convert_fn: Callable) -> pd.DataFrame: |
|
"""Extract and convert a feature row from clinical data.""" |
|
|
|
df = clinical_df.iloc[row_id:row_id + 1].drop(columns=['!Sample_geo_accession'], errors='ignore') |
|
|
|
df.index = [feature] |
|
|
|
df = df.map(convert_fn).astype(float) |
|
return df |
|
|
|
|
|
def judge_binary_variable_biased(dataframe: pd.DataFrame, col_name: str, min_proportion: float = 0.1, |
|
min_num: int = 5) -> bool: |
|
"""Check if a binary variable's distribution is too biased for analysis.""" |
|
label_counter = dataframe[col_name].value_counts() |
|
total_samples = len(dataframe) |
|
rare_label_num = label_counter.min() |
|
rare_label = label_counter.idxmin() |
|
rare_label_proportion = rare_label_num / total_samples |
|
|
|
print( |
|
f"For the feature \'{col_name}\', the least common label is '{rare_label}' with {rare_label_num} occurrences. This represents {rare_label_proportion:.2%} of the dataset.") |
|
|
|
biased = (len(label_counter) < 2) or ((rare_label_proportion < min_proportion) and (rare_label_num < min_num)) |
|
return bool(biased) |
|
|
|
|
|
def judge_continuous_variable_biased(dataframe: pd.DataFrame, col_name: str) -> bool: |
|
"""Check if the distribution of a continuous variable in the dataset is too biased to be usable for analysis. |
|
As a starting point, we consider it biased if all values are the same. For the next step, maybe ask GPT to judge |
|
based on quartile statistics combined with its common sense knowledge about this feature. |
|
""" |
|
quartiles = dataframe[col_name].quantile([0.25, 0.5, 0.75]) |
|
min_value = dataframe[col_name].min() |
|
max_value = dataframe[col_name].max() |
|
|
|
|
|
print(f"Quartiles for '{col_name}':") |
|
print(f" 25%: {quartiles[0.25]}") |
|
print(f" 50% (Median): {quartiles[0.5]}") |
|
print(f" 75%: {quartiles[0.75]}") |
|
print(f"Min: {min_value}") |
|
print(f"Max: {max_value}") |
|
|
|
biased = min_value == max_value |
|
|
|
return bool(biased) |
|
|
|
|
|
def tcga_convert_trait(row_index: str) -> int: |
|
"""Convert TCGA sample IDs to binary trait labels based on last two digits. |
|
Tumor types range from 01 - 09, normal types from 10 - 19. |
|
""" |
|
last_two_digits = int(row_index[-2:]) |
|
|
|
if 1 <= last_two_digits <= 9: |
|
return 1 |
|
elif 10 <= last_two_digits <= 19: |
|
return 0 |
|
else: |
|
return -1 |
|
|
|
|
|
def tcga_convert_gender(cell: str) -> Optional[int]: |
|
"""Convert gender strings to binary values (0: female, 1: male).""" |
|
if isinstance(cell, str): |
|
cell = cell.lower() |
|
|
|
if cell == "female": |
|
return 0 |
|
elif cell == "male": |
|
return 1 |
|
else: |
|
return None |
|
|
|
|
|
def tcga_convert_age(cell: str) -> Optional[int]: |
|
"""Extract age value from string using regex.""" |
|
match = re.search(r'\d+', str(cell)) |
|
if match: |
|
return int(match.group()) |
|
else: |
|
return None |
|
|
|
|
|
def get_unique_values_by_row(dataframe: pd.DataFrame, max_len: int = 30) -> Dict[str, List[Any]]: |
|
"""Organize the unique values in each row of the given dataframe, to get a dictionary.""" |
|
if '!Sample_geo_accession' in dataframe.columns: |
|
dataframe = dataframe.drop(columns=['!Sample_geo_accession']) |
|
unique_values_dict = {} |
|
for index, row in dataframe.iterrows(): |
|
unique_values = list(row.unique())[:max_len] |
|
unique_values_dict[index] = unique_values |
|
return unique_values_dict |
|
|
|
|
|
def tcga_select_clinical_features(clinical_df: pd.DataFrame, trait: str, |
|
age_col: Optional[str] = None, |
|
gender_col: Optional[str] = None) -> pd.DataFrame: |
|
"""Select and process clinical features from TCGA Xena data.""" |
|
feature_list = [] |
|
trait_data = clinical_df.index.to_series().apply(tcga_convert_trait).rename(trait) |
|
feature_list.append(trait_data) |
|
if age_col: |
|
age_data = clinical_df[age_col].apply(tcga_convert_age).rename("Age") |
|
feature_list.append(age_data) |
|
if gender_col: |
|
gender_data = clinical_df[gender_col].apply(tcga_convert_gender).rename("Gender") |
|
feature_list.append(gender_data) |
|
selected_clinical_df = pd.concat(feature_list, axis=1) |
|
return selected_clinical_df |
|
|
|
|
|
def geo_select_clinical_features(clinical_df: pd.DataFrame, trait: str, trait_row: int, |
|
convert_trait: Callable, |
|
age_row: Optional[int] = None, |
|
convert_age: Optional[Callable] = None, |
|
gender_row: Optional[int] = None, |
|
convert_gender: Optional[Callable] = None) -> pd.DataFrame: |
|
""" |
|
Extracts and processes specific clinical features from a DataFrame representing |
|
sample characteristics in the GEO database series. |
|
|
|
Parameters: |
|
- clinical_df (pd.DataFrame): DataFrame containing clinical data. |
|
- trait (str): The trait of interest. |
|
- trait_row (int): Row identifier for the trait in the DataFrame. |
|
- convert_trait (Callable): Function to convert trait data into a desired format. |
|
- age_row (int, optional): Row identifier for age data. Default is None. |
|
- convert_age (Callable, optional): Function to convert age data. Default is None. |
|
- gender_row (int, optional): Row identifier for gender data. Default is None. |
|
- convert_gender (Callable, optional): Function to convert gender data. Default is None. |
|
|
|
Returns: |
|
pd.DataFrame: A DataFrame containing the selected and processed clinical features. |
|
""" |
|
feature_list = [] |
|
|
|
trait_data = get_feature_data(clinical_df, trait_row, trait, convert_trait) |
|
feature_list.append(trait_data) |
|
if age_row is not None: |
|
age_data = get_feature_data(clinical_df, age_row, 'Age', convert_age) |
|
feature_list.append(age_data) |
|
if gender_row is not None: |
|
gender_data = get_feature_data(clinical_df, gender_row, 'Gender', convert_gender) |
|
feature_list.append(gender_data) |
|
|
|
selected_clinical_df = pd.concat(feature_list, axis=0) |
|
return selected_clinical_df |
|
|
|
|
|
def geo_link_clinical_genetic_data(clinical_df: pd.DataFrame, genetic_df: pd.DataFrame) -> pd.DataFrame: |
|
""" |
|
Link clinical and genetic data to get a dataframe for associational studies. |
|
""" |
|
|
|
if 'ID' in genetic_df.columns: |
|
genetic_df = genetic_df.rename(columns={'ID': 'Gene'}) |
|
if 'Gene' in genetic_df.columns: |
|
genetic_df = genetic_df.set_index('Gene') |
|
|
|
linked_data = pd.concat([clinical_df, genetic_df], axis=0).T |
|
|
|
return linked_data |
|
|
|
|
|
def handle_missing_values(df: pd.DataFrame, trait_col: str) -> pd.DataFrame: |
|
""" |
|
Handle missing values in gene expression dataset following best practices: |
|
1. Remove samples with missing trait values |
|
2. Remove genes with >20% missing values |
|
3. Remove samples with >5% missing genes |
|
4. Impute remaining missing values for genes and covariates |
|
|
|
Parameters: |
|
df : pd.DataFrame |
|
DataFrame containing trait, covariates, and gene expression data |
|
trait_col : str |
|
Name of the trait column |
|
|
|
Returns: |
|
-------- |
|
pd.DataFrame |
|
Processed dataframe with missing values handled |
|
""" |
|
|
|
|
|
covariate_cols = [trait_col, 'Age', 'Gender'] |
|
gene_cols = [col for col in df.columns if col not in covariate_cols] |
|
|
|
|
|
df = df.dropna(subset=[trait_col]) |
|
|
|
|
|
gene_missing_pct = df[gene_cols].isna().mean() |
|
genes_to_keep = gene_missing_pct[gene_missing_pct <= 0.2].index |
|
df = df[[col for col in df.columns if col in genes_to_keep or col in covariate_cols]] |
|
|
|
|
|
gene_cols = [col for col in df.columns if col not in covariate_cols] |
|
sample_missing_pct = df[gene_cols].isna().mean(axis=1) |
|
samples_to_keep = sample_missing_pct[sample_missing_pct <= 0.05].index |
|
df = df.loc[samples_to_keep] |
|
|
|
|
|
if 'Age' in df.columns: |
|
df['Age'] = df['Age'].fillna(df['Age'].mean()) |
|
|
|
if 'Gender' in df.columns: |
|
mode_result = df['Gender'].mode() |
|
if len(mode_result) > 0: |
|
df['Gender'] = df['Gender'].fillna(mode_result[0]) |
|
else: |
|
|
|
df = df.drop('Gender', axis=1) |
|
|
|
df[gene_cols] = df[gene_cols].fillna(df[gene_cols].mean()) |
|
|
|
return df |
|
|
|
|
|
def judge_and_remove_biased_features(df: pd.DataFrame, trait: str) -> Tuple[bool, pd.DataFrame]: |
|
"""Evaluate and remove biased features from the dataset. |
|
Checks if trait, age, and gender distributions are biased. Removes age and gender features if they are biased. |
|
""" |
|
trait_type = 'binary' if len(df[trait].unique()) == 2 else 'continuous' |
|
if trait_type == "binary": |
|
trait_biased = judge_binary_variable_biased(df, trait) |
|
else: |
|
trait_biased = judge_continuous_variable_biased(df, trait) |
|
if trait_biased: |
|
print(f"The distribution of the feature \'{trait}\' in this dataset is severely biased.\n") |
|
else: |
|
print(f"The distribution of the feature \'{trait}\' in this dataset is fine.\n") |
|
if "Age" in df.columns: |
|
age_biased = judge_continuous_variable_biased(df, 'Age') |
|
if age_biased: |
|
print(f"The distribution of the feature \'Age\' in this dataset is severely biased.\n") |
|
df = df.drop(columns='Age') |
|
else: |
|
print(f"The distribution of the feature \'Age\' in this dataset is fine.\n") |
|
if "Gender" in df.columns: |
|
gender_biased = judge_binary_variable_biased(df, 'Gender') |
|
if gender_biased: |
|
print(f"The distribution of the feature \'Gender\' in this dataset is severely biased.\n") |
|
df = df.drop(columns='Gender') |
|
else: |
|
print(f"The distribution of the feature \'Gender\' in this dataset is fine.\n") |
|
|
|
return trait_biased, df |
|
|
|
|
|
def validate_and_save_cohort_info(is_final: bool, cohort: str, info_path: str, is_gene_available: bool, |
|
is_trait_available: bool, |
|
is_biased: Optional[bool] = None, df: Optional[pd.DataFrame] = None, |
|
note: str = '') -> bool: |
|
""" |
|
Validate and save information about the usability and quality of a dataset for statistical analysis. |
|
|
|
Parameters: |
|
is_final (bool): If True, performs final validation with full data quality checks and records metadata. |
|
If False, performs initial filtering on gene and trait data availability, and only records metadata for failed datasets. |
|
cohort (str): A unique identifier for the dataset. |
|
info_path (str): File path to the JSON file where records are stored. |
|
is_gene_available (bool): Indicates whether the dataset contains genetic data |
|
is_trait_available (bool): Indicates whether the dataset contains trait data |
|
|
|
The below parameters are only used when 'is_final' is True: |
|
is_biased (bool, optional): Indicates whether the dataset is too biased to be usable. |
|
df (pandas.DataFrame, optional): The preprocessed dataset. |
|
note (str, optional): Additional notes about the dataset. |
|
|
|
Returns: |
|
bool: True if the dataset was completely preprocessed and saved, ready for future statistical analysis. |
|
""" |
|
is_usable = False |
|
if not is_final: |
|
if is_gene_available and is_trait_available: |
|
|
|
return is_usable |
|
else: |
|
|
|
new_record = {"is_usable": False, |
|
"is_gene_available": is_gene_available, |
|
"is_trait_available": is_trait_available, |
|
"is_available": False, |
|
"is_biased": None, |
|
"has_age": None, |
|
"has_gender": None, |
|
"sample_size": None, |
|
"note": None} |
|
else: |
|
|
|
if (df is None) or (is_biased is None): |
|
raise ValueError("For final data validation, 'df' and 'is_biased' must be provided.") |
|
|
|
if len(df) <= 0 or len(df.columns) <= 4: |
|
print(f"Abnormality detected in the cohort: {cohort}. Preprocessing failed.") |
|
is_gene_available = False |
|
if len(df) <= 0: |
|
is_trait_available = False |
|
is_available = is_gene_available and is_trait_available |
|
|
|
is_usable = is_available and (is_biased is False) |
|
new_record = {"is_usable": is_usable, |
|
"is_gene_available": is_gene_available, |
|
"is_trait_available": is_trait_available, |
|
"is_available": is_available, |
|
"is_biased": is_biased if is_available else None, |
|
"has_age": "Age" in df.columns if is_available else None, |
|
"has_gender": "Gender" in df.columns if is_available else None, |
|
"sample_size": len(df) if is_available else None, |
|
"note": note} |
|
|
|
trait_directory = os.path.dirname(info_path) |
|
os.makedirs(trait_directory, exist_ok=True) |
|
if not os.path.exists(info_path): |
|
with open(info_path, 'w') as file: |
|
json.dump({}, file) |
|
print(f"A new JSON file was created at: {info_path}") |
|
|
|
with open(info_path, "r") as file: |
|
records = json.load(file) |
|
records[cohort] = new_record |
|
|
|
temp_path = info_path + ".tmp" |
|
try: |
|
with open(temp_path, 'w') as file: |
|
json.dump(records, file) |
|
os.replace(temp_path, info_path) |
|
|
|
except Exception as e: |
|
print(f"An error occurred: {e}") |
|
if os.path.exists(temp_path): |
|
os.remove(temp_path) |
|
raise |
|
|
|
return is_usable |
|
|
|
|
|
def preview_df(df: pd.DataFrame, n: int = 5, max_items: int = 200) -> Dict[str, Any]: |
|
"""Preview DataFrame contents with limited number of items.""" |
|
|
|
data_dict = df.head(n).to_dict(orient='list') |
|
|
|
|
|
if len(data_dict) > max_items: |
|
truncated_dict = {k: data_dict[k] for k in list(data_dict.keys())[:max_items]} |
|
return truncated_dict |
|
else: |
|
return data_dict |
|
|