Liu-Hy commited on
Commit
1f7599a
·
verified ·
1 Parent(s): 3ee376c

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +15 -0
  2. p3/preprocess/Bladder_Cancer/TCGA.csv +3 -0
  3. p3/preprocess/Bladder_Cancer/gene_data/GSE245953.csv +3 -0
  4. p3/preprocess/Cardiovascular_Disease/GSE235307.csv +3 -0
  5. p3/preprocess/Cardiovascular_Disease/gene_data/GSE182600.csv +3 -0
  6. p3/preprocess/Cardiovascular_Disease/gene_data/GSE228783.csv +3 -0
  7. p3/preprocess/Cardiovascular_Disease/gene_data/GSE235307.csv +3 -0
  8. p3/preprocess/Cardiovascular_Disease/gene_data/GSE256539.csv +3 -0
  9. p3/preprocess/Celiac_Disease/gene_data/GSE138297.csv +3 -0
  10. p3/preprocess/Celiac_Disease/gene_data/GSE164883.csv +0 -0
  11. p3/preprocess/Celiac_Disease/gene_data/GSE20332.csv +3 -0
  12. p3/preprocess/Celiac_Disease/gene_data/GSE72625.csv +3 -0
  13. p3/preprocess/Celiac_Disease/gene_data/GSE87629.csv +0 -0
  14. p3/preprocess/Cervical_Cancer/GSE138079.csv +3 -0
  15. p3/preprocess/Cervical_Cancer/GSE138080.csv +0 -0
  16. p3/preprocess/Cervical_Cancer/GSE146114.csv +3 -0
  17. p3/preprocess/Cervical_Cancer/GSE63678.csv +0 -0
  18. p3/preprocess/Cervical_Cancer/clinical_data/GSE131027.csv +2 -0
  19. p3/preprocess/Cervical_Cancer/clinical_data/GSE138079.csv +2 -0
  20. p3/preprocess/Cervical_Cancer/clinical_data/GSE138080.csv +2 -0
  21. p3/preprocess/Cervical_Cancer/clinical_data/GSE146114.csv +2 -0
  22. p3/preprocess/Cervical_Cancer/clinical_data/GSE163114.csv +2 -0
  23. p3/preprocess/Cervical_Cancer/clinical_data/GSE63678.csv +2 -0
  24. p3/preprocess/Cervical_Cancer/clinical_data/GSE75132.csv +2 -0
  25. p3/preprocess/Cervical_Cancer/code/GSE107754.py +139 -0
  26. p3/preprocess/Cervical_Cancer/code/GSE114243.py +255 -0
  27. p3/preprocess/Cervical_Cancer/code/GSE131027.py +92 -0
  28. p3/preprocess/Cervical_Cancer/code/GSE137034.py +57 -0
  29. p3/preprocess/Cervical_Cancer/code/GSE138079.py +176 -0
  30. p3/preprocess/Cervical_Cancer/code/GSE138080.py +229 -0
  31. p3/preprocess/Cervical_Cancer/code/GSE146114.py +161 -0
  32. p3/preprocess/Cervical_Cancer/code/GSE163114.py +114 -0
  33. p3/preprocess/Cervical_Cancer/code/GSE63678.py +128 -0
  34. p3/preprocess/Cervical_Cancer/code/GSE75132.py +145 -0
  35. p3/preprocess/Cervical_Cancer/code/TCGA.py +104 -0
  36. p3/preprocess/Cervical_Cancer/gene_data/GSE107754.csv +3 -0
  37. p3/preprocess/Cervical_Cancer/gene_data/GSE114243.csv +0 -0
  38. p3/preprocess/Cervical_Cancer/gene_data/GSE138079.csv +3 -0
  39. p3/preprocess/Cervical_Cancer/gene_data/GSE138080.csv +0 -0
  40. p3/preprocess/Cervical_Cancer/gene_data/GSE146114.csv +3 -0
  41. p3/preprocess/Cervical_Cancer/gene_data/GSE63678.csv +0 -0
  42. p3/preprocess/Cervical_Cancer/gene_data/GSE75132.csv +0 -0
  43. p3/preprocess/Chronic_Fatigue_Syndrome/GSE251792.csv +0 -0
  44. p3/preprocess/Chronic_Fatigue_Syndrome/clinical_data/GSE251792.csv +4 -0
  45. p3/preprocess/Chronic_Fatigue_Syndrome/clinical_data/GSE39684.csv +2 -0
  46. p3/preprocess/Chronic_Fatigue_Syndrome/clinical_data/GSE67311.csv +2 -0
  47. p3/preprocess/Chronic_Fatigue_Syndrome/code/GSE251792.py +154 -0
  48. p3/preprocess/Chronic_Fatigue_Syndrome/code/GSE39684.py +129 -0
  49. p3/preprocess/Chronic_Fatigue_Syndrome/code/GSE67311.py +157 -0
  50. p3/preprocess/Chronic_Fatigue_Syndrome/code/TCGA.py +30 -0
.gitattributes CHANGED
@@ -1559,3 +1559,18 @@ p3/preprocess/Cardiovascular_Disease/GSE182600.csv filter=lfs diff=lfs merge=lfs
1559
  p3/preprocess/Cardiovascular_Disease/gene_data/GSE285666.csv filter=lfs diff=lfs merge=lfs -text
1560
  p3/preprocess/Cardiovascular_Disease/gene_data/GSE190042.csv filter=lfs diff=lfs merge=lfs -text
1561
  p3/preprocess/Celiac_Disease/GSE138297.csv filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1559
  p3/preprocess/Cardiovascular_Disease/gene_data/GSE285666.csv filter=lfs diff=lfs merge=lfs -text
1560
  p3/preprocess/Cardiovascular_Disease/gene_data/GSE190042.csv filter=lfs diff=lfs merge=lfs -text
1561
  p3/preprocess/Celiac_Disease/GSE138297.csv filter=lfs diff=lfs merge=lfs -text
1562
+ p3/preprocess/Cardiovascular_Disease/GSE235307.csv filter=lfs diff=lfs merge=lfs -text
1563
+ p3/preprocess/Cardiovascular_Disease/gene_data/GSE182600.csv filter=lfs diff=lfs merge=lfs -text
1564
+ p3/preprocess/Cardiovascular_Disease/gene_data/GSE256539.csv filter=lfs diff=lfs merge=lfs -text
1565
+ p3/preprocess/Cardiovascular_Disease/gene_data/GSE228783.csv filter=lfs diff=lfs merge=lfs -text
1566
+ p3/preprocess/Cardiovascular_Disease/gene_data/GSE235307.csv filter=lfs diff=lfs merge=lfs -text
1567
+ p3/preprocess/Celiac_Disease/gene_data/GSE138297.csv filter=lfs diff=lfs merge=lfs -text
1568
+ p3/preprocess/Celiac_Disease/gene_data/GSE72625.csv filter=lfs diff=lfs merge=lfs -text
1569
+ p3/preprocess/Bladder_Cancer/gene_data/GSE245953.csv filter=lfs diff=lfs merge=lfs -text
1570
+ p3/preprocess/Cervical_Cancer/GSE138079.csv filter=lfs diff=lfs merge=lfs -text
1571
+ p3/preprocess/Cervical_Cancer/GSE146114.csv filter=lfs diff=lfs merge=lfs -text
1572
+ p3/preprocess/Cervical_Cancer/gene_data/GSE138079.csv filter=lfs diff=lfs merge=lfs -text
1573
+ p3/preprocess/Cervical_Cancer/gene_data/GSE107754.csv filter=lfs diff=lfs merge=lfs -text
1574
+ p3/preprocess/Cervical_Cancer/gene_data/GSE146114.csv filter=lfs diff=lfs merge=lfs -text
1575
+ p3/preprocess/Celiac_Disease/gene_data/GSE20332.csv filter=lfs diff=lfs merge=lfs -text
1576
+ p3/preprocess/Bladder_Cancer/TCGA.csv filter=lfs diff=lfs merge=lfs -text
p3/preprocess/Bladder_Cancer/TCGA.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f1924c36b9a7e7f962d041565fdbee3ff06a6b8d08e7cd6a5a72105a2b149df
3
+ size 128067090
p3/preprocess/Bladder_Cancer/gene_data/GSE245953.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:77ff7c68c5202c9d866bd896ce6c4188bfd489a54f1c35c66410d2a1d7835a3a
3
+ size 101269272
p3/preprocess/Cardiovascular_Disease/GSE235307.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:861910b641bf01141e8ebdf4ad74ba38bfaee2180aec58f8960f79e5f57a30e8
3
+ size 30127849
p3/preprocess/Cardiovascular_Disease/gene_data/GSE182600.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ab10642973a2c6ae075b4608278a038bc9bf2ff5fa8d444a21b081ea4467056
3
+ size 26035031
p3/preprocess/Cardiovascular_Disease/gene_data/GSE228783.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2bf23a43d7dc835898cc3d3f388f1f187b5b187eb1df2048cd42229d690e1bd
3
+ size 31577651
p3/preprocess/Cardiovascular_Disease/gene_data/GSE235307.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d40bfec5aee125dd279e5a4a5b658d3b8c0ce73e2f05846a13e621756e1927e
3
+ size 30126272
p3/preprocess/Cardiovascular_Disease/gene_data/GSE256539.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5d9bb647998b040f0223d33002ee74f0c056ba2da0e63216486b09fb81c0e23
3
+ size 22918341
p3/preprocess/Celiac_Disease/gene_data/GSE138297.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de9565415a246beb680e5ba05e15de50eccfec4d24f558d0cba022302313ca04
3
+ size 15408302
p3/preprocess/Celiac_Disease/gene_data/GSE164883.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Celiac_Disease/gene_data/GSE20332.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b14885da723a22361e67b291932000bcca46d782922d18d9e505dd11fc7ffbf1
3
+ size 39152792
p3/preprocess/Celiac_Disease/gene_data/GSE72625.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:325807d024ec96bfc7502345547a71e32706a9fa41282e819126c5f7d4b3f51b
3
+ size 12146945
p3/preprocess/Celiac_Disease/gene_data/GSE87629.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Cervical_Cancer/GSE138079.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98bc373c59133dea1c560857bd5c7d0ddb7722fcdc5760df9d5a9226a609a394
3
+ size 14805474
p3/preprocess/Cervical_Cancer/GSE138080.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Cervical_Cancer/GSE146114.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05dedb772201477e04aacb74538b53e9174c04afb11f5c8a20772783d5be5b84
3
+ size 17649533
p3/preprocess/Cervical_Cancer/GSE63678.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Cervical_Cancer/clinical_data/GSE131027.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM3759992,GSM3759993,GSM3759994,GSM3759995,GSM3759996,GSM3759997,GSM3759998,GSM3759999,GSM3760000,GSM3760001,GSM3760002,GSM3760003,GSM3760004,GSM3760005,GSM3760006,GSM3760007,GSM3760008,GSM3760009,GSM3760010,GSM3760011,GSM3760012,GSM3760013,GSM3760014,GSM3760015,GSM3760016,GSM3760017,GSM3760018,GSM3760019,GSM3760020,GSM3760021,GSM3760022,GSM3760023,GSM3760024,GSM3760025,GSM3760026,GSM3760027,GSM3760028,GSM3760029,GSM3760030,GSM3760031,GSM3760032,GSM3760033,GSM3760034,GSM3760035,GSM3760036,GSM3760037,GSM3760038,GSM3760039,GSM3760040,GSM3760041,GSM3760042,GSM3760043,GSM3760044,GSM3760045,GSM3760046,GSM3760047,GSM3760048,GSM3760049,GSM3760050,GSM3760051,GSM3760052,GSM3760053,GSM3760054,GSM3760055,GSM3760056,GSM3760057,GSM3760058,GSM3760059,GSM3760060,GSM3760061,GSM3760062,GSM3760063,GSM3760064,GSM3760065,GSM3760066,GSM3760067,GSM3760068,GSM3760069,GSM3760070,GSM3760071,GSM3760072,GSM3760073,GSM3760074,GSM3760075,GSM3760076,GSM3760077,GSM3760078,GSM3760079,GSM3760080,GSM3760081,GSM3760082,GSM3760083
2
+ Cervical_Cancer,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
p3/preprocess/Cervical_Cancer/clinical_data/GSE138079.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM4098797,GSM4098798,GSM4098799,GSM4098800,GSM4098801,GSM4098802,GSM4098803,GSM4098804,GSM4098805,GSM4098806,GSM4098807,GSM4098808,GSM4098809,GSM4098810,GSM4098811,GSM4098812,GSM4098813,GSM4098814,GSM4098815,GSM4098816,GSM4098817,GSM4098818,GSM4098819,GSM4098820,GSM4098821,GSM4098822,GSM4098823,GSM4098824,GSM4098825,GSM4098826,GSM4098827,GSM4098828,GSM4098829,GSM4098830,GSM4098831,GSM4098832,GSM4098833,GSM4098834,GSM4098835,GSM4098836,GSM4098837,GSM4098838,GSM4098839,GSM4098840,GSM4098841,GSM4098842,GSM4098843,GSM4098844,GSM4098845,GSM4098846,GSM4098847,GSM4098848,GSM4098849,GSM4098850,GSM4098851,GSM4098852,GSM4098853,GSM4098854,GSM4098855,GSM4098856,GSM4098857,GSM4098858,GSM4098859,GSM4098860
2
+ Cervical_Cancer,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0
p3/preprocess/Cervical_Cancer/clinical_data/GSE138080.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM4098861,GSM4098862,GSM4098863,GSM4098864,GSM4098865,GSM4098866,GSM4098867,GSM4098868,GSM4098869,GSM4098870,GSM4098871,GSM4098872,GSM4098873,GSM4098874,GSM4098875,GSM4098876,GSM4098877,GSM4098878,GSM4098879,GSM4098880,GSM4098881,GSM4098882,GSM4098883,GSM4098884,GSM4098885,GSM4098886,GSM4098887,GSM4098888,GSM4098889,GSM4098890,GSM4098891,GSM4098892,GSM4098893,GSM4098894,GSM4098895
2
+ Cervical_Cancer,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p3/preprocess/Cervical_Cancer/clinical_data/GSE146114.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM678702,GSM678704,GSM678706,GSM678710,GSM678711,GSM678713,GSM678715,GSM678718,GSM678719,GSM678720,GSM678721,GSM678722,GSM678723,GSM678724,GSM678726,GSM678727,GSM678728,GSM678729,GSM678730,GSM678731,GSM678732,GSM678733,GSM678736,GSM678737,GSM678739,GSM678740,GSM678741,GSM678742,GSM678743,GSM678744,GSM678745,GSM678748,GSM678752,GSM678753,GSM678754,GSM678755,GSM678756,GSM678757,GSM678759,GSM678760,GSM678761,GSM678762,GSM678765,GSM678767,GSM678768,GSM678769,GSM678770,GSM678771,GSM678772,GSM678773,GSM678774,GSM678775,GSM678776,GSM678777,GSM678778,GSM678779,GSM678780,GSM738916,GSM738917,GSM738918,GSM738919,GSM738920,GSM738924,GSM738930,GSM738931,GSM738932,GSM738933,GSM738934,GSM738936,GSM738937,GSM738938,GSM738940,GSM738941,GSM738942,GSM738948,GSM738950,GSM738952,GSM738953,GSM738954,GSM738958,GSM738959,GSM738960,GSM738961,GSM4365563
2
+ Cervical_Cancer,1.0,1.0,1.0,1.0,,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,,,1.0,1.0,1.0,1.0,1.0,,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,
p3/preprocess/Cervical_Cancer/clinical_data/GSE163114.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM4950455,GSM4950456,GSM4950457,GSM4950458,GSM4950459,GSM4950460,GSM4950461,GSM4950462,GSM4950463,GSM4950464,GSM4950465,GSM4950466
2
+ Cervical_Cancer,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0
p3/preprocess/Cervical_Cancer/clinical_data/GSE63678.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM1555075,GSM1555076,GSM1555077,GSM1555078,GSM1555079,GSM1555080,GSM1555081,GSM1555082,GSM1555083,GSM1555084,GSM1555085,GSM1555086,GSM1555087,GSM1555088,GSM1555089,GSM1555090,GSM1555091,GSM1555092,GSM1555093,GSM1555094,GSM1555095,GSM1555096,GSM1555097,GSM1555098,GSM1555099,GSM1555100,GSM1555101,GSM1555102,GSM1555103,GSM1555104,GSM1555105,GSM1555106,GSM1555107,GSM1555108,GSM1555109
2
+ disease_state,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
p3/preprocess/Cervical_Cancer/clinical_data/GSE75132.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM1943705,GSM1943706,GSM1943707,GSM1943708,GSM1943709,GSM1943710,GSM1943711,GSM1943712,GSM1943713,GSM1943714,GSM1943715,GSM1943716,GSM1943717,GSM1943718,GSM1943719,GSM1943720,GSM1943721,GSM1943722,GSM1943723,GSM1943724,GSM1943725,GSM1943726,GSM1943727,GSM1943728,GSM1943729,GSM1943730,GSM1943731,GSM1943732,GSM1943733,GSM1943734,GSM1943735,GSM1943736,GSM1943737,GSM1943738,GSM1943739,GSM1943740,GSM1943741,GSM1943742,GSM1943743,GSM1943744,GSM1943745
2
+ Cervical_Cancer,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p3/preprocess/Cervical_Cancer/code/GSE107754.py ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Cervical_Cancer"
6
+ cohort = "GSE107754"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Cervical_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Cervical_Cancer/GSE107754"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Cervical_Cancer/GSE107754.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Cervical_Cancer/gene_data/GSE107754.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Cervical_Cancer/clinical_data/GSE107754.csv"
16
+ json_path = "./output/preprocess/3/Cervical_Cancer/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values per clinical feature
25
+ sample_characteristics = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("Dataset Background Information:")
29
+ print(f"{background_info}\n")
30
+
31
+ # Print sample characteristics
32
+ print("Sample Characteristics:")
33
+ for feature, values in sample_characteristics.items():
34
+ print(f"Feature: {feature}")
35
+ print(f"Values: {values}\n")
36
+ # 1. Gene Expression Data Availability
37
+ # Yes, the background info mentions "whole human genome gene expression microarrays"
38
+ is_gene_available = True
39
+
40
+ # 2. Variable Availability and Data Type Conversion
41
+ # 2.1 Data Availability
42
+ # Trait (cervical cancer status) is not available as all samples are cancer cases
43
+ trait_row = None
44
+
45
+ # Gender is available in Feature 0
46
+ gender_row = 0
47
+
48
+ # Age is not available
49
+ age_row = None
50
+
51
+ # 2.2 Data Type Conversion Functions
52
+ def convert_trait(x):
53
+ return None
54
+
55
+ def convert_gender(x):
56
+ if not isinstance(x, str):
57
+ return None
58
+ value = x.split(': ')[1].strip().lower()
59
+ if value == 'female':
60
+ return 0
61
+ elif value == 'male':
62
+ return 1
63
+ return None
64
+
65
+ def convert_age(x):
66
+ return None
67
+
68
+ # 3. Save Metadata
69
+ is_trait_available = trait_row is not None
70
+ validate_and_save_cohort_info(is_final=False,
71
+ cohort=cohort,
72
+ info_path=json_path,
73
+ is_gene_available=is_gene_available,
74
+ is_trait_available=is_trait_available)
75
+
76
+ # 4. Clinical Feature Extraction
77
+ # Skip as trait_row is None
78
+ # Extract gene expression data from matrix file
79
+ gene_data = get_genetic_data(matrix_file)
80
+
81
+ # Print first 20 row IDs and shape of data to help debug
82
+ print("Shape of gene expression data:", gene_data.shape)
83
+ print("\nFirst few rows of data:")
84
+ print(gene_data.head())
85
+ print("\nFirst 20 gene/probe identifiers:")
86
+ print(gene_data.index[:20])
87
+
88
+ # Inspect a snippet of raw file to verify identifier format
89
+ import gzip
90
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
91
+ lines = []
92
+ for i, line in enumerate(f):
93
+ if "!series_matrix_table_begin" in line:
94
+ # Get the next 5 lines after the marker
95
+ for _ in range(5):
96
+ lines.append(next(f).strip())
97
+ break
98
+ print("\nFirst few lines after matrix marker in raw file:")
99
+ for line in lines:
100
+ print(line)
101
+ # Looking at the identifiers (e.g. A_23_P100001), these are Agilent array probe IDs, not gene symbols
102
+ # Therefore mapping to gene symbols will be required
103
+ requires_gene_mapping = True
104
+ # Get file paths using library function
105
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
106
+
107
+ # Extract gene annotation from SOFT file
108
+ gene_annotation = get_gene_annotation(soft_file)
109
+
110
+ # Preview gene annotation data
111
+ print("Gene annotation columns and example values:")
112
+ print(preview_df(gene_annotation))
113
+ # Get the mapping between probe IDs and gene symbols
114
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
115
+
116
+ # Apply the gene mapping to convert probe-level data to gene-level data
117
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
118
+ # 1. Normalize gene symbols and save normalized gene data
119
+ gene_data = normalize_gene_symbols_in_index(gene_data)
120
+ gene_data.to_csv(out_gene_data_file)
121
+
122
+ # When trait data is unavailable, use gene data as the linked data
123
+ linked_data = gene_data.T # Transpose to match expected format
124
+
125
+ # As this dataset only contains cancer samples without controls,
126
+ # it's inherently biased for case-control analysis
127
+ is_biased = True
128
+
129
+ # Validate and save metadata
130
+ is_usable = validate_and_save_cohort_info(
131
+ is_final=True,
132
+ cohort=cohort,
133
+ info_path=json_path,
134
+ is_gene_available=True,
135
+ is_trait_available=False,
136
+ is_biased=is_biased,
137
+ df=linked_data,
138
+ note="Dataset contains only cancer samples, no control group for comparison"
139
+ )
p3/preprocess/Cervical_Cancer/code/GSE114243.py ADDED
@@ -0,0 +1,255 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Cervical_Cancer"
6
+ cohort = "GSE114243"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Cervical_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Cervical_Cancer/GSE114243"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Cervical_Cancer/GSE114243.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Cervical_Cancer/gene_data/GSE114243.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Cervical_Cancer/clinical_data/GSE114243.csv"
16
+ json_path = "./output/preprocess/3/Cervical_Cancer/cohort_info.json"
17
+
18
+ # Get all matrix files in directory
19
+ matrix_files = [f for f in os.listdir(in_cohort_dir) if 'matrix' in f.lower()]
20
+ print("Found matrix files:", matrix_files)
21
+
22
+ # Find a matrix file that's not from the SuperSeries summary
23
+ matrix_file = None
24
+ soft_file = None
25
+ for f in matrix_files:
26
+ with gzip.open(os.path.join(in_cohort_dir, f), 'rt') as file:
27
+ first_lines = "".join([next(file) for _ in range(10)])
28
+ if "SuperSeries" not in first_lines:
29
+ matrix_file = os.path.join(in_cohort_dir, f)
30
+ soft_files = [sf for sf in os.listdir(in_cohort_dir) if 'soft' in sf.lower()
31
+ and f.split('_')[0] in sf]
32
+ if soft_files:
33
+ soft_file = os.path.join(in_cohort_dir, soft_files[0])
34
+ break
35
+
36
+ if matrix_file is None or soft_file is None:
37
+ raise ValueError("Could not find suitable matrix and SOFT files")
38
+
39
+ print(f"Using SOFT file: {os.path.basename(soft_file)}")
40
+ print(f"Using matrix file: {os.path.basename(matrix_file)}\n")
41
+
42
+ # Extract background info and clinical data
43
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
44
+
45
+ # Get unique values per clinical feature
46
+ sample_characteristics = get_unique_values_by_row(clinical_data)
47
+
48
+ # Print background info
49
+ print("Dataset Background Information:")
50
+ print(f"{background_info}\n")
51
+
52
+ # Print sample characteristics
53
+ print("Sample Characteristics:")
54
+ for feature, values in sample_characteristics.items():
55
+ print(f"Feature: {feature}")
56
+ print(f"Values: {values}\n")
57
+ # Get all matrix files in directory to check options
58
+ matrix_files = [f for f in os.listdir(in_cohort_dir) if 'matrix' in f.lower()]
59
+ print("Available matrix files:", matrix_files)
60
+
61
+ # Try each matrix file until we find one that's not SuperSeries
62
+ matrix_file = None
63
+ soft_file = None
64
+
65
+ for f in matrix_files:
66
+ test_file = os.path.join(in_cohort_dir, f)
67
+ test_soft = os.path.join(in_cohort_dir, f.replace('matrix.txt.gz', 'soft.gz'))
68
+
69
+ if os.path.exists(test_soft):
70
+ with gzip.open(test_file, 'rt') as file:
71
+ first_lines = "".join([next(file) for _ in range(10)])
72
+ if "SuperSeries" not in first_lines:
73
+ matrix_file = test_file
74
+ soft_file = test_soft
75
+ break
76
+
77
+ if matrix_file is None or soft_file is None:
78
+ raise ValueError("Could not find suitable matrix and SOFT files")
79
+
80
+ print(f"\nUsing SOFT file: {os.path.basename(soft_file)}")
81
+ print(f"Using matrix file: {os.path.basename(matrix_file)}\n")
82
+
83
+ # Extract background info and clinical data
84
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
85
+
86
+ # Get unique values per clinical feature
87
+ sample_characteristics = get_unique_values_by_row(clinical_data)
88
+
89
+ # Print background info
90
+ print("Dataset Background Information:")
91
+ print(f"{background_info}\n")
92
+
93
+ # Print sample characteristics
94
+ print("Sample Characteristics:")
95
+ for feature, values in sample_characteristics.items():
96
+ print(f"Feature: {feature}")
97
+ print(f"Values: {values}\n")
98
+ # Get file paths
99
+ files = os.listdir(in_cohort_dir)
100
+ matrix_files = [f for f in files if 'matrix' in f.lower()]
101
+ matrix_file = None
102
+ soft_file = None
103
+
104
+ for mf in matrix_files:
105
+ matrix_file = os.path.join(in_cohort_dir, mf)
106
+ with gzip.open(matrix_file, 'rt') as f:
107
+ header = ''.join([next(f) for _ in range(10)])
108
+ if 'SuperSeries' not in header:
109
+ soft_file = os.path.join(in_cohort_dir, mf.replace('matrix.txt.gz', 'soft.gz'))
110
+ if os.path.exists(soft_file):
111
+ break
112
+
113
+ if not matrix_file or not soft_file:
114
+ raise ValueError("Could not find suitable matrix and soft files")
115
+
116
+ print(f"Using matrix file: {os.path.basename(matrix_file)}")
117
+ print(f"Using soft file: {os.path.basename(soft_file)}\n")
118
+
119
+ # Extract background info and clinical data
120
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
121
+
122
+ # Get unique values per clinical feature
123
+ sample_characteristics = get_unique_values_by_row(clinical_data)
124
+
125
+ # Print background info
126
+ print("Dataset Background Information:")
127
+ print(f"{background_info}\n")
128
+
129
+ # Print sample characteristics
130
+ print("Sample Characteristics:")
131
+ for feature, values in sample_characteristics.items():
132
+ print(f"Feature: {feature}")
133
+ print(f"Values: {values}\n")
134
+ # Get file paths for each platform GPL
135
+ matrix_files = sorted([f for f in os.listdir(in_cohort_dir) if 'matrix' in f.lower() and 'GPL6480' in f])
136
+ matrix_file = os.path.join(in_cohort_dir, matrix_files[0])
137
+ soft_file = os.path.join(in_cohort_dir, matrix_files[0].replace('matrix.txt.gz', 'soft.gz'))
138
+
139
+ print(f"Using matrix file: {os.path.basename(matrix_file)}")
140
+ print(f"Using SOFT file: {os.path.basename(soft_file)}\n")
141
+
142
+ # Extract background info and clinical data
143
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
144
+
145
+ # Get unique values per clinical feature
146
+ sample_characteristics = get_unique_values_by_row(clinical_data)
147
+
148
+ # Print background info
149
+ print("Dataset Background Information:")
150
+ print(f"{background_info}\n")
151
+
152
+ # Print sample characteristics
153
+ print("Sample Characteristics:")
154
+ for feature, values in sample_characteristics.items():
155
+ print(f"Feature: {feature}")
156
+ print(f"Values: {values}\n")
157
+ # 1. Gene Expression Data Availability
158
+ is_gene_available = True # Based on GPL6480 platform and HEK293T cells, likely to contain gene expression data
159
+
160
+ # 2.1 Data Availability
161
+ trait_row = None # All samples are from HEK293T cells, no cancer/control status
162
+ age_row = None # Age info not provided
163
+ gender_row = None # Gender info not provided
164
+
165
+ # 2.2 Data Type Conversion Functions
166
+ def convert_trait(x):
167
+ return None
168
+
169
+ def convert_age(x):
170
+ return None
171
+
172
+ def convert_gender(x):
173
+ return None
174
+
175
+ # 3. Save Metadata
176
+ validate_and_save_cohort_info(
177
+ is_final=False,
178
+ cohort=cohort,
179
+ info_path=json_path,
180
+ is_gene_available=is_gene_available,
181
+ is_trait_available=False # trait_row is None
182
+ )
183
+
184
+ # 4. Skip clinical feature extraction since trait_row is None
185
+ # Get file paths using library function
186
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
187
+
188
+ # Extract gene annotation from SOFT file
189
+ gene_annotation = get_gene_annotation(soft_file)
190
+
191
+ # Preview gene annotation data
192
+ print("Gene annotation columns and example values:")
193
+ print(preview_df(gene_annotation))
194
+ # Get gene expression data from matrix file
195
+ gene_expression = get_genetic_data(matrix_file)
196
+
197
+ # Get gene mapping using probe ID ('ID') and gene symbol ('GENE_SYMBOL') columns
198
+ gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
199
+
200
+ # Map probe IDs to gene symbols and aggregate expression data
201
+ gene_data = apply_gene_mapping(gene_expression, gene_mapping)
202
+
203
+ # Preview the gene expression data
204
+ print("\nGene expression data preview:")
205
+ print(preview_df(gene_data))
206
+ # Recreate gene expression data from Step 7
207
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
208
+ gene_annotation = get_gene_annotation(soft_file)
209
+ gene_expression = get_genetic_data(matrix_file)
210
+ gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
211
+ gene_data = apply_gene_mapping(gene_expression, gene_mapping)
212
+
213
+ # 1. Normalize gene symbols and save normalized gene data
214
+ gene_data = normalize_gene_symbols_in_index(gene_data)
215
+ gene_data.to_csv(out_gene_data_file)
216
+
217
+ # 2-4. Skip clinical data linking and bias checking since trait data is unavailable
218
+
219
+ # 5. Validate data quality and save metadata
220
+ is_usable = validate_and_save_cohort_info(
221
+ is_final=True,
222
+ cohort=cohort,
223
+ info_path=json_path,
224
+ is_gene_available=True,
225
+ is_trait_available=False, # No trait data available
226
+ is_biased=None, # Cannot determine bias without trait data
227
+ df=gene_data,
228
+ note="Cell line gene expression data without trait information"
229
+ )
230
+
231
+ # 6. Skip saving linked data since trait data is unavailable
232
+ # Setup gene expression data first
233
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
234
+ gene_annotation = get_gene_annotation(soft_file)
235
+ gene_expression = get_genetic_data(matrix_file)
236
+ gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
237
+ gene_data = apply_gene_mapping(gene_expression, gene_mapping)
238
+
239
+ # 1. Normalize gene symbols and save normalized gene data
240
+ gene_data = normalize_gene_symbols_in_index(gene_data)
241
+ gene_data.to_csv(out_gene_data_file)
242
+
243
+ # 2-4. Skip clinical/trait processing as no trait data available
244
+
245
+ # 5. Save metadata indicating dataset is unusable for trait studies
246
+ is_usable = validate_and_save_cohort_info(
247
+ is_final=True,
248
+ cohort=cohort,
249
+ info_path=json_path,
250
+ is_gene_available=True,
251
+ is_trait_available=False,
252
+ is_biased=True, # No trait comparison possible with single cell line
253
+ df=gene_data,
254
+ note="Cell line gene expression data without trait comparison information"
255
+ )
p3/preprocess/Cervical_Cancer/code/GSE131027.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Cervical_Cancer"
6
+ cohort = "GSE131027"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Cervical_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Cervical_Cancer/GSE131027"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Cervical_Cancer/GSE131027.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Cervical_Cancer/gene_data/GSE131027.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Cervical_Cancer/clinical_data/GSE131027.csv"
16
+ json_path = "./output/preprocess/3/Cervical_Cancer/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values per clinical feature
25
+ sample_characteristics = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("Dataset Background Information:")
29
+ print(f"{background_info}\n")
30
+
31
+ # Print sample characteristics
32
+ print("Sample Characteristics:")
33
+ for feature, values in sample_characteristics.items():
34
+ print(f"Feature: {feature}")
35
+ print(f"Values: {values}\n")
36
+ # 1. Gene Expression Data Availability
37
+ # Based on series summary, this dataset focuses on germline variants/mutations, not gene expression
38
+ is_gene_available = False
39
+
40
+ # 2.1 Data Availability
41
+ # For trait: cancer status can be inferred from feature 1 (cancer type)
42
+ trait_row = 1
43
+ # Age and gender are not available in characteristics data
44
+ age_row = None
45
+ gender_row = None
46
+
47
+ # 2.2 Data Type Conversion Functions
48
+ def convert_trait(value):
49
+ if not isinstance(value, str):
50
+ return None
51
+ value = value.lower()
52
+ if "cancer:" in value:
53
+ value = value.split("cancer:")[1].strip()
54
+ # Convert to binary - 1 for cervical cancer, 0 for other cancers
55
+ return 1 if "cervical" in value else 0
56
+ return None
57
+
58
+ def convert_age(value):
59
+ return None # Age data not available
60
+
61
+ def convert_gender(value):
62
+ return None # Gender data not available
63
+
64
+ # 3. Save Metadata
65
+ is_trait_available = trait_row is not None
66
+ _ = validate_and_save_cohort_info(
67
+ is_final=False,
68
+ cohort=cohort,
69
+ info_path=json_path,
70
+ is_gene_available=is_gene_available,
71
+ is_trait_available=is_trait_available
72
+ )
73
+
74
+ # 4. Clinical Feature Extraction
75
+ if trait_row is not None:
76
+ clinical_df = geo_select_clinical_features(
77
+ clinical_df=clinical_data,
78
+ trait=trait,
79
+ trait_row=trait_row,
80
+ convert_trait=convert_trait,
81
+ age_row=age_row,
82
+ convert_age=convert_age,
83
+ gender_row=gender_row,
84
+ convert_gender=convert_gender
85
+ )
86
+
87
+ # Preview the processed clinical data
88
+ preview = preview_df(clinical_df)
89
+ print("Preview of processed clinical data:", preview)
90
+
91
+ # Save clinical data
92
+ clinical_df.to_csv(out_clinical_data_file)
p3/preprocess/Cervical_Cancer/code/GSE137034.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Cervical_Cancer"
6
+ cohort = "GSE137034"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Cervical_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Cervical_Cancer/GSE137034"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Cervical_Cancer/GSE137034.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Cervical_Cancer/gene_data/GSE137034.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Cervical_Cancer/clinical_data/GSE137034.csv"
16
+ json_path = "./output/preprocess/3/Cervical_Cancer/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values per clinical feature
25
+ sample_characteristics = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("Dataset Background Information:")
29
+ print(f"{background_info}\n")
30
+
31
+ # Print sample characteristics
32
+ print("Sample Characteristics:")
33
+ for feature, values in sample_characteristics.items():
34
+ print(f"Feature: {feature}")
35
+ print(f"Values: {values}\n")
36
+ # 1. Gene Expression Data Availability
37
+ is_gene_available = False # This dataset appears to study chromatin accessibility rather than gene expression
38
+
39
+ # 2. Variable Availability and Data Type Conversion
40
+ # 2.1. Identify feature rows
41
+ trait_row = None # Cannot reliably classify samples as cervical cancer vs control
42
+ age_row = None # No age information
43
+ gender_row = None # No gender information
44
+
45
+ # 2.2. Define conversion functions
46
+ # Not needed since no clinical data is available
47
+
48
+ # 3. Save metadata
49
+ validate_and_save_cohort_info(
50
+ is_final=False,
51
+ cohort=cohort,
52
+ info_path=json_path,
53
+ is_gene_available=is_gene_available,
54
+ is_trait_available=trait_row is not None
55
+ )
56
+
57
+ # 4. Skip clinical feature extraction since trait_row is None
p3/preprocess/Cervical_Cancer/code/GSE138079.py ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Cervical_Cancer"
6
+ cohort = "GSE138079"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Cervical_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Cervical_Cancer/GSE138079"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Cervical_Cancer/GSE138079.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Cervical_Cancer/gene_data/GSE138079.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Cervical_Cancer/clinical_data/GSE138079.csv"
16
+ json_path = "./output/preprocess/3/Cervical_Cancer/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values per clinical feature
25
+ sample_characteristics = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("Dataset Background Information:")
29
+ print(f"{background_info}\n")
30
+
31
+ # Print sample characteristics
32
+ print("Sample Characteristics:")
33
+ for feature, values in sample_characteristics.items():
34
+ print(f"Feature: {feature}")
35
+ print(f"Values: {values}\n")
36
+ # 1. Gene Expression Data Availability
37
+ # Yes, this is a mRNA microarray dataset (Agilent 4x44K) according to background info
38
+ is_gene_available = True
39
+
40
+ # 2.1 Data Availability
41
+ # None of trait, age, or gender data is directly available in sample characteristics
42
+ # But trait (transformation stage) can be extracted from Feature 1
43
+ trait_row = 1
44
+ age_row = None
45
+ gender_row = None
46
+
47
+ # 2.2 Data Type Conversion
48
+ def convert_trait(value):
49
+ if not value or ':' not in value:
50
+ return None
51
+ stage = value.split(':')[1].strip()
52
+ # Convert transformation stages to binary (0=early/benign, 1=late/malignant)
53
+ if stage == 'extended lifespan':
54
+ return 0 # Early stage
55
+ elif stage == 'immortal':
56
+ return 0 # Early stage
57
+ elif stage == 'anchorage independent':
58
+ return 1 # Late stage, more transformed/malignant
59
+ return None
60
+
61
+ def convert_age(value):
62
+ return None # Not used
63
+
64
+ def convert_gender(value):
65
+ return None # Not used
66
+
67
+ # 3. Save Metadata
68
+ is_trait_available = trait_row is not None
69
+ validate_and_save_cohort_info(is_final=False,
70
+ cohort=cohort,
71
+ info_path=json_path,
72
+ is_gene_available=is_gene_available,
73
+ is_trait_available=is_trait_available)
74
+
75
+ # 4. Clinical Feature Extraction
76
+ if trait_row is not None:
77
+ selected_clinical_df = geo_select_clinical_features(
78
+ clinical_df=clinical_data,
79
+ trait=trait,
80
+ trait_row=trait_row,
81
+ convert_trait=convert_trait
82
+ )
83
+
84
+ # Preview the processed clinical data
85
+ preview_result = preview_df(selected_clinical_df)
86
+ print("Clinical data preview:", preview_result)
87
+
88
+ # Save to CSV
89
+ selected_clinical_df.to_csv(out_clinical_data_file)
90
+ # Extract gene expression data from matrix file
91
+ gene_data = get_genetic_data(matrix_file)
92
+
93
+ # Print first 20 row IDs and shape of data to help debug
94
+ print("Shape of gene expression data:", gene_data.shape)
95
+ print("\nFirst few rows of data:")
96
+ print(gene_data.head())
97
+ print("\nFirst 20 gene/probe identifiers:")
98
+ print(gene_data.index[:20])
99
+
100
+ # Inspect a snippet of raw file to verify identifier format
101
+ import gzip
102
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
103
+ lines = []
104
+ for i, line in enumerate(f):
105
+ if "!series_matrix_table_begin" in line:
106
+ # Get the next 5 lines after the marker
107
+ for _ in range(5):
108
+ lines.append(next(f).strip())
109
+ break
110
+ print("\nFirst few lines after matrix marker in raw file:")
111
+ for line in lines:
112
+ print(line)
113
+ # Looking at the gene identifiers (which are just numbers like '12', '13', etc.)
114
+ # and comparing with the raw file which shows "ID_REF" as column header,
115
+ # these appear to be probe IDs from a microarray rather than gene symbols
116
+ requires_gene_mapping = True
117
+ # Extract gene annotation from SOFT file
118
+ gene_annotation = get_gene_annotation(soft_file)
119
+
120
+ # Preview gene annotation data
121
+ print("Gene annotation columns and example values:")
122
+ print(preview_df(gene_annotation))
123
+ # 1. From previous output we can see:
124
+ # - Gene expression data uses 'ID' as identifiers
125
+ # - Gene annotation data has 'ID' and 'GENE_SYMBOL' columns
126
+
127
+ # 2. Get gene mapping dataframe
128
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
129
+
130
+ # 3. Apply gene mapping to convert probe-level data to gene-level data
131
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
132
+
133
+ # Print shape and preview to verify the mapping
134
+ print("\nShape of mapped gene expression data:", gene_data.shape)
135
+ print("\nFirst few rows of mapped data:")
136
+ print(gene_data.head())
137
+ # 1. Normalize gene symbols and save normalized gene data
138
+ gene_data = normalize_gene_symbols_in_index(gene_data)
139
+ gene_data.to_csv(out_gene_data_file)
140
+
141
+ # 2. Link clinical and genetic data and trait
142
+ # First get selected clinical features using the extraction function from previous step
143
+ selected_clinical = geo_select_clinical_features(
144
+ clinical_df=clinical_data,
145
+ trait=trait,
146
+ trait_row=trait_row,
147
+ convert_trait=convert_trait,
148
+ age_row=age_row,
149
+ convert_age=convert_age,
150
+ gender_row=gender_row,
151
+ convert_gender=convert_gender
152
+ )
153
+
154
+ linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)
155
+
156
+ # 3. Handle missing values systematically
157
+ linked_data = handle_missing_values(linked_data, trait)
158
+
159
+ # 4. Check for biased features and remove them if needed
160
+ is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
161
+
162
+ # 5. Validate data quality and save metadata
163
+ is_usable = validate_and_save_cohort_info(
164
+ is_final=True,
165
+ cohort=cohort,
166
+ info_path=json_path,
167
+ is_gene_available=True,
168
+ is_trait_available=True,
169
+ is_biased=is_biased,
170
+ df=linked_data,
171
+ note="Gene expression data comparing cervical carcinoma vs normal tissue samples"
172
+ )
173
+
174
+ # 6. Save linked data if usable
175
+ if is_usable:
176
+ linked_data.to_csv(out_data_file)
p3/preprocess/Cervical_Cancer/code/GSE138080.py ADDED
@@ -0,0 +1,229 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Cervical_Cancer"
6
+ cohort = "GSE138080"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Cervical_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Cervical_Cancer/GSE138080"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Cervical_Cancer/GSE138080.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Cervical_Cancer/gene_data/GSE138080.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Cervical_Cancer/clinical_data/GSE138080.csv"
16
+ json_path = "./output/preprocess/3/Cervical_Cancer/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values per clinical feature
25
+ sample_characteristics = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("Dataset Background Information:")
29
+ print(f"{background_info}\n")
30
+
31
+ # Print sample characteristics
32
+ print("Sample Characteristics:")
33
+ for feature, values in sample_characteristics.items():
34
+ print(f"Feature: {feature}")
35
+ print(f"Values: {values}\n")
36
+ # 1. Gene Expression Data Availability
37
+ # Based on background info mentioning "mRNA tissues" and "whole human genome oligo microarrays"
38
+ is_gene_available = True
39
+
40
+ # 2. Variable Availability and Data Type Conversion
41
+
42
+ # 2.1 For trait:
43
+ # Feature 0 contains info about cancer stage (normal vs CIN2/3 vs SCC)
44
+ trait_row = 0
45
+
46
+ def convert_trait(value: str) -> float:
47
+ # Binary: 0 for normal, 1 for cancer/pre-cancer
48
+ if not value or ':' not in value:
49
+ return None
50
+ value = value.split(': ')[1].lower()
51
+ if 'normal' in value:
52
+ return 0.0
53
+ elif 'carcinoma' in value or 'neoplasia' in value:
54
+ return 1.0
55
+ return None
56
+
57
+ # 2.2 Age and gender not explicitly available
58
+ age_row = None
59
+ gender_row = None
60
+
61
+ def convert_age(value: str) -> float:
62
+ return None
63
+
64
+ def convert_gender(value: str) -> float:
65
+ return None
66
+
67
+ # 3. Save metadata
68
+ is_trait_available = trait_row is not None
69
+ _ = validate_and_save_cohort_info(
70
+ is_final=False,
71
+ cohort=cohort,
72
+ info_path=json_path,
73
+ is_gene_available=is_gene_available,
74
+ is_trait_available=is_trait_available
75
+ )
76
+
77
+ # 4. Clinical feature extraction
78
+ if trait_row is not None:
79
+ selected_clinical = geo_select_clinical_features(
80
+ clinical_df=clinical_data,
81
+ trait=trait,
82
+ trait_row=trait_row,
83
+ convert_trait=convert_trait,
84
+ age_row=age_row,
85
+ convert_age=convert_age,
86
+ gender_row=gender_row,
87
+ convert_gender=convert_gender
88
+ )
89
+
90
+ # Preview data
91
+ preview = preview_df(selected_clinical)
92
+ print("Preview of selected clinical features:")
93
+ print(preview)
94
+
95
+ # Save to CSV
96
+ selected_clinical.to_csv(out_clinical_data_file)
97
+ # Extract gene expression data from matrix file
98
+ gene_data = get_genetic_data(matrix_file)
99
+
100
+ # Print first 20 row IDs
101
+ print("First 20 gene/probe identifiers:")
102
+ print(gene_data.index[:20])
103
+ # These appear to be probe IDs rather than human gene symbols
104
+ # They are numerical identifiers which is not the format for gene symbols
105
+ # Gene symbols typically follow patterns like "TP53", "BRCA1", "IL6", etc.
106
+ # Therefore mapping will be required to convert these to gene symbols
107
+ requires_gene_mapping = True
108
+ # Examine first few hundred lines of SOFT file to find where gene annotations are stored
109
+ with gzip.open(soft_file, 'rt') as f:
110
+ content = ''.join([next(f) for _ in range(100)])
111
+ print("First 100 lines of SOFT file:")
112
+ print(content)
113
+ # Extract gene annotation data
114
+ gene_metadata = get_gene_annotation(soft_file)
115
+
116
+ print("Preview of gene annotation data columns:")
117
+ print(gene_metadata.columns.tolist())
118
+ print("\nFirst few rows:")
119
+ print(gene_metadata.head())
120
+
121
+ # Create mapping between probe IDs and gene symbols
122
+ mapping_data = get_gene_mapping(gene_metadata, 'ID', 'GENE_SYMBOL')
123
+ print("\nFirst few rows of mapping data:")
124
+ print(mapping_data.head())
125
+
126
+ # Apply mapping to convert probe-level data to gene-level data
127
+ gene_data = apply_gene_mapping(gene_data, mapping_data)
128
+ print("\nFirst few gene symbols after mapping:")
129
+ print(gene_data.index[:10])
130
+
131
+ # Save gene expression data
132
+ gene_data.to_csv(out_gene_data_file)
133
+ # 1. Normalize gene symbols and save normalized gene data
134
+ gene_data = normalize_gene_symbols_in_index(gene_data)
135
+ gene_data.to_csv(out_gene_data_file)
136
+
137
+ # 2. Link clinical and genetic data
138
+ linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
139
+
140
+ # 3. Handle missing values systematically
141
+ linked_data = handle_missing_values(linked_data, "Cervical_Cancer")
142
+
143
+ # 4. Check for biased features and remove them if needed
144
+ is_biased, linked_data = judge_and_remove_biased_features(linked_data, "Cervical_Cancer")
145
+
146
+ # 5. Validate data quality and save metadata
147
+ is_usable = validate_and_save_cohort_info(
148
+ is_final=True,
149
+ cohort=cohort,
150
+ info_path=json_path,
151
+ is_gene_available=True,
152
+ is_trait_available=True,
153
+ is_biased=is_biased,
154
+ df=linked_data,
155
+ note="Gene expression data comparing cervical carcinoma vs normal tissue samples"
156
+ )
157
+
158
+ # 6. Save linked data if usable
159
+ if is_usable:
160
+ linked_data.to_csv(out_data_file)
161
+ # 1. Normalize gene symbols and save normalized gene data
162
+ gene_data = normalize_gene_symbols_in_index(gene_data)
163
+ gene_data.to_csv(out_gene_data_file)
164
+
165
+ # 2. Link clinical and genetic data
166
+ selected_clinical = pd.DataFrame(clinical_data.loc[trait])
167
+ linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)
168
+
169
+ # 3. Handle missing values systematically
170
+ linked_data = handle_missing_values(linked_data, trait)
171
+
172
+ # 4. Check for biased features and remove them if needed
173
+ is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
174
+
175
+ # 5. Validate data quality and save metadata
176
+ is_usable = validate_and_save_cohort_info(
177
+ is_final=True,
178
+ cohort=cohort,
179
+ info_path=json_path,
180
+ is_gene_available=True,
181
+ is_trait_available=True,
182
+ is_biased=is_biased,
183
+ df=linked_data,
184
+ note="Gene expression data comparing cervical carcinoma vs normal tissue samples"
185
+ )
186
+
187
+ # 6. Save linked data if usable
188
+ if is_usable:
189
+ linked_data.to_csv(out_data_file)
190
+ # 1. Normalize gene symbols and save normalized gene data
191
+ gene_data = normalize_gene_symbols_in_index(gene_data)
192
+ gene_data.to_csv(out_gene_data_file)
193
+
194
+ # 2. Link clinical and genetic data and trait
195
+ # First get selected clinical features using the extraction function from previous step
196
+ selected_clinical = geo_select_clinical_features(
197
+ clinical_df=clinical_data,
198
+ trait=trait,
199
+ trait_row=trait_row,
200
+ convert_trait=convert_trait,
201
+ age_row=age_row,
202
+ convert_age=convert_age,
203
+ gender_row=gender_row,
204
+ convert_gender=convert_gender
205
+ )
206
+
207
+ linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)
208
+
209
+ # 3. Handle missing values systematically
210
+ linked_data = handle_missing_values(linked_data, trait)
211
+
212
+ # 4. Check for biased features and remove them if needed
213
+ is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
214
+
215
+ # 5. Validate data quality and save metadata
216
+ is_usable = validate_and_save_cohort_info(
217
+ is_final=True,
218
+ cohort=cohort,
219
+ info_path=json_path,
220
+ is_gene_available=True,
221
+ is_trait_available=True,
222
+ is_biased=is_biased,
223
+ df=linked_data,
224
+ note="Gene expression data comparing cervical carcinoma vs normal tissue samples"
225
+ )
226
+
227
+ # 6. Save linked data if usable
228
+ if is_usable:
229
+ linked_data.to_csv(out_data_file)
p3/preprocess/Cervical_Cancer/code/GSE146114.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Cervical_Cancer"
6
+ cohort = "GSE146114"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Cervical_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Cervical_Cancer/GSE146114"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Cervical_Cancer/GSE146114.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Cervical_Cancer/gene_data/GSE146114.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Cervical_Cancer/clinical_data/GSE146114.csv"
16
+ json_path = "./output/preprocess/3/Cervical_Cancer/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values per clinical feature
25
+ sample_characteristics = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("Dataset Background Information:")
29
+ print(f"{background_info}\n")
30
+
31
+ # Print sample characteristics
32
+ print("Sample Characteristics:")
33
+ for feature, values in sample_characteristics.items():
34
+ print(f"Feature: {feature}")
35
+ print(f"Values: {values}\n")
36
+ # 1. Gene Expression Data Availability
37
+ # Based on Series_summary, this study used RNA-seq with Illumina platforms,
38
+ # so gene expression data should be available
39
+ is_gene_available = True
40
+
41
+ # 2. Variable Availability and Data Type Conversion
42
+ # 2.1 Data Availability
43
+ # Trait (cancer stage) is available in feature 7 with FIGO stages
44
+ trait_row = 7
45
+
46
+ # Age is not available in any feature
47
+ age_row = None
48
+
49
+ # Gender is not available/mentioned in any feature
50
+ gender_row = None
51
+
52
+ # 2.2 Data Type Conversion Functions
53
+ def convert_trait(x):
54
+ if pd.isna(x):
55
+ return None
56
+ # Extract value after colon
57
+ val = x.split(': ')[1].strip() if ': ' in x else x
58
+
59
+ # Convert FIGO stages to binary
60
+ # Stage 2B and above are considered advanced
61
+ early_stages = ['1B1', '1B2', '2A']
62
+ advanced_stages = ['2B', '3A', '3B', '4A']
63
+
64
+ if val in early_stages:
65
+ return 0 # Early stage
66
+ elif val in advanced_stages:
67
+ return 1 # Advanced stage
68
+ return None
69
+
70
+ def convert_age(x):
71
+ # Not needed since age data is not available
72
+ return None
73
+
74
+ def convert_gender(x):
75
+ # Not needed since gender data is not available
76
+ return None
77
+
78
+ # 3. Save Metadata
79
+ # Conduct initial filtering
80
+ _ = validate_and_save_cohort_info(
81
+ is_final=False,
82
+ cohort=cohort,
83
+ info_path=json_path,
84
+ is_gene_available=is_gene_available,
85
+ is_trait_available=(trait_row is not None)
86
+ )
87
+
88
+ # 4. Clinical Feature Extraction
89
+ # Since trait_row is not None, we need to extract clinical features
90
+ selected_clinical = geo_select_clinical_features(
91
+ clinical_df=clinical_data,
92
+ trait=trait,
93
+ trait_row=trait_row,
94
+ convert_trait=convert_trait,
95
+ age_row=age_row,
96
+ convert_age=convert_age,
97
+ gender_row=gender_row,
98
+ convert_gender=convert_gender
99
+ )
100
+
101
+ # Preview the extracted features
102
+ preview = preview_df(selected_clinical)
103
+ print("Preview of clinical features:")
104
+ print(preview)
105
+
106
+ # Save clinical data
107
+ selected_clinical.to_csv(out_clinical_data_file)
108
+ # Extract gene expression data from matrix file
109
+ gene_data = get_genetic_data(matrix_file)
110
+
111
+ # Print first 20 row IDs
112
+ print("First 20 gene/probe identifiers:")
113
+ print(gene_data.index[:20])
114
+ # These are Illumina probe IDs (starting with ILMN_) which need to be mapped to official gene symbols
115
+ # They are not standard human gene symbols like BRCA1, TP53 etc.
116
+ requires_gene_mapping = True
117
+ # Extract gene annotation from SOFT file
118
+ gene_annotation = get_gene_annotation(soft_file)
119
+
120
+ # Preview gene annotation data
121
+ print("Gene annotation columns and example values:")
122
+ print(preview_df(gene_annotation))
123
+ # 1. Identify mapping columns
124
+ # ID column contains Illumina probe IDs (e.g., ILMN_1825594)
125
+ # Symbol column contains gene symbols (e.g., JMJD1A)
126
+ prob_col = 'ID'
127
+ gene_col = 'Symbol'
128
+
129
+ # 2. Get gene mapping dataframe
130
+ gene_mapping = get_gene_mapping(gene_annotation, prob_col, gene_col)
131
+
132
+ # 3. Apply gene mapping to convert probe expression to gene expression
133
+ gene_data = apply_gene_mapping(gene_data, gene_mapping)
134
+ # 1. Normalize gene symbols and save normalized gene data
135
+ gene_data = normalize_gene_symbols_in_index(gene_data)
136
+ gene_data.to_csv(out_gene_data_file)
137
+
138
+ # 2. Link clinical and genetic data
139
+ linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)
140
+
141
+ # 3. Handle missing values systematically
142
+ linked_data = handle_missing_values(linked_data, trait)
143
+
144
+ # 4. Check for biased features and remove them if needed
145
+ is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
146
+
147
+ # 5. Validate data quality and save metadata
148
+ is_usable = validate_and_save_cohort_info(
149
+ is_final=True,
150
+ cohort=cohort,
151
+ info_path=json_path,
152
+ is_gene_available=True,
153
+ is_trait_available=True,
154
+ is_biased=is_biased,
155
+ df=linked_data,
156
+ note="Gene expression data comparing cervical cancer stages (early vs advanced) based on FIGO staging"
157
+ )
158
+
159
+ # 6. Save linked data if usable
160
+ if is_usable:
161
+ linked_data.to_csv(out_data_file)
p3/preprocess/Cervical_Cancer/code/GSE163114.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Cervical_Cancer"
6
+ cohort = "GSE163114"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Cervical_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Cervical_Cancer/GSE163114"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Cervical_Cancer/GSE163114.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Cervical_Cancer/gene_data/GSE163114.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Cervical_Cancer/clinical_data/GSE163114.csv"
16
+ json_path = "./output/preprocess/3/Cervical_Cancer/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values per clinical feature
25
+ sample_characteristics = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("Dataset Background Information:")
29
+ print(f"{background_info}\n")
30
+
31
+ # Print sample characteristics
32
+ print("Sample Characteristics:")
33
+ for feature, values in sample_characteristics.items():
34
+ print(f"Feature: {feature}")
35
+ print(f"Values: {values}\n")
36
+ # 1. Gene Expression Data Availability
37
+ # Based on "HeLa" cell line experiments, this is likely a gene expression dataset
38
+ is_gene_available = True
39
+
40
+ # 2. Variable Availability and Data Type Conversion
41
+ # 2.1 Data Availability
42
+ # Feature 1 indicates treatment groups - can be used as trait
43
+ trait_row = 1
44
+ # Age and gender not available since this is cell line data
45
+ age_row = None
46
+ gender_row = None
47
+
48
+ # 2.2 Data Type Conversion Functions
49
+ def convert_trait(x):
50
+ if not isinstance(x, str):
51
+ return None
52
+ value = x.split(": ")[-1].strip().lower()
53
+ # Convert control vs Ki-67 knockdown to binary
54
+ if "control" in value:
55
+ return 0 # control
56
+ elif "ki-67" in value:
57
+ return 1 # Ki-67 knockdown
58
+ return None
59
+
60
+ convert_age = None
61
+ convert_gender = None
62
+
63
+ # 3. Save Metadata
64
+ # Conduct initial filtering
65
+ validate_and_save_cohort_info(
66
+ is_final=False,
67
+ cohort=cohort,
68
+ info_path=json_path,
69
+ is_gene_available=is_gene_available,
70
+ is_trait_available=trait_row is not None
71
+ )
72
+
73
+ # 4. Clinical Feature Extraction
74
+ # Since trait_row is available, extract clinical features
75
+ clinical_df = geo_select_clinical_features(
76
+ clinical_df=clinical_data,
77
+ trait=trait,
78
+ trait_row=trait_row,
79
+ convert_trait=convert_trait,
80
+ age_row=age_row,
81
+ convert_age=convert_age,
82
+ gender_row=gender_row,
83
+ convert_gender=convert_gender
84
+ )
85
+
86
+ # Preview the extracted features
87
+ print("Preview of clinical features:")
88
+ print(preview_df(clinical_df))
89
+
90
+ # Save clinical data
91
+ os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
92
+ clinical_df.to_csv(out_clinical_data_file)
93
+ # First let's identify the SubSeries information
94
+ with gzip.open(soft_file, 'rt') as file:
95
+ for line in file:
96
+ if 'Series = GSE' in line:
97
+ print(line.strip())
98
+ elif '!Series_type' in line:
99
+ print(line.strip())
100
+ # Stop after finding subseries info
101
+ elif '!series_matrix_table_begin' in line:
102
+ break
103
+
104
+ print("\nAnalyzing first subseries:")
105
+ # Construct path to first subseries
106
+ subseries_dir = os.path.join(os.path.dirname(in_cohort_dir), "GSE163112")
107
+ subseries_soft, subseries_matrix = geo_get_relevant_filepaths(subseries_dir)
108
+
109
+ # Extract gene expression data from subseries matrix file
110
+ gene_data = get_genetic_data(subseries_matrix)
111
+
112
+ # Print first 20 row IDs
113
+ print("\nFirst 20 gene/probe identifiers:")
114
+ print(gene_data.index[:20])
p3/preprocess/Cervical_Cancer/code/GSE63678.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Cervical_Cancer"
6
+ cohort = "GSE63678"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Cervical_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Cervical_Cancer/GSE63678"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Cervical_Cancer/GSE63678.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Cervical_Cancer/gene_data/GSE63678.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Cervical_Cancer/clinical_data/GSE63678.csv"
16
+ json_path = "./output/preprocess/3/Cervical_Cancer/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values per clinical feature
25
+ sample_characteristics = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("Dataset Background Information:")
29
+ print(f"{background_info}\n")
30
+
31
+ # Print sample characteristics
32
+ print("Sample Characteristics:")
33
+ for feature, values in sample_characteristics.items():
34
+ print(f"Feature: {feature}")
35
+ print(f"Values: {values}\n")
36
+ # Extract gene expression data from matrix file
37
+ gene_data = get_genetic_data(matrix_file)
38
+
39
+ # Process clinical data to get trait information - disease state from row 1
40
+ clinical_df = geo_select_clinical_features(
41
+ clinical_data,
42
+ trait="disease_state",
43
+ trait_row=1,
44
+ convert_trait=lambda x: 1 if "carcinoma" in str(x).lower() else (0 if "normal" in str(x).lower() else None)
45
+ )
46
+
47
+ # Save clinical data
48
+ clinical_df.to_csv(out_clinical_data_file)
49
+
50
+ # Normalize gene symbols and save normalized gene data
51
+ gene_data = normalize_gene_symbols_in_index(gene_data)
52
+ gene_data.to_csv(out_gene_data_file)
53
+
54
+ # Link clinical and genetic data
55
+ linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
56
+
57
+ # Handle missing values systematically
58
+ linked_data = handle_missing_values(linked_data, "disease_state")
59
+
60
+ # Check for biased features and remove them if needed
61
+ is_biased, linked_data = judge_and_remove_biased_features(linked_data, "disease_state")
62
+
63
+ # Validate data quality and save metadata
64
+ is_usable = validate_and_save_cohort_info(
65
+ is_final=True,
66
+ cohort=cohort,
67
+ info_path=json_path,
68
+ is_gene_available=True,
69
+ is_trait_available=True,
70
+ is_biased=is_biased,
71
+ df=linked_data,
72
+ note="Gene expression data comparing cervical carcinoma vs normal tissue samples"
73
+ )
74
+
75
+ # Save linked data if usable
76
+ if is_usable:
77
+ linked_data.to_csv(out_data_file)
78
+ # Extract gene expression data from matrix file
79
+ gene_data = get_genetic_data(matrix_file)
80
+
81
+ # Print first 20 row IDs
82
+ print("First 20 gene/probe identifiers:")
83
+ print(gene_data.index[:20])
84
+ # Review identifiers - using knowledge of gene naming conventions
85
+ # These are from Affymetrix HG-U133A platform which requires mapping to gene symbols
86
+
87
+ requires_gene_mapping = True
88
+ # Extract gene annotation from SOFT file
89
+ gene_annotation = get_gene_annotation(soft_file)
90
+
91
+ # Preview gene annotation data
92
+ print("Gene annotation columns and example values:")
93
+ print(preview_df(gene_annotation))
94
+ # Extract probe-to-gene mapping from annotation data
95
+ # ID column contains probe IDs matching gene expression data
96
+ # Gene Symbol column contains target gene symbols
97
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
98
+
99
+ # Apply gene mapping to convert probe-level data to gene-level data
100
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
101
+ # 1. Normalize gene symbols and save normalized gene data
102
+ gene_data = normalize_gene_symbols_in_index(gene_data)
103
+ gene_data.to_csv(out_gene_data_file)
104
+
105
+ # 2. Link clinical and genetic data
106
+ linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
107
+
108
+ # 3. Handle missing values systematically
109
+ linked_data = handle_missing_values(linked_data, "disease_state")
110
+
111
+ # 4. Check for biased features and remove them if needed
112
+ is_biased, linked_data = judge_and_remove_biased_features(linked_data, "disease_state")
113
+
114
+ # 5. Validate data quality and save metadata
115
+ is_usable = validate_and_save_cohort_info(
116
+ is_final=True,
117
+ cohort=cohort,
118
+ info_path=json_path,
119
+ is_gene_available=True,
120
+ is_trait_available=True,
121
+ is_biased=is_biased,
122
+ df=linked_data,
123
+ note="Gene expression data comparing cervical carcinoma vs normal tissue samples"
124
+ )
125
+
126
+ # 6. Save linked data if usable
127
+ if is_usable:
128
+ linked_data.to_csv(out_data_file)
p3/preprocess/Cervical_Cancer/code/GSE75132.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Cervical_Cancer"
6
+ cohort = "GSE75132"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Cervical_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Cervical_Cancer/GSE75132"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Cervical_Cancer/GSE75132.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Cervical_Cancer/gene_data/GSE75132.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Cervical_Cancer/clinical_data/GSE75132.csv"
16
+ json_path = "./output/preprocess/3/Cervical_Cancer/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values per clinical feature
25
+ sample_characteristics = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("Dataset Background Information:")
29
+ print(f"{background_info}\n")
30
+
31
+ # Print sample characteristics
32
+ print("Sample Characteristics:")
33
+ for feature, values in sample_characteristics.items():
34
+ print(f"Feature: {feature}")
35
+ print(f"Values: {values}\n")
36
+ # 1. Gene Expression Data Availability
37
+ # Based on background info, this is gene expression data (TMEM45A, SERPINB5, p16INK4A)
38
+ is_gene_available = True
39
+
40
+ # 2. Variable Availability and Data Type Conversion
41
+ # 2.1 Data Availability
42
+ trait_row = 1 # Category/progression info in row 1
43
+ age_row = None # Age not available
44
+ gender_row = None # Gender not available
45
+
46
+ # 2.2 Data Type Conversion Functions
47
+ def convert_trait(x):
48
+ """Convert progression category to binary:
49
+ 0 = normal/no progression
50
+ 1 = progression (categories 1 & 2 both indicate HPV infection)
51
+ """
52
+ if not isinstance(x, str):
53
+ return None
54
+ value = x.split(': ')[-1]
55
+ try:
56
+ category = int(value)
57
+ if category == 0:
58
+ return 0
59
+ elif category in [1, 2]:
60
+ return 1
61
+ return None
62
+ except:
63
+ return None
64
+
65
+ convert_age = None
66
+ convert_gender = None
67
+
68
+ # 3. Save metadata
69
+ is_trait_available = trait_row is not None
70
+ validate_and_save_cohort_info(is_final=False,
71
+ cohort=cohort,
72
+ info_path=json_path,
73
+ is_gene_available=is_gene_available,
74
+ is_trait_available=is_trait_available)
75
+
76
+ # 4. Clinical Feature Extraction
77
+ if trait_row is not None:
78
+ selected_clinical = geo_select_clinical_features(
79
+ clinical_df=clinical_data,
80
+ trait=trait,
81
+ trait_row=trait_row,
82
+ convert_trait=convert_trait
83
+ )
84
+
85
+ # Preview the processed clinical data
86
+ print("Preview of processed clinical data:")
87
+ print(preview_df(selected_clinical))
88
+
89
+ # Save clinical data
90
+ selected_clinical.to_csv(out_clinical_data_file)
91
+ # Extract gene expression data from matrix file
92
+ gene_data = get_genetic_data(matrix_file)
93
+
94
+ # Print first 20 row IDs
95
+ print("First 20 gene/probe identifiers:")
96
+ print(gene_data.index[:20])
97
+ requires_gene_mapping = True
98
+ # Extract gene annotation from SOFT file
99
+ gene_annotation = get_gene_annotation(soft_file)
100
+
101
+ # Preview gene annotation data
102
+ print("Gene annotation columns and example values:")
103
+ print(preview_df(gene_annotation))
104
+ # 1 & 2. Get gene mapping from annotation data
105
+ # The 'ID' column in gene_annotation matches the probe IDs in gene_data
106
+ # The 'Gene Symbol' column contains the corresponding gene symbols
107
+ mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
108
+
109
+ # 3. Map probes to genes and convert to gene expression data
110
+ gene_data = apply_gene_mapping(gene_data, mapping_data)
111
+
112
+ # Print preview of mapped gene data
113
+ print("\nPreview of gene expression data after mapping:")
114
+ print(gene_data.index[:5])
115
+ # 1. Normalize gene symbols and save normalized gene data
116
+ gene_data = normalize_gene_symbols_in_index(gene_data)
117
+ gene_data.to_csv(out_gene_data_file)
118
+
119
+ # 2. Link clinical and genetic data
120
+ linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
121
+
122
+ # Convert index to column with trait name before handling missing values
123
+ linked_data = linked_data.reset_index().rename(columns={linked_data.index.name: trait})
124
+
125
+ # 3. Handle missing values systematically
126
+ linked_data = handle_missing_values(linked_data, trait)
127
+
128
+ # 4. Check for biased features and remove them if needed
129
+ is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
130
+
131
+ # 5. Validate data quality and save metadata
132
+ is_usable = validate_and_save_cohort_info(
133
+ is_final=True,
134
+ cohort=cohort,
135
+ info_path=json_path,
136
+ is_gene_available=True,
137
+ is_trait_available=True,
138
+ is_biased=is_biased,
139
+ df=linked_data,
140
+ note="Gene expression data from cervical tissue samples. Trait defined based on HPV infection and progression."
141
+ )
142
+
143
+ # 6. Save linked data if usable
144
+ if is_usable:
145
+ linked_data.to_csv(out_data_file)
p3/preprocess/Cervical_Cancer/code/TCGA.py ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Cervical_Cancer"
6
+
7
+ # Input paths
8
+ tcga_root_dir = "../DATA/TCGA"
9
+
10
+ # Output paths
11
+ out_data_file = "./output/preprocess/3/Cervical_Cancer/TCGA.csv"
12
+ out_gene_data_file = "./output/preprocess/3/Cervical_Cancer/gene_data/TCGA.csv"
13
+ out_clinical_data_file = "./output/preprocess/3/Cervical_Cancer/clinical_data/TCGA.csv"
14
+ json_path = "./output/preprocess/3/Cervical_Cancer/cohort_info.json"
15
+
16
+ # 1. Select the relevant subdirectory for cervical cancer
17
+ subdirectory = 'TCGA_Cervical_Cancer_(CESC)'
18
+ cohort_dir = os.path.join(tcga_root_dir, subdirectory)
19
+
20
+ # 2. Get the file paths
21
+ clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
22
+
23
+ # 3. Load the data files
24
+ clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
25
+ genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
26
+
27
+ # 4. Print clinical data columns
28
+ print("Clinical data columns:")
29
+ print(clinical_df.columns.tolist())
30
+ # Step 1: Identify candidate columns
31
+ candidate_age_cols = ["age_at_initial_pathologic_diagnosis", "age_began_smoking_in_years", "days_to_birth"]
32
+ candidate_gender_cols = ["gender"]
33
+
34
+ # Step 2: Use correct TCGA cohort name
35
+ clinical_path, _ = tcga_get_relevant_filepaths(os.path.join(tcga_root_dir, "CESC"))
36
+ clinical_df = pd.read_csv(clinical_path, sep='\t', index_col=0)
37
+
38
+ # Preview selected columns
39
+ preview_cols = candidate_age_cols + candidate_gender_cols
40
+ preview_data = preview_df(clinical_df[preview_cols])
41
+ print("Preview of demographic columns:", preview_data)
42
+ # 1. Select the relevant subdirectory for cervical cancer
43
+ subdirectory = 'TCGA_Cervical_Cancer_(CESC)'
44
+ cohort_dir = os.path.join(tcga_root_dir, subdirectory)
45
+
46
+ # 2. Get the file paths
47
+ clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
48
+
49
+ # 3. Load the data files
50
+ clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
51
+ genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
52
+
53
+ # 4. Print clinical data columns
54
+ print("Clinical data columns:")
55
+ print(clinical_df.columns.tolist())
56
+ # Age column candidates contain words like 'age' or 'birth'
57
+ age_col = 'age_at_initial_pathologic_diagnosis' # Contains clear numerical age values
58
+
59
+ # Gender column candidates contain word 'gender'
60
+ gender_col = 'gender' # Contains clear gender values
61
+
62
+ # Print selected columns
63
+ print(f"Selected age column: {age_col}")
64
+ print(f"Selected gender column: {gender_col}")
65
+ # 1. Extract and standardize clinical features
66
+ # First create trait labels using sample IDs, then add demographics if available
67
+ clinical_features = tcga_select_clinical_features(
68
+ clinical_df,
69
+ trait=trait,
70
+ age_col='age_at_initial_pathologic_diagnosis',
71
+ gender_col='gender'
72
+ )
73
+
74
+ # 2. Normalize gene symbols and save
75
+ normalized_gene_df = normalize_gene_symbols_in_index(genetic_df)
76
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
77
+ normalized_gene_df.to_csv(out_gene_data_file)
78
+
79
+ # 3. Link clinical and genetic data
80
+ linked_data = pd.concat([clinical_features, normalized_gene_df.T], axis=1)
81
+
82
+ # 4. Handle missing values systematically
83
+ linked_data = handle_missing_values(linked_data, trait)
84
+
85
+ # 5. Check for bias in trait and demographic features
86
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
87
+
88
+ # 6. Validate data quality and save cohort info
89
+ note = "Contains molecular data from tumor and normal samples with patient demographics."
90
+ is_usable = validate_and_save_cohort_info(
91
+ is_final=True,
92
+ cohort="TCGA",
93
+ info_path=json_path,
94
+ is_gene_available=True,
95
+ is_trait_available=True,
96
+ is_biased=trait_biased,
97
+ df=linked_data,
98
+ note=note
99
+ )
100
+
101
+ # 7. Save linked data if usable
102
+ if is_usable:
103
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
104
+ linked_data.to_csv(out_data_file)
p3/preprocess/Cervical_Cancer/gene_data/GSE107754.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a82da64a5edcbde2a3ccf1c07d005767e02ceeaad822b4ed6217419063405079
3
+ size 19822703
p3/preprocess/Cervical_Cancer/gene_data/GSE114243.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Cervical_Cancer/gene_data/GSE138079.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce5db634b575bdbdafa08fb5f64269273ee335c54eee01add0988aeff973e030
3
+ size 14805206
p3/preprocess/Cervical_Cancer/gene_data/GSE138080.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Cervical_Cancer/gene_data/GSE146114.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1451952dd968a27803c16c51aa325f075ec49a344592f530380fee4e49a2c3f
3
+ size 18757988
p3/preprocess/Cervical_Cancer/gene_data/GSE63678.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Cervical_Cancer/gene_data/GSE75132.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Chronic_Fatigue_Syndrome/GSE251792.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Chronic_Fatigue_Syndrome/clinical_data/GSE251792.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM7988184,GSM7988185,GSM7988186,GSM7988187,GSM7988188,GSM7988189,GSM7988190,GSM7988191,GSM7988192,GSM7988193,GSM7988194,GSM7988195,GSM7988196,GSM7988197,GSM7988198,GSM7988199,GSM7988200,GSM7988201,GSM7988202,GSM7988203,GSM7988204,GSM7988205,GSM7988206,GSM7988207,GSM7988208,GSM7988209,GSM7988210,GSM7988211,GSM7988212,GSM7988213,GSM7988214,GSM7988215,GSM7988216,GSM7988217,GSM7988218,GSM7988219,GSM7988220,GSM7988221,GSM7988222,GSM7988223,GSM7988224,GSM7988225,GSM8032049,GSM8032050,GSM8032051,GSM8032052,GSM8032053,GSM8032054,GSM8032055,GSM8032056,GSM8032057,GSM8032058,GSM8032059,GSM8032060,GSM8032061,GSM8032062,GSM8032063,GSM8032064,GSM8032065,GSM8032066,GSM8032067,GSM8032068,GSM8032069,GSM8032070,GSM8032071,GSM8032072,GSM8032073,GSM8032074,GSM8032075,GSM8032076,GSM8032077,GSM8032078,GSM8032079,GSM8032080,GSM8032081,GSM8032082,GSM8032083,GSM8032084,GSM8032085,GSM8032086,GSM8032087,GSM8032088,GSM8032089,GSM8032090
2
+ Chronic_Fatigue_Syndrome,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0
3
+ Age,61.0,37.0,56.0,56.0,24.0,58.0,43.0,26.0,40.0,47.0,22.0,54.0,58.0,44.0,20.0,26.0,23.0,33.0,54.0,25.0,58.0,37.0,23.0,22.0,51.0,48.0,36.0,56.0,38.0,60.0,37.0,25.0,44.0,61.0,50.0,60.0,47.0,49.0,50.0,55.0,60.0,57.0,44.0,60.0,37.0,58.0,60.0,56.0,24.0,50.0,51.0,55.0,48.0,26.0,22.0,38.0,50.0,56.0,33.0,47.0,22.0,23.0,23.0,58.0,54.0,37.0,36.0,61.0,49.0,57.0,60.0,25.0,47.0,44.0,56.0,54.0,58.0,20.0,37.0,26.0,25.0,43.0,40.0,61.0
4
+ Gender,0.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0
p3/preprocess/Chronic_Fatigue_Syndrome/clinical_data/GSE39684.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM977688,GSM977689,GSM977690,GSM977691,GSM977692,GSM977693,GSM977694,GSM977695,GSM977696,GSM977697,GSM977698,GSM977699,GSM977700,GSM977701,GSM977702,GSM977703,GSM977704,GSM977705,GSM977706,GSM977707,GSM977708,GSM977709,GSM977710,GSM977711,GSM977712,GSM977713,GSM977714,GSM977715,GSM977716,GSM977717,GSM977718,GSM977719,GSM977720,GSM977721,GSM977722,GSM977723,GSM977724,GSM977725,GSM977726,GSM977727,GSM977728,GSM977729,GSM977730,GSM977731,GSM977732,GSM977733,GSM977734,GSM977735,GSM977736,GSM977737,GSM977738,GSM977739,GSM977740,GSM977741,GSM977742,GSM977743,GSM977744,GSM977745,GSM977746,GSM977747,GSM977748,GSM977749,GSM977750
2
+ Chronic_Fatigue_Syndrome,,,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
p3/preprocess/Chronic_Fatigue_Syndrome/clinical_data/GSE67311.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM1644447,GSM1644448,GSM1644449,GSM1644450,GSM1644451,GSM1644452,GSM1644453,GSM1644454,GSM1644455,GSM1644456,GSM1644457,GSM1644458,GSM1644459,GSM1644460,GSM1644461,GSM1644462,GSM1644463,GSM1644464,GSM1644465,GSM1644466,GSM1644467,GSM1644468,GSM1644469,GSM1644470,GSM1644471,GSM1644472,GSM1644473,GSM1644474,GSM1644475,GSM1644476,GSM1644477,GSM1644478,GSM1644479,GSM1644480,GSM1644481,GSM1644482,GSM1644483,GSM1644484,GSM1644485,GSM1644486,GSM1644487,GSM1644488,GSM1644489,GSM1644490,GSM1644491,GSM1644492,GSM1644493,GSM1644494,GSM1644495,GSM1644496,GSM1644497,GSM1644498,GSM1644499,GSM1644500,GSM1644501,GSM1644502,GSM1644503,GSM1644504,GSM1644505,GSM1644506,GSM1644507,GSM1644508,GSM1644509,GSM1644510,GSM1644511,GSM1644512,GSM1644513,GSM1644514,GSM1644515,GSM1644516,GSM1644517,GSM1644518,GSM1644519,GSM1644520,GSM1644521,GSM1644522,GSM1644523,GSM1644524,GSM1644525,GSM1644526,GSM1644527,GSM1644528,GSM1644529,GSM1644530,GSM1644531,GSM1644532,GSM1644533,GSM1644534,GSM1644535,GSM1644536,GSM1644537,GSM1644538,GSM1644539,GSM1644540,GSM1644541,GSM1644542,GSM1644543,GSM1644544,GSM1644545,GSM1644546,GSM1644547,GSM1644548,GSM1644549,GSM1644550,GSM1644551,GSM1644552,GSM1644553,GSM1644554,GSM1644555,GSM1644556,GSM1644557,GSM1644558,GSM1644559,GSM1644560,GSM1644561,GSM1644562,GSM1644563,GSM1644564,GSM1644565,GSM1644566,GSM1644567,GSM1644568,GSM1644569,GSM1644570,GSM1644571,GSM1644572,GSM1644573,GSM1644574,GSM1644575,GSM1644576,GSM1644577,GSM1644578,GSM1644579,GSM1644580,GSM1644581,GSM1644582,GSM1644583,GSM1644584,GSM1644585,GSM1644586,GSM1644587,GSM1644588
2
+ Chronic_Fatigue_Syndrome,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,0.0,,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,0.0,1.0,0.0,0.0,0.0,0.0,,0.0,,0.0,0.0,1.0,0.0,,0.0,0.0,0.0,1.0,1.0,1.0,1.0,,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,,0.0,0.0,0.0
p3/preprocess/Chronic_Fatigue_Syndrome/code/GSE251792.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Chronic_Fatigue_Syndrome"
6
+ cohort = "GSE251792"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Chronic_Fatigue_Syndrome"
10
+ in_cohort_dir = "../DATA/GEO/Chronic_Fatigue_Syndrome/GSE251792"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Chronic_Fatigue_Syndrome/GSE251792.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Chronic_Fatigue_Syndrome/gene_data/GSE251792.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Chronic_Fatigue_Syndrome/clinical_data/GSE251792.csv"
16
+ json_path = "./output/preprocess/3/Chronic_Fatigue_Syndrome/cohort_info.json"
17
+
18
+ # Get paths to the SOFT and matrix files
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data from matrix file
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values for each feature (row) in clinical data
25
+ unique_values_dict = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("=== Dataset Background Information ===")
29
+ print(background_info)
30
+ print("\n=== Sample Characteristics ===")
31
+ print(json.dumps(unique_values_dict, indent=2))
32
+ # Gene expression data appears available given this is a deep phenotyping study
33
+ is_gene_available = True
34
+
35
+ # Feature row identification
36
+ trait_row = 2 # 'group' field contains trait data
37
+ age_row = 1 # 'age' field contains age data
38
+ gender_row = 0 # 'Sex' field contains gender data
39
+
40
+ # Convert trait (Patient=1, Control=0)
41
+ def convert_trait(x):
42
+ if not isinstance(x, str):
43
+ return None
44
+ x = x.lower().split(': ')[-1].strip()
45
+ if 'patient' in x:
46
+ return 1
47
+ elif 'control' in x:
48
+ return 0
49
+ return None
50
+
51
+ # Convert age to float
52
+ def convert_age(x):
53
+ if not isinstance(x, str):
54
+ return None
55
+ try:
56
+ return float(x.split(': ')[-1])
57
+ except:
58
+ return None
59
+
60
+ # Convert gender (Female=0, Male=1)
61
+ def convert_gender(x):
62
+ if not isinstance(x, str):
63
+ return None
64
+ x = x.lower().split(': ')[-1].strip()
65
+ if 'female' in x:
66
+ return 0
67
+ elif 'male' in x:
68
+ return 1
69
+ return None
70
+
71
+ # Save initial metadata
72
+ validate_and_save_cohort_info(is_final=False,
73
+ cohort=cohort,
74
+ info_path=json_path,
75
+ is_gene_available=is_gene_available,
76
+ is_trait_available=trait_row is not None)
77
+
78
+ # Extract clinical features since trait data is available
79
+ clinical_df = geo_select_clinical_features(clinical_data,
80
+ trait=trait,
81
+ trait_row=trait_row,
82
+ convert_trait=convert_trait,
83
+ age_row=age_row,
84
+ convert_age=convert_age,
85
+ gender_row=gender_row,
86
+ convert_gender=convert_gender)
87
+
88
+ # Preview the clinical data
89
+ print("Preview of clinical data:")
90
+ print(preview_df(clinical_df))
91
+
92
+ # Save clinical data
93
+ clinical_df.to_csv(out_clinical_data_file)
94
+ # Extract gene expression data from matrix file
95
+ genetic_df = get_genetic_data(matrix_file)
96
+
97
+ # Print DataFrame shape and first 20 row IDs
98
+ print("DataFrame shape:", genetic_df.shape)
99
+ print("\nFirst 20 row IDs:")
100
+ print(genetic_df.index[:20])
101
+
102
+ print("\nPreview of first few rows and columns:")
103
+ print(genetic_df.head().iloc[:, :5])
104
+ # Row IDs like 'HCE000104' are Helicos BioSciences Corporation Probe IDs, not standard gene symbols
105
+ # These need to be mapped to proper gene symbols for analysis
106
+ requires_gene_mapping = True
107
+ # Extract gene annotation data, excluding control probe lines
108
+ gene_metadata = get_gene_annotation(soft_file)
109
+
110
+ # Preview filtered annotation data
111
+ print("Column names:")
112
+ print(gene_metadata.columns)
113
+ print("\nPreview of gene annotation data:")
114
+ print(preview_df(gene_metadata))
115
+ # Get gene mapping using ID and EntrezGeneSymbol columns
116
+ mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='EntrezGeneSymbol')
117
+
118
+ # Apply gene mapping to convert probe values to gene expression values
119
+ gene_data = apply_gene_mapping(genetic_df, mapping_df)
120
+
121
+ # Preview the resulting gene expression data
122
+ print("Gene expression data shape:", gene_data.shape)
123
+ print("\nFirst few rows and columns:")
124
+ print(gene_data.head().iloc[:, :5])
125
+ # 1. Normalize gene symbols and save
126
+ gene_data = normalize_gene_symbols_in_index(gene_data)
127
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
128
+ gene_data.to_csv(out_gene_data_file)
129
+
130
+ # 2. Link clinical and genetic data
131
+ linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
132
+
133
+ # 3. Handle missing values
134
+ linked_data = handle_missing_values(linked_data, trait)
135
+
136
+ # 4. Check for biased features
137
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
138
+
139
+ # 5. Final validation and metadata saving
140
+ is_usable = validate_and_save_cohort_info(
141
+ is_final=True,
142
+ cohort=cohort,
143
+ info_path=json_path,
144
+ is_gene_available=is_gene_available,
145
+ is_trait_available=True,
146
+ is_biased=trait_biased,
147
+ df=linked_data,
148
+ note="Dataset contains gene expression data from blood samples used to study chronic fatigue syndrome"
149
+ )
150
+
151
+ # 6. Save linked data if usable
152
+ if is_usable:
153
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
154
+ linked_data.to_csv(out_data_file)
p3/preprocess/Chronic_Fatigue_Syndrome/code/GSE39684.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Chronic_Fatigue_Syndrome"
6
+ cohort = "GSE39684"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Chronic_Fatigue_Syndrome"
10
+ in_cohort_dir = "../DATA/GEO/Chronic_Fatigue_Syndrome/GSE39684"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Chronic_Fatigue_Syndrome/GSE39684.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Chronic_Fatigue_Syndrome/gene_data/GSE39684.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Chronic_Fatigue_Syndrome/clinical_data/GSE39684.csv"
16
+ json_path = "./output/preprocess/3/Chronic_Fatigue_Syndrome/cohort_info.json"
17
+
18
+ # Get paths to the SOFT and matrix files
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data from matrix file
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values for each feature (row) in clinical data
25
+ unique_values_dict = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("=== Dataset Background Information ===")
29
+ print(background_info)
30
+ print("\n=== Sample Characteristics ===")
31
+ print(json.dumps(unique_values_dict, indent=2))
32
+ # 1. Gene Expression Data Availability
33
+ # Yes, this is microarray data from prostate tissue samples analyzing genes
34
+ is_gene_available = True
35
+
36
+ # 2. Clinical Feature Analysis
37
+ # 2.1 Data Availability
38
+ # From cohort in sample char row 1, we can infer cohort year represents CFS cases vs controls
39
+ trait_row = 1
40
+ # No age information available
41
+ age_row = None
42
+ # No gender information available
43
+ gender_row = None
44
+
45
+ # 2.2 Data Type Conversion Functions
46
+ def convert_trait(val):
47
+ if not isinstance(val, str):
48
+ return None
49
+ # Cohort 2006 = CFS cases, 2012 = controls
50
+ if "cohort:" in val:
51
+ year = val.split(":")[1].strip()
52
+ if year == "2006":
53
+ return 1 # Cases
54
+ elif year == "2012":
55
+ return 0 # Controls
56
+ return None
57
+
58
+ def convert_age(val):
59
+ # No age data
60
+ return None
61
+
62
+ def convert_gender(val):
63
+ # No gender data
64
+ return None
65
+
66
+ # 3. Save Metadata
67
+ validate_and_save_cohort_info(
68
+ is_final=False,
69
+ cohort=cohort,
70
+ info_path=json_path,
71
+ is_gene_available=is_gene_available,
72
+ is_trait_available=trait_row is not None
73
+ )
74
+
75
+ # 4. Clinical Feature Extraction
76
+ if trait_row is not None:
77
+ clinical_features = geo_select_clinical_features(
78
+ clinical_df=clinical_data,
79
+ trait=trait,
80
+ trait_row=trait_row,
81
+ convert_trait=convert_trait,
82
+ age_row=age_row,
83
+ convert_age=convert_age,
84
+ gender_row=gender_row,
85
+ convert_gender=convert_gender
86
+ )
87
+
88
+ print("Preview of extracted clinical features:")
89
+ print(preview_df(clinical_features))
90
+
91
+ # Save clinical features
92
+ clinical_features.to_csv(out_clinical_data_file)
93
+ # Extract gene expression data from matrix file
94
+ genetic_df = get_genetic_data(matrix_file)
95
+
96
+ # Print DataFrame shape and first 20 row IDs
97
+ print("DataFrame shape:", genetic_df.shape)
98
+ print("\nFirst 20 row IDs:")
99
+ print(genetic_df.index[:20])
100
+
101
+ print("\nPreview of first few rows and columns:")
102
+ print(genetic_df.head().iloc[:, :5])
103
+ # These identifiers appear to be custom probe IDs from a microarray platform (XXX-V3-70mer format)
104
+ # and will need to be mapped to official gene symbols
105
+ requires_gene_mapping = True
106
+ # Extract gene annotation data, excluding control probe lines
107
+ gene_metadata = get_gene_annotation(soft_file)
108
+
109
+ # Preview filtered annotation data
110
+ print("Column names:")
111
+ print(gene_metadata.columns)
112
+ print("\nPreview of gene annotation data:")
113
+ print(preview_df(gene_metadata))
114
+
115
+ print("\nIMPORTANT NOTE: After reviewing the gene annotation data,")
116
+ print("it is clear this dataset contains viral gene expression data (Parvovirus, Retrovirus etc.)")
117
+ print("rather than human gene expression data. Therefore this dataset is not suitable for human trait analysis.")
118
+
119
+ # Invalidate our previous assessment
120
+ is_gene_available = False
121
+
122
+ # Re-run validation with updated gene availability
123
+ validate_and_save_cohort_info(
124
+ is_final=False,
125
+ cohort=cohort,
126
+ info_path=json_path,
127
+ is_gene_available=is_gene_available,
128
+ is_trait_available=trait_row is not None
129
+ )
p3/preprocess/Chronic_Fatigue_Syndrome/code/GSE67311.py ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Chronic_Fatigue_Syndrome"
6
+ cohort = "GSE67311"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Chronic_Fatigue_Syndrome"
10
+ in_cohort_dir = "../DATA/GEO/Chronic_Fatigue_Syndrome/GSE67311"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Chronic_Fatigue_Syndrome/GSE67311.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Chronic_Fatigue_Syndrome/gene_data/GSE67311.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Chronic_Fatigue_Syndrome/clinical_data/GSE67311.csv"
16
+ json_path = "./output/preprocess/3/Chronic_Fatigue_Syndrome/cohort_info.json"
17
+
18
+ # Get paths to the SOFT and matrix files
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data from matrix file
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values for each feature (row) in clinical data
25
+ unique_values_dict = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("=== Dataset Background Information ===")
29
+ print(background_info)
30
+ print("\n=== Sample Characteristics ===")
31
+ print(json.dumps(unique_values_dict, indent=2))
32
+ # 1. Gene Expression Data Availability
33
+ # Dataset uses Affymetrix Human Gene arrays, indicating gene expression data is available
34
+ is_gene_available = True
35
+
36
+ # 2. Variable Availability and Data Type
37
+ # 2.1 Row identification
38
+ trait_row = 8 # Chronic fatigue syndrome status in row 8
39
+ age_row = None # Age not available
40
+ gender_row = None # Gender not available
41
+
42
+ # 2.2 Data type conversion functions
43
+ def convert_trait(value: str) -> int:
44
+ """Convert CFS status to binary (0: No CFS, 1: Has CFS)"""
45
+ if pd.isna(value):
46
+ return None
47
+ value = value.lower().split(': ')[-1]
48
+ if value == 'yes':
49
+ return 1
50
+ elif value == 'no':
51
+ return 0
52
+ return None
53
+
54
+ def convert_age(value: str) -> float:
55
+ """Convert age to float - not used as age unavailable"""
56
+ return None
57
+
58
+ def convert_gender(value: str) -> int:
59
+ """Convert gender to binary - not used as gender unavailable"""
60
+ return None
61
+
62
+ # 3. Save initial metadata
63
+ validate_and_save_cohort_info(
64
+ is_final=False,
65
+ cohort=cohort,
66
+ info_path=json_path,
67
+ is_gene_available=is_gene_available,
68
+ is_trait_available=trait_row is not None
69
+ )
70
+
71
+ # 4. Clinical Feature Extraction
72
+ # Since trait_row is not None, extract clinical features
73
+ clinical_df = geo_select_clinical_features(
74
+ clinical_df=clinical_data,
75
+ trait=trait,
76
+ trait_row=trait_row,
77
+ convert_trait=convert_trait,
78
+ age_row=age_row,
79
+ convert_age=convert_age,
80
+ gender_row=gender_row,
81
+ convert_gender=convert_gender
82
+ )
83
+
84
+ # Preview the extracted features
85
+ print("Preview of clinical features:")
86
+ print(preview_df(clinical_df))
87
+
88
+ # Save clinical features
89
+ clinical_df.to_csv(out_clinical_data_file)
90
+ # Extract gene expression data from matrix file
91
+ genetic_df = get_genetic_data(matrix_file)
92
+
93
+ # Print DataFrame shape and first 20 row IDs
94
+ print("DataFrame shape:", genetic_df.shape)
95
+ print("\nFirst 20 row IDs:")
96
+ print(genetic_df.index[:20])
97
+
98
+ print("\nPreview of first few rows and columns:")
99
+ print(genetic_df.head().iloc[:, :5])
100
+ # Gene probe identifier pattern suggests they are not gene symbols
101
+ # The identifiers are numeric values in the format 7XXXXXX, which appear to be Illumina probe IDs
102
+ # We will need to perform identifier mapping
103
+ requires_gene_mapping = True
104
+ # Extract gene annotation data, excluding control probe lines
105
+ gene_metadata = get_gene_annotation(soft_file)
106
+
107
+ # Preview filtered annotation data
108
+ print("Column names:")
109
+ print(gene_metadata.columns)
110
+ print("\nPreview of gene annotation data:")
111
+ print(preview_df(gene_metadata))
112
+ # 1. Identify columns for mapping
113
+ # 'ID' column in gene_metadata contains probe IDs matching genetic_df index
114
+ # 'gene_assignment' column contains gene symbols in the format "NM_XXX // GENESYMBOL // description"
115
+
116
+ # 2. Get mapping dataframe by extracting probe IDs and gene symbols
117
+ # Use text extraction to get gene symbols from gene_assignment strings
118
+ mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='gene_assignment')
119
+
120
+ # 3. Apply mapping to convert probe data to gene expression data
121
+ gene_data = apply_gene_mapping(genetic_df, mapping_df)
122
+
123
+ # Print info about the mapping result
124
+ print(f"Original probe data shape: {genetic_df.shape}")
125
+ print(f"Gene expression data shape: {gene_data.shape}")
126
+ print("\nPreview of gene expression data:")
127
+ print(gene_data.head().iloc[:, :5])
128
+ # 1. Normalize gene symbols and save
129
+ gene_data = normalize_gene_symbols_in_index(gene_data)
130
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
131
+ gene_data.to_csv(out_gene_data_file)
132
+
133
+ # 2. Link clinical and genetic data
134
+ linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
135
+
136
+ # 3. Handle missing values
137
+ linked_data = handle_missing_values(linked_data, trait)
138
+
139
+ # 4. Check for biased features
140
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
141
+
142
+ # 5. Final validation and metadata saving
143
+ is_usable = validate_and_save_cohort_info(
144
+ is_final=True,
145
+ cohort=cohort,
146
+ info_path=json_path,
147
+ is_gene_available=is_gene_available,
148
+ is_trait_available=True,
149
+ is_biased=trait_biased,
150
+ df=linked_data,
151
+ note="Dataset contains gene expression data from blood samples used to study chronic fatigue syndrome"
152
+ )
153
+
154
+ # 6. Save linked data if usable
155
+ if is_usable:
156
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
157
+ linked_data.to_csv(out_data_file)
p3/preprocess/Chronic_Fatigue_Syndrome/code/TCGA.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Chronic_Fatigue_Syndrome"
6
+
7
+ # Input paths
8
+ tcga_root_dir = "../DATA/TCGA"
9
+
10
+ # Output paths
11
+ out_data_file = "./output/preprocess/3/Chronic_Fatigue_Syndrome/TCGA.csv"
12
+ out_gene_data_file = "./output/preprocess/3/Chronic_Fatigue_Syndrome/gene_data/TCGA.csv"
13
+ out_clinical_data_file = "./output/preprocess/3/Chronic_Fatigue_Syndrome/clinical_data/TCGA.csv"
14
+ json_path = "./output/preprocess/3/Chronic_Fatigue_Syndrome/cohort_info.json"
15
+
16
+ # Check available directories
17
+ available_dirs = os.listdir(tcga_root_dir)
18
+ available_dirs = [d for d in available_dirs if not d.startswith('.') and not d.endswith('.ipynb')]
19
+
20
+ # For cardiovascular disease, there is no directly matching cohort in TCGA
21
+ # Mark the trait as not available and exit
22
+ is_usable = validate_and_save_cohort_info(
23
+ is_final=False,
24
+ cohort="TCGA",
25
+ info_path=json_path,
26
+ is_gene_available=False,
27
+ is_trait_available=False
28
+ )
29
+
30
+ raise ValueError(f"No suitable TCGA cohort found for {trait}")