Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +40 -0
- p3/preprocess/Anxiety_disorder/gene_data/GSE119995.csv +3 -0
- p3/preprocess/Anxiety_disorder/gene_data/GSE61672.csv +3 -0
- p3/preprocess/Anxiety_disorder/gene_data/GSE68526.csv +3 -0
- p3/preprocess/Arrhythmia/GSE182600.csv +3 -0
- p3/preprocess/Arrhythmia/GSE235307.csv +3 -0
- p3/preprocess/Arrhythmia/gene_data/GSE115574.csv +3 -0
- p3/preprocess/Arrhythmia/gene_data/GSE136992.csv +3 -0
- p3/preprocess/Arrhythmia/gene_data/GSE182600.csv +3 -0
- p3/preprocess/Arrhythmia/gene_data/GSE235307.csv +3 -0
- p3/preprocess/Arrhythmia/gene_data/GSE47727.csv +3 -0
- p3/preprocess/Arrhythmia/gene_data/GSE55231.csv +3 -0
- p3/preprocess/Asthma/GSE182797.csv +3 -0
- p3/preprocess/Asthma/GSE182798.csv +3 -0
- p3/preprocess/Asthma/GSE185658.csv +3 -0
- p3/preprocess/Asthma/GSE270312.csv +0 -0
- p3/preprocess/Asthma/code/GSE123086.py +240 -0
- p3/preprocess/Asthma/code/GSE123088.py +283 -0
- p3/preprocess/Asthma/code/GSE182797.py +185 -0
- p3/preprocess/Asthma/code/GSE182798.py +178 -0
- p3/preprocess/Asthma/code/GSE184382.py +66 -0
- p3/preprocess/Asthma/code/GSE185658.py +174 -0
- p3/preprocess/Asthma/code/GSE188424.py +146 -0
- p3/preprocess/Asthma/code/GSE205151.py +153 -0
- p3/preprocess/Asthma/code/GSE230164.py +144 -0
- p3/preprocess/Asthma/code/GSE270312.py +149 -0
- p3/preprocess/Asthma/code/TCGA.py +34 -0
- p3/preprocess/Asthma/gene_data/GSE123086.csv +1 -0
- p3/preprocess/Asthma/gene_data/GSE123088.csv +1 -0
- p3/preprocess/Asthma/gene_data/GSE182797.csv +3 -0
- p3/preprocess/Asthma/gene_data/GSE182798.csv +3 -0
- p3/preprocess/Asthma/gene_data/GSE185658.csv +3 -0
- p3/preprocess/Asthma/gene_data/GSE188424.csv +3 -0
- p3/preprocess/Asthma/gene_data/GSE205151.csv +0 -0
- p3/preprocess/Asthma/gene_data/GSE230164.csv +3 -0
- p3/preprocess/Asthma/gene_data/GSE270312.csv +0 -0
- p3/preprocess/Atrial_Fibrillation/GSE115574.csv +3 -0
- p3/preprocess/Atrial_Fibrillation/GSE143924.csv +0 -0
- p3/preprocess/Atrial_Fibrillation/GSE235307.csv +3 -0
- p3/preprocess/Atrial_Fibrillation/GSE41177.csv +0 -0
- p3/preprocess/Atrial_Fibrillation/clinical_data/GSE115574.csv +2 -0
- p3/preprocess/Atrial_Fibrillation/clinical_data/GSE143924.csv +2 -0
- p3/preprocess/Atrial_Fibrillation/clinical_data/GSE235307.csv +4 -0
- p3/preprocess/Atrial_Fibrillation/clinical_data/GSE41177.csv +4 -0
- p3/preprocess/Atrial_Fibrillation/clinical_data/GSE47727.csv +4 -0
- p3/preprocess/Atrial_Fibrillation/code/GSE115574.py +150 -0
- p3/preprocess/Atrial_Fibrillation/code/GSE143924.py +133 -0
- p3/preprocess/Atrial_Fibrillation/code/GSE235307.py +169 -0
- p3/preprocess/Atrial_Fibrillation/code/GSE41177.py +152 -0
- p3/preprocess/Atrial_Fibrillation/code/GSE47727.py +97 -0
.gitattributes
CHANGED
@@ -1477,3 +1477,43 @@ p3/preprocess/Anxiety_disorder/gene_data/GSE94119.csv filter=lfs diff=lfs merge=
|
|
1477 |
p3/preprocess/Arrhythmia/GSE136992.csv filter=lfs diff=lfs merge=lfs -text
|
1478 |
p3/preprocess/Arrhythmia/GSE115574.csv filter=lfs diff=lfs merge=lfs -text
|
1479 |
p3/preprocess/Anxiety_disorder/gene_data/GSE60491.csv filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1477 |
p3/preprocess/Arrhythmia/GSE136992.csv filter=lfs diff=lfs merge=lfs -text
|
1478 |
p3/preprocess/Arrhythmia/GSE115574.csv filter=lfs diff=lfs merge=lfs -text
|
1479 |
p3/preprocess/Anxiety_disorder/gene_data/GSE60491.csv filter=lfs diff=lfs merge=lfs -text
|
1480 |
+
p3/preprocess/Anxiety_disorder/gene_data/GSE119995.csv filter=lfs diff=lfs merge=lfs -text
|
1481 |
+
p3/preprocess/Arrhythmia/GSE182600.csv filter=lfs diff=lfs merge=lfs -text
|
1482 |
+
p3/preprocess/Anxiety_disorder/gene_data/GSE68526.csv filter=lfs diff=lfs merge=lfs -text
|
1483 |
+
p3/preprocess/Arrhythmia/gene_data/GSE115574.csv filter=lfs diff=lfs merge=lfs -text
|
1484 |
+
p3/preprocess/Arrhythmia/GSE235307.csv filter=lfs diff=lfs merge=lfs -text
|
1485 |
+
p3/preprocess/Asthma/GSE182797.csv filter=lfs diff=lfs merge=lfs -text
|
1486 |
+
p3/preprocess/Anxiety_disorder/gene_data/GSE61672.csv filter=lfs diff=lfs merge=lfs -text
|
1487 |
+
p3/preprocess/Arrhythmia/gene_data/GSE136992.csv filter=lfs diff=lfs merge=lfs -text
|
1488 |
+
p3/preprocess/Arrhythmia/gene_data/GSE182600.csv filter=lfs diff=lfs merge=lfs -text
|
1489 |
+
p3/preprocess/Asthma/GSE185658.csv filter=lfs diff=lfs merge=lfs -text
|
1490 |
+
p3/preprocess/Arrhythmia/gene_data/GSE47727.csv filter=lfs diff=lfs merge=lfs -text
|
1491 |
+
p3/preprocess/Asthma/GSE182798.csv filter=lfs diff=lfs merge=lfs -text
|
1492 |
+
p3/preprocess/Arrhythmia/gene_data/GSE235307.csv filter=lfs diff=lfs merge=lfs -text
|
1493 |
+
p3/preprocess/Asthma/gene_data/GSE182797.csv filter=lfs diff=lfs merge=lfs -text
|
1494 |
+
p3/preprocess/Arrhythmia/gene_data/GSE55231.csv filter=lfs diff=lfs merge=lfs -text
|
1495 |
+
p3/preprocess/Asthma/gene_data/GSE185658.csv filter=lfs diff=lfs merge=lfs -text
|
1496 |
+
p3/preprocess/Atrial_Fibrillation/GSE115574.csv filter=lfs diff=lfs merge=lfs -text
|
1497 |
+
p3/preprocess/Asthma/gene_data/GSE188424.csv filter=lfs diff=lfs merge=lfs -text
|
1498 |
+
p3/preprocess/Autism_spectrum_disorder_(ASD)/GSE285666.csv filter=lfs diff=lfs merge=lfs -text
|
1499 |
+
p3/preprocess/Asthma/gene_data/GSE230164.csv filter=lfs diff=lfs merge=lfs -text
|
1500 |
+
p3/preprocess/Asthma/gene_data/GSE182798.csv filter=lfs diff=lfs merge=lfs -text
|
1501 |
+
p3/preprocess/Atrial_Fibrillation/GSE235307.csv filter=lfs diff=lfs merge=lfs -text
|
1502 |
+
p3/preprocess/Atrial_Fibrillation/gene_data/GSE115574.csv filter=lfs diff=lfs merge=lfs -text
|
1503 |
+
p3/preprocess/Autism_spectrum_disorder_(ASD)/GSE57802.csv filter=lfs diff=lfs merge=lfs -text
|
1504 |
+
p3/preprocess/Autism_spectrum_disorder_(ASD)/GSE89594.csv filter=lfs diff=lfs merge=lfs -text
|
1505 |
+
p3/preprocess/Autism_spectrum_disorder_(ASD)/GSE87847.csv filter=lfs diff=lfs merge=lfs -text
|
1506 |
+
p3/preprocess/Autism_spectrum_disorder_(ASD)/GSE65106.csv filter=lfs diff=lfs merge=lfs -text
|
1507 |
+
p3/preprocess/Autism_spectrum_disorder_(ASD)/GSE111175.csv filter=lfs diff=lfs merge=lfs -text
|
1508 |
+
p3/preprocess/Atrial_Fibrillation/gene_data/GSE235307.csv filter=lfs diff=lfs merge=lfs -text
|
1509 |
+
p3/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE285666.csv filter=lfs diff=lfs merge=lfs -text
|
1510 |
+
p3/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE57802.csv filter=lfs diff=lfs merge=lfs -text
|
1511 |
+
p3/preprocess/Autism_spectrum_disorder_(ASD)/GSE42133.csv filter=lfs diff=lfs merge=lfs -text
|
1512 |
+
p3/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE87847.csv filter=lfs diff=lfs merge=lfs -text
|
1513 |
+
p3/preprocess/Bile_Duct_Cancer/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1514 |
+
p3/preprocess/Autoinflammatory_Disorders/gene_data/GSE43553.csv filter=lfs diff=lfs merge=lfs -text
|
1515 |
+
p3/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE89594.csv filter=lfs diff=lfs merge=lfs -text
|
1516 |
+
p3/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE111175.csv filter=lfs diff=lfs merge=lfs -text
|
1517 |
+
p3/preprocess/Autism_spectrum_disorder_(ASD)/GSE148450.csv filter=lfs diff=lfs merge=lfs -text
|
1518 |
+
p3/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE65106.csv filter=lfs diff=lfs merge=lfs -text
|
1519 |
+
p3/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE42133.csv filter=lfs diff=lfs merge=lfs -text
|
p3/preprocess/Anxiety_disorder/gene_data/GSE119995.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d983eb4554c44401d90639f27d35921438e6834763bb95f6e41c2857edb80d0
|
3 |
+
size 24675188
|
p3/preprocess/Anxiety_disorder/gene_data/GSE61672.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc3ec7db3721c2df4aee7f88f4d34dde6e8caea3f63df7c671a696f04352165c
|
3 |
+
size 33639737
|
p3/preprocess/Anxiety_disorder/gene_data/GSE68526.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c2c9a9241160207e9a394dbaaf17432cb8e0496dc65b91c7cf71a6086944bb8d
|
3 |
+
size 22640965
|
p3/preprocess/Arrhythmia/GSE182600.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e3028b35f41eec7560aae712dba747f1265e5c43f2c731c30dc0f67f9ef771f1
|
3 |
+
size 26036063
|
p3/preprocess/Arrhythmia/GSE235307.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2cf113791094ff855418534fa67eb3c91e47e904abdceb7c4c9cfa1210f5453a
|
3 |
+
size 30127837
|
p3/preprocess/Arrhythmia/gene_data/GSE115574.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:456a00d22351d374c6e573fb5f8cd9aee06d8e578a5597254ec39e90ed25195d
|
3 |
+
size 15534388
|
p3/preprocess/Arrhythmia/gene_data/GSE136992.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ed81b86668c87698a45486ae46c9cf45f0ddb2f1f27a6dc91aef2b9c912199a4
|
3 |
+
size 15435596
|
p3/preprocess/Arrhythmia/gene_data/GSE182600.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ab10642973a2c6ae075b4608278a038bc9bf2ff5fa8d444a21b081ea4467056
|
3 |
+
size 26035031
|
p3/preprocess/Arrhythmia/gene_data/GSE235307.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d40bfec5aee125dd279e5a4a5b658d3b8c0ce73e2f05846a13e621756e1927e
|
3 |
+
size 30126272
|
p3/preprocess/Arrhythmia/gene_data/GSE47727.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3911e4ca8b0d9286bd33dfe6347f7ca16dd00f295d016d279eaaebc43067913c
|
3 |
+
size 28462595
|
p3/preprocess/Arrhythmia/gene_data/GSE55231.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b05c392547040100a06721962e4878fff3bdc6f2c40aa5be3c134f076694bae6
|
3 |
+
size 33169173
|
p3/preprocess/Asthma/GSE182797.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:10310e4a264b00ba4b02c68bacddfd0ae248d72dde5d36e0e313fbad6870af47
|
3 |
+
size 10668389
|
p3/preprocess/Asthma/GSE182798.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4c719f379a878f7a60438885fda54bd1243bb460efddd5941a5caff4ad0ac96
|
3 |
+
size 23669788
|
p3/preprocess/Asthma/GSE185658.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a0f4701bf03a9cb4bbdea1cd852e582f02750f21cbe77b82919965ff92d85b6
|
3 |
+
size 18243246
|
p3/preprocess/Asthma/GSE270312.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Asthma/code/GSE123086.py
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Asthma"
|
6 |
+
cohort = "GSE123086"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Asthma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Asthma/GSE123086"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Asthma/GSE123086.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Asthma/gene_data/GSE123086.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Asthma/clinical_data/GSE123086.csv"
|
16 |
+
json_path = "./output/preprocess/3/Asthma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Yes, this dataset contains gene expression data from CD4+ T cells using microarray
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2.1 Data Availability
|
41 |
+
# Trait is in Feature 1 (primary diagnosis), values include ASTHMA and others
|
42 |
+
trait_row = 1
|
43 |
+
|
44 |
+
# Gender is in Feature 2 and 3 (Sex appears in both)
|
45 |
+
gender_row = 2
|
46 |
+
|
47 |
+
# Age appears in Features 3 and 4
|
48 |
+
age_row = 3
|
49 |
+
|
50 |
+
# 2.2 Data Type Conversion Functions
|
51 |
+
|
52 |
+
def convert_trait(value: str) -> int:
|
53 |
+
"""Convert trait values to binary (0 for control, 1 for case)"""
|
54 |
+
if not isinstance(value, str):
|
55 |
+
return None
|
56 |
+
value = value.split(': ')[-1].upper()
|
57 |
+
if 'ASTHMA' in value:
|
58 |
+
return 1
|
59 |
+
elif value == 'HEALTHY_CONTROL':
|
60 |
+
return 0
|
61 |
+
return None
|
62 |
+
|
63 |
+
def convert_age(value: str) -> float:
|
64 |
+
"""Convert age values to continuous numeric"""
|
65 |
+
if not isinstance(value, str):
|
66 |
+
return None
|
67 |
+
if not value.startswith('age: '):
|
68 |
+
return None
|
69 |
+
try:
|
70 |
+
return float(value.split(': ')[-1])
|
71 |
+
except:
|
72 |
+
return None
|
73 |
+
|
74 |
+
def convert_gender(value: str) -> int:
|
75 |
+
"""Convert gender values to binary (0 for female, 1 for male)"""
|
76 |
+
if not isinstance(value, str):
|
77 |
+
return None
|
78 |
+
if not value.startswith('Sex: '):
|
79 |
+
return None
|
80 |
+
value = value.split(': ')[-1].upper()
|
81 |
+
if value == 'FEMALE':
|
82 |
+
return 0
|
83 |
+
elif value == 'MALE':
|
84 |
+
return 1
|
85 |
+
return None
|
86 |
+
|
87 |
+
# 3. Save Metadata
|
88 |
+
is_trait_available = trait_row is not None
|
89 |
+
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
|
90 |
+
is_gene_available=is_gene_available,
|
91 |
+
is_trait_available=is_trait_available)
|
92 |
+
|
93 |
+
# 4. Clinical Feature Extraction
|
94 |
+
if trait_row is not None:
|
95 |
+
clinical_features = geo_select_clinical_features(
|
96 |
+
clinical_df=clinical_data,
|
97 |
+
trait=trait,
|
98 |
+
trait_row=trait_row,
|
99 |
+
convert_trait=convert_trait,
|
100 |
+
age_row=age_row,
|
101 |
+
convert_age=convert_age,
|
102 |
+
gender_row=gender_row,
|
103 |
+
convert_gender=convert_gender
|
104 |
+
)
|
105 |
+
|
106 |
+
print("Preview of extracted clinical features:")
|
107 |
+
print(preview_df(clinical_features))
|
108 |
+
|
109 |
+
# Save clinical features
|
110 |
+
clinical_features.to_csv(out_clinical_data_file)
|
111 |
+
# Get file paths
|
112 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
113 |
+
|
114 |
+
# Extract gene expression data from matrix file
|
115 |
+
gene_data = get_genetic_data(matrix_file)
|
116 |
+
|
117 |
+
# Print first 20 row IDs and shape of data to help debug
|
118 |
+
print("Shape of gene expression data:", gene_data.shape)
|
119 |
+
print("\nFirst few rows of data:")
|
120 |
+
print(gene_data.head())
|
121 |
+
print("\nFirst 20 gene/probe identifiers:")
|
122 |
+
print(gene_data.index[:20])
|
123 |
+
|
124 |
+
# Inspect a snippet of raw file to verify identifier format
|
125 |
+
import gzip
|
126 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
127 |
+
lines = []
|
128 |
+
for i, line in enumerate(f):
|
129 |
+
if "!series_matrix_table_begin" in line:
|
130 |
+
# Get the next 5 lines after the marker
|
131 |
+
for _ in range(5):
|
132 |
+
lines.append(next(f).strip())
|
133 |
+
break
|
134 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
135 |
+
for line in lines:
|
136 |
+
print(line)
|
137 |
+
requires_gene_mapping = True
|
138 |
+
# Get file paths
|
139 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
140 |
+
|
141 |
+
# Extract gene annotation from SOFT file
|
142 |
+
gene_annotation = get_gene_annotation(soft_file)
|
143 |
+
|
144 |
+
# Preview annotation dataframe structure
|
145 |
+
print("Gene Annotation Preview:")
|
146 |
+
print("Column names:", gene_annotation.columns.tolist())
|
147 |
+
print("\nFirst few rows as dictionary:")
|
148 |
+
print(preview_df(gene_annotation))
|
149 |
+
# The IDs in gene annotation correspond to the row IDs in gene expression data
|
150 |
+
# The ENTREZ_GENE_ID contains IDs that we first map to
|
151 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='ENTREZ_GENE_ID')
|
152 |
+
|
153 |
+
# Apply the mapping to convert probe expression to gene expression
|
154 |
+
entrez_data = apply_gene_mapping(gene_data, mapping_df)
|
155 |
+
|
156 |
+
# Convert Entrez IDs to gene symbols using NCBI synonym database
|
157 |
+
gene_data = normalize_gene_symbols_in_index(entrez_data)
|
158 |
+
|
159 |
+
# Save the gene expression data
|
160 |
+
gene_data.to_csv(out_gene_data_file)
|
161 |
+
# Load previously saved data
|
162 |
+
gene_data = pd.read_csv(out_gene_data_file, index_col=0)
|
163 |
+
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
|
164 |
+
|
165 |
+
# Inspect data alignment
|
166 |
+
print("Clinical data shape:", clinical_data.shape)
|
167 |
+
print("Gene data shape:", gene_data.shape)
|
168 |
+
print("Clinical data columns:", clinical_data.columns[:5])
|
169 |
+
print("Gene data columns:", gene_data.columns[:5])
|
170 |
+
|
171 |
+
# Transpose data to get samples in rows, genes in columns
|
172 |
+
clinical_data = clinical_data.T
|
173 |
+
gene_data = gene_data.T
|
174 |
+
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
|
175 |
+
|
176 |
+
# 3. Handle missing values
|
177 |
+
linked_data = handle_missing_values(linked_data, 'Asthma')
|
178 |
+
|
179 |
+
# 4. Evaluate bias
|
180 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, 'Asthma')
|
181 |
+
|
182 |
+
# 5. Validate and save cohort info
|
183 |
+
is_usable = validate_and_save_cohort_info(
|
184 |
+
is_final=True,
|
185 |
+
cohort=cohort,
|
186 |
+
info_path=json_path,
|
187 |
+
is_gene_available=True,
|
188 |
+
is_trait_available=True,
|
189 |
+
is_biased=is_biased,
|
190 |
+
df=linked_data,
|
191 |
+
note="Dataset contains gene expression data from CD4+ T cells comparing asthma patients with healthy controls."
|
192 |
+
)
|
193 |
+
|
194 |
+
# 6. Save linked data if usable
|
195 |
+
if is_usable:
|
196 |
+
linked_data.to_csv(out_data_file)
|
197 |
+
# Load previously saved data
|
198 |
+
gene_data = pd.read_csv(out_gene_data_file, index_col=0)
|
199 |
+
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
|
200 |
+
|
201 |
+
# Verify data validity
|
202 |
+
if gene_data.empty:
|
203 |
+
print("Gene expression data is empty. Previous preprocessing steps likely failed.")
|
204 |
+
is_gene_available = False
|
205 |
+
is_trait_available = True
|
206 |
+
validate_and_save_cohort_info(
|
207 |
+
is_final=True,
|
208 |
+
cohort=cohort,
|
209 |
+
info_path=json_path,
|
210 |
+
is_gene_available=is_gene_available,
|
211 |
+
is_trait_available=is_trait_available,
|
212 |
+
is_biased=False, # Set a definite value
|
213 |
+
df=clinical_data, # Provide the clinical data
|
214 |
+
note="Gene expression data processing failed, resulting in empty data."
|
215 |
+
)
|
216 |
+
else:
|
217 |
+
# Link clinical and genetic data
|
218 |
+
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
|
219 |
+
|
220 |
+
# Handle missing values
|
221 |
+
linked_data = handle_missing_values(linked_data, trait)
|
222 |
+
|
223 |
+
# Evaluate bias
|
224 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
225 |
+
|
226 |
+
# Validate and save cohort info
|
227 |
+
is_usable = validate_and_save_cohort_info(
|
228 |
+
is_final=True,
|
229 |
+
cohort=cohort,
|
230 |
+
info_path=json_path,
|
231 |
+
is_gene_available=True,
|
232 |
+
is_trait_available=True,
|
233 |
+
is_biased=is_biased,
|
234 |
+
df=linked_data,
|
235 |
+
note="Dataset contains gene expression data from CD4+ T cells comparing asthma patients with healthy controls."
|
236 |
+
)
|
237 |
+
|
238 |
+
# Save linked data if usable
|
239 |
+
if is_usable:
|
240 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Asthma/code/GSE123088.py
ADDED
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Asthma"
|
6 |
+
cohort = "GSE123088"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Asthma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Asthma/GSE123088"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Asthma/GSE123088.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Asthma/gene_data/GSE123088.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Asthma/clinical_data/GSE123088.csv"
|
16 |
+
json_path = "./output/preprocess/3/Asthma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# CD4+ T cells data likely contains gene expression, not just miRNA or methylation
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2. Variable Availability and Data Type Conversion
|
41 |
+
# 2.1 Data Availability
|
42 |
+
trait_row = 1 # 'primary diagnosis' contains trait info
|
43 |
+
age_row = 3 # 'age' data starts at feature 3 and continues in feature 4
|
44 |
+
gender_row = 2 # 'Sex' info is in feature 2
|
45 |
+
|
46 |
+
# 2.2 Data Type Conversion Functions
|
47 |
+
def convert_trait(value):
|
48 |
+
if pd.isna(value):
|
49 |
+
return None
|
50 |
+
value = value.split(': ')[1]
|
51 |
+
# Convert values to binary (0: control, 1: asthma)
|
52 |
+
if value in ['HEALTHY_CONTROL', 'Control']:
|
53 |
+
return 0
|
54 |
+
elif value in ['ASTHMA']:
|
55 |
+
return 1
|
56 |
+
return None
|
57 |
+
|
58 |
+
def convert_age(value):
|
59 |
+
if pd.isna(value):
|
60 |
+
return None
|
61 |
+
try:
|
62 |
+
# Extract numeric age value after colon
|
63 |
+
age = int(value.split(': ')[1])
|
64 |
+
return age
|
65 |
+
except:
|
66 |
+
return None
|
67 |
+
|
68 |
+
def convert_gender(value):
|
69 |
+
if pd.isna(value):
|
70 |
+
return None
|
71 |
+
if not value.startswith('Sex:'):
|
72 |
+
return None
|
73 |
+
value = value.split(': ')[1]
|
74 |
+
# Convert to binary (0: female, 1: male)
|
75 |
+
if value.upper() == 'FEMALE':
|
76 |
+
return 0
|
77 |
+
elif value.upper() == 'MALE':
|
78 |
+
return 1
|
79 |
+
return None
|
80 |
+
|
81 |
+
# 3. Save Metadata
|
82 |
+
validate_and_save_cohort_info(
|
83 |
+
is_final=False,
|
84 |
+
cohort=cohort,
|
85 |
+
info_path=json_path,
|
86 |
+
is_gene_available=is_gene_available,
|
87 |
+
is_trait_available=trait_row is not None
|
88 |
+
)
|
89 |
+
|
90 |
+
# 4. Clinical Feature Extraction
|
91 |
+
if trait_row is not None:
|
92 |
+
selected_clinical = geo_select_clinical_features(
|
93 |
+
clinical_df=clinical_data,
|
94 |
+
trait=trait,
|
95 |
+
trait_row=trait_row,
|
96 |
+
convert_trait=convert_trait,
|
97 |
+
age_row=age_row,
|
98 |
+
convert_age=convert_age,
|
99 |
+
gender_row=gender_row,
|
100 |
+
convert_gender=convert_gender
|
101 |
+
)
|
102 |
+
|
103 |
+
# Preview the processed clinical data
|
104 |
+
preview = preview_df(selected_clinical)
|
105 |
+
print("Preview of processed clinical data:")
|
106 |
+
print(preview)
|
107 |
+
|
108 |
+
# Save to CSV
|
109 |
+
selected_clinical.to_csv(out_clinical_data_file)
|
110 |
+
# Get file paths
|
111 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
112 |
+
|
113 |
+
# Extract gene expression data from matrix file
|
114 |
+
gene_data = get_genetic_data(matrix_file)
|
115 |
+
|
116 |
+
# Print first 20 row IDs and shape of data to help debug
|
117 |
+
print("Shape of gene expression data:", gene_data.shape)
|
118 |
+
print("\nFirst few rows of data:")
|
119 |
+
print(gene_data.head())
|
120 |
+
print("\nFirst 20 gene/probe identifiers:")
|
121 |
+
print(gene_data.index[:20])
|
122 |
+
|
123 |
+
# Inspect a snippet of raw file to verify identifier format
|
124 |
+
import gzip
|
125 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
126 |
+
lines = []
|
127 |
+
for i, line in enumerate(f):
|
128 |
+
if "!series_matrix_table_begin" in line:
|
129 |
+
# Get the next 5 lines after the marker
|
130 |
+
for _ in range(5):
|
131 |
+
lines.append(next(f).strip())
|
132 |
+
break
|
133 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
134 |
+
for line in lines:
|
135 |
+
print(line)
|
136 |
+
# The identifiers appear to be numeric IDs from 1-24166
|
137 |
+
# These are not gene symbols and will need mapping
|
138 |
+
requires_gene_mapping = True
|
139 |
+
# Get file paths
|
140 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
141 |
+
|
142 |
+
# Extract platform info from SOFT file line by line
|
143 |
+
import gzip
|
144 |
+
import re
|
145 |
+
platform_lines = []
|
146 |
+
gene_symbol_lines = []
|
147 |
+
with gzip.open(soft_file, 'rt') as f:
|
148 |
+
in_platform_block = False
|
149 |
+
for line in f:
|
150 |
+
if line.startswith('!Platform_'):
|
151 |
+
platform_lines.append(line.strip())
|
152 |
+
if 'table_begin' in line:
|
153 |
+
in_platform_block = True
|
154 |
+
# Skip header line
|
155 |
+
next(f)
|
156 |
+
continue
|
157 |
+
elif 'table_end' in line:
|
158 |
+
in_platform_block = False
|
159 |
+
continue
|
160 |
+
elif in_platform_block:
|
161 |
+
gene_symbol_lines.append(line.strip())
|
162 |
+
|
163 |
+
# Parse platform annotation table
|
164 |
+
import pandas as pd
|
165 |
+
import io
|
166 |
+
|
167 |
+
platform_table = pd.read_csv(io.StringIO('\n'.join(gene_symbol_lines)), sep='\t')
|
168 |
+
|
169 |
+
# Preview annotation data
|
170 |
+
print("Platform Information:")
|
171 |
+
for line in platform_lines[:5]:
|
172 |
+
print(line)
|
173 |
+
|
174 |
+
print("\nPlatform Annotation Table Preview:")
|
175 |
+
print("Column names:", platform_table.columns.tolist())
|
176 |
+
print("\nFirst few rows:")
|
177 |
+
print(preview_df(platform_table))
|
178 |
+
# Get file paths
|
179 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
180 |
+
|
181 |
+
# Look through entire SOFT file for gene symbol information
|
182 |
+
import gzip
|
183 |
+
platform_lines = []
|
184 |
+
gene_table_lines = []
|
185 |
+
with gzip.open(soft_file, 'rt') as f:
|
186 |
+
in_gene_table = False
|
187 |
+
table_found = False
|
188 |
+
for line in f:
|
189 |
+
# Keep track of platform lines for debugging
|
190 |
+
if line.startswith('!Platform_'):
|
191 |
+
platform_lines.append(line.strip())
|
192 |
+
if 'table_begin' in line:
|
193 |
+
in_gene_table = True
|
194 |
+
# Get header line
|
195 |
+
header = next(f).strip()
|
196 |
+
gene_table_lines.append(header)
|
197 |
+
continue
|
198 |
+
elif 'table_end' in line:
|
199 |
+
in_gene_table = False
|
200 |
+
elif in_gene_table and ('gene_symbol' in line.lower() or 'gene_name' in line.lower() or
|
201 |
+
'symbol' in line.lower() or 'gene_assignment' in line.lower()):
|
202 |
+
table_found = True
|
203 |
+
gene_table_lines.append(line.strip())
|
204 |
+
|
205 |
+
print("Platform information:")
|
206 |
+
for line in platform_lines[:10]:
|
207 |
+
print(line)
|
208 |
+
|
209 |
+
print("\nFirst few gene table lines (if gene symbols found):")
|
210 |
+
if gene_table_lines:
|
211 |
+
for line in gene_table_lines[:5]:
|
212 |
+
print(line)
|
213 |
+
|
214 |
+
print("\nSearching for alternative annotation fields...")
|
215 |
+
# Extract gene annotation trying both methods
|
216 |
+
gene_annotation = get_gene_annotation(soft_file)
|
217 |
+
|
218 |
+
# Preview annotation dataframe structure
|
219 |
+
print("\nGene Annotation Preview:")
|
220 |
+
print("Column names:", gene_annotation.columns.tolist())
|
221 |
+
print("\nFirst few rows as dictionary (showing all columns):")
|
222 |
+
pd.set_option('display.max_columns', None)
|
223 |
+
print(gene_annotation.head().to_dict('records'))
|
224 |
+
# Create mapping dataframe using platform's annotation
|
225 |
+
mapping_data = gene_annotation.loc[:, ['ID', 'ENTREZ_GENE_ID']].dropna()
|
226 |
+
|
227 |
+
# Create a list of genes for the Gene column, single gene ID per row
|
228 |
+
mapping_data['Gene'] = mapping_data['ENTREZ_GENE_ID'].map(lambda x: [str(int(float(x)))] if pd.notnull(x) and float(x) > 0 else [])
|
229 |
+
mapping_data = mapping_data.drop(columns=['ENTREZ_GENE_ID'])
|
230 |
+
|
231 |
+
# Apply gene mapping to transform probe-level data to gene-level data
|
232 |
+
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_data)
|
233 |
+
|
234 |
+
# Normalize gene symbols to consistent format
|
235 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
236 |
+
|
237 |
+
# Save gene expression data
|
238 |
+
gene_data.to_csv(out_gene_data_file)
|
239 |
+
# Get file paths and read data
|
240 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
241 |
+
|
242 |
+
# Get gene annotation and expression data
|
243 |
+
gene_annotation = get_gene_annotation(soft_file)
|
244 |
+
gene_data = get_genetic_data(matrix_file)
|
245 |
+
|
246 |
+
# Clean and create mapping dataframe
|
247 |
+
gene_annotation = gene_annotation[gene_annotation['ENTREZ_GENE_ID'].str.isnumeric().fillna(False)]
|
248 |
+
mapping_data = gene_annotation.loc[:, ['ID', 'ENTREZ_GENE_ID']].dropna()
|
249 |
+
mapping_data['Gene'] = mapping_data['ENTREZ_GENE_ID'].map(lambda x: [str(int(float(x)))] if pd.notnull(x) and float(x) > 0 else [])
|
250 |
+
mapping_data = mapping_data.drop(columns=['ENTREZ_GENE_ID'])
|
251 |
+
|
252 |
+
# Apply gene mapping to transform probe-level data to gene-level data
|
253 |
+
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_data)
|
254 |
+
|
255 |
+
# Normalize gene symbols
|
256 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
257 |
+
gene_data.to_csv(out_gene_data_file)
|
258 |
+
|
259 |
+
# Link clinical and genetic data
|
260 |
+
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
|
261 |
+
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
|
262 |
+
|
263 |
+
# Handle missing values
|
264 |
+
linked_data = handle_missing_values(linked_data, trait)
|
265 |
+
|
266 |
+
# Evaluate bias
|
267 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
268 |
+
|
269 |
+
# Validate and save cohort info
|
270 |
+
is_usable = validate_and_save_cohort_info(
|
271 |
+
is_final=True,
|
272 |
+
cohort=cohort,
|
273 |
+
info_path=json_path,
|
274 |
+
is_gene_available=True,
|
275 |
+
is_trait_available=True,
|
276 |
+
is_biased=is_biased,
|
277 |
+
df=linked_data,
|
278 |
+
note="Dataset contains gene expression data from CD4+ T cells."
|
279 |
+
)
|
280 |
+
|
281 |
+
# Save linked data if usable
|
282 |
+
if is_usable:
|
283 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Asthma/code/GSE182797.py
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Asthma"
|
6 |
+
cohort = "GSE182797"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Asthma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Asthma/GSE182797"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Asthma/GSE182797.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Asthma/gene_data/GSE182797.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Asthma/clinical_data/GSE182797.csv"
|
16 |
+
json_path = "./output/preprocess/3/Asthma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Based on series title and overall design, this dataset contains transcriptomic data from nasal biopsies
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2.1 Data Availability
|
41 |
+
# trait data is in Feature 0 (diagnosis)
|
42 |
+
trait_row = 0
|
43 |
+
|
44 |
+
# gender data is in Feature 1 but only contains females
|
45 |
+
gender_row = None # Not useful since all subjects are female
|
46 |
+
|
47 |
+
# age data is in Feature 2
|
48 |
+
age_row = 2
|
49 |
+
|
50 |
+
# 2.2 Data Type Conversion Functions
|
51 |
+
def convert_trait(x):
|
52 |
+
if not isinstance(x, str):
|
53 |
+
return None
|
54 |
+
value = x.split(': ')[-1].lower()
|
55 |
+
if 'adult-onset asthma' in value:
|
56 |
+
return 1
|
57 |
+
elif 'healthy' in value:
|
58 |
+
return 0
|
59 |
+
return None
|
60 |
+
|
61 |
+
def convert_age(x):
|
62 |
+
if not isinstance(x, str):
|
63 |
+
return None
|
64 |
+
try:
|
65 |
+
value = x.split(': ')[-1]
|
66 |
+
return float(value)
|
67 |
+
except:
|
68 |
+
return None
|
69 |
+
|
70 |
+
def convert_gender(x):
|
71 |
+
# This function won't be used but included for completeness
|
72 |
+
if not isinstance(x, str):
|
73 |
+
return None
|
74 |
+
value = x.split(': ')[-1].lower()
|
75 |
+
if 'female' in value:
|
76 |
+
return 0
|
77 |
+
elif 'male' in value:
|
78 |
+
return 1
|
79 |
+
return None
|
80 |
+
|
81 |
+
# 3. Save Metadata
|
82 |
+
is_trait_available = trait_row is not None
|
83 |
+
validate_and_save_cohort_info(is_final=False,
|
84 |
+
cohort=cohort,
|
85 |
+
info_path=json_path,
|
86 |
+
is_gene_available=is_gene_available,
|
87 |
+
is_trait_available=is_trait_available)
|
88 |
+
|
89 |
+
# 4. Clinical Feature Extraction
|
90 |
+
# Since trait_row is not None, we need to extract clinical features
|
91 |
+
selected_clinical = geo_select_clinical_features(clinical_df=clinical_data,
|
92 |
+
trait=trait,
|
93 |
+
trait_row=trait_row,
|
94 |
+
convert_trait=convert_trait,
|
95 |
+
age_row=age_row,
|
96 |
+
convert_age=convert_age)
|
97 |
+
|
98 |
+
# Preview the extracted features
|
99 |
+
print("Preview of extracted clinical features:")
|
100 |
+
print(preview_df(selected_clinical))
|
101 |
+
|
102 |
+
# Save clinical data
|
103 |
+
selected_clinical.to_csv(out_clinical_data_file)
|
104 |
+
# Get file paths
|
105 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
106 |
+
|
107 |
+
# Extract gene expression data from matrix file
|
108 |
+
gene_data = get_genetic_data(matrix_file)
|
109 |
+
|
110 |
+
# Print first 20 row IDs and shape of data to help debug
|
111 |
+
print("Shape of gene expression data:", gene_data.shape)
|
112 |
+
print("\nFirst few rows of data:")
|
113 |
+
print(gene_data.head())
|
114 |
+
print("\nFirst 20 gene/probe identifiers:")
|
115 |
+
print(gene_data.index[:20])
|
116 |
+
|
117 |
+
# Inspect a snippet of raw file to verify identifier format
|
118 |
+
import gzip
|
119 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
120 |
+
lines = []
|
121 |
+
for i, line in enumerate(f):
|
122 |
+
if "!series_matrix_table_begin" in line:
|
123 |
+
# Get the next 5 lines after the marker
|
124 |
+
for _ in range(5):
|
125 |
+
lines.append(next(f).strip())
|
126 |
+
break
|
127 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
128 |
+
for line in lines:
|
129 |
+
print(line)
|
130 |
+
# These are Agilent probe identifiers starting with A_19_P, NOT human gene symbols
|
131 |
+
requires_gene_mapping = True
|
132 |
+
# Get file paths
|
133 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
134 |
+
|
135 |
+
# Extract gene annotation from SOFT file
|
136 |
+
gene_annotation = get_gene_annotation(soft_file)
|
137 |
+
|
138 |
+
# Preview annotation dataframe structure
|
139 |
+
print("Gene Annotation Preview:")
|
140 |
+
print("Column names:", gene_annotation.columns.tolist())
|
141 |
+
print("\nFirst few rows as dictionary:")
|
142 |
+
print(preview_df(gene_annotation))
|
143 |
+
# 1. Based on the dataframes, 'ID' column contains probe identifiers, and 'GENE_SYMBOL' contains gene symbols
|
144 |
+
prob_col = 'ID'
|
145 |
+
gene_col = 'GENE_SYMBOL'
|
146 |
+
|
147 |
+
# 2. Get gene mapping dataframe
|
148 |
+
mapping_data = get_gene_mapping(gene_annotation, prob_col, gene_col)
|
149 |
+
|
150 |
+
# 3. Convert probe-level measurements to gene expression
|
151 |
+
gene_data = apply_gene_mapping(gene_data, mapping_data)
|
152 |
+
|
153 |
+
# Print dimensions and first few rows to verify the mapping
|
154 |
+
print("Shape of gene expression data after mapping:", gene_data.shape)
|
155 |
+
print("\nFirst few rows of mapped data:")
|
156 |
+
print(gene_data.head())
|
157 |
+
# 1. Normalize gene symbols
|
158 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
159 |
+
gene_data.to_csv(out_gene_data_file)
|
160 |
+
|
161 |
+
# 2. Link clinical and genetic data
|
162 |
+
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
|
163 |
+
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
|
164 |
+
|
165 |
+
# 3. Handle missing values
|
166 |
+
linked_data = handle_missing_values(linked_data, trait)
|
167 |
+
|
168 |
+
# 4. Evaluate bias
|
169 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
170 |
+
|
171 |
+
# 5. Validate and save cohort info
|
172 |
+
is_usable = validate_and_save_cohort_info(
|
173 |
+
is_final=True,
|
174 |
+
cohort=cohort,
|
175 |
+
info_path=json_path,
|
176 |
+
is_gene_available=True,
|
177 |
+
is_trait_available=True,
|
178 |
+
is_biased=is_biased,
|
179 |
+
df=linked_data,
|
180 |
+
note="Dataset contains RNA transcriptome data in human sinonasal epithelial cells."
|
181 |
+
)
|
182 |
+
|
183 |
+
# 6. Save linked data if usable
|
184 |
+
if is_usable:
|
185 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Asthma/code/GSE182798.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Asthma"
|
6 |
+
cohort = "GSE182798"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Asthma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Asthma/GSE182798"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Asthma/GSE182798.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Asthma/gene_data/GSE182798.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Asthma/clinical_data/GSE182798.csv"
|
16 |
+
json_path = "./output/preprocess/3/Asthma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# The dataset contains PBMC and Nasal biopsy samples, which are suitable for gene expression profiling
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2.1 Data Row Identification
|
41 |
+
trait_row = 0 # diagnosis is in row 0
|
42 |
+
age_row = 2 # age is in row 2
|
43 |
+
gender_row = 1 # gender is in row 1, but all female so mark as None since constant
|
44 |
+
gender_row = None
|
45 |
+
|
46 |
+
# 2.2 Data Type Conversion Functions
|
47 |
+
def convert_trait(x):
|
48 |
+
if pd.isna(x):
|
49 |
+
return None
|
50 |
+
value = x.split(': ')[1].lower()
|
51 |
+
if 'adult-onset asthma' in value:
|
52 |
+
return 1
|
53 |
+
elif 'healthy' in value:
|
54 |
+
return 0
|
55 |
+
return None
|
56 |
+
|
57 |
+
def convert_age(x):
|
58 |
+
if pd.isna(x):
|
59 |
+
return None
|
60 |
+
try:
|
61 |
+
return float(x.split(': ')[1])
|
62 |
+
except:
|
63 |
+
return None
|
64 |
+
|
65 |
+
def convert_gender(x):
|
66 |
+
if pd.isna(x):
|
67 |
+
return None
|
68 |
+
value = x.split(': ')[1].lower()
|
69 |
+
if 'female' in value:
|
70 |
+
return 0
|
71 |
+
elif 'male' in value:
|
72 |
+
return 1
|
73 |
+
return None
|
74 |
+
|
75 |
+
# 3. Save Metadata
|
76 |
+
is_usable = validate_and_save_cohort_info(is_final=False,
|
77 |
+
cohort=cohort,
|
78 |
+
info_path=json_path,
|
79 |
+
is_gene_available=is_gene_available,
|
80 |
+
is_trait_available=trait_row is not None)
|
81 |
+
|
82 |
+
# 4. Clinical Feature Extraction
|
83 |
+
if trait_row is not None:
|
84 |
+
clinical_features = geo_select_clinical_features(clinical_df=clinical_data,
|
85 |
+
trait=trait,
|
86 |
+
trait_row=trait_row,
|
87 |
+
convert_trait=convert_trait,
|
88 |
+
age_row=age_row,
|
89 |
+
convert_age=convert_age,
|
90 |
+
gender_row=gender_row,
|
91 |
+
convert_gender=convert_gender)
|
92 |
+
|
93 |
+
# Preview the data
|
94 |
+
preview = preview_df(clinical_features)
|
95 |
+
print("Clinical Features Preview:", preview)
|
96 |
+
|
97 |
+
# Save to CSV
|
98 |
+
clinical_features.to_csv(out_clinical_data_file)
|
99 |
+
# Get file paths
|
100 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
101 |
+
|
102 |
+
# Extract gene expression data from matrix file
|
103 |
+
gene_data = get_genetic_data(matrix_file)
|
104 |
+
|
105 |
+
# Print first 20 row IDs and shape of data to help debug
|
106 |
+
print("Shape of gene expression data:", gene_data.shape)
|
107 |
+
print("\nFirst few rows of data:")
|
108 |
+
print(gene_data.head())
|
109 |
+
print("\nFirst 20 gene/probe identifiers:")
|
110 |
+
print(gene_data.index[:20])
|
111 |
+
|
112 |
+
# Inspect a snippet of raw file to verify identifier format
|
113 |
+
import gzip
|
114 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
115 |
+
lines = []
|
116 |
+
for i, line in enumerate(f):
|
117 |
+
if "!series_matrix_table_begin" in line:
|
118 |
+
# Get the next 5 lines after the marker
|
119 |
+
for _ in range(5):
|
120 |
+
lines.append(next(f).strip())
|
121 |
+
break
|
122 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
123 |
+
for line in lines:
|
124 |
+
print(line)
|
125 |
+
# Looking at the identifiers, they start with "A_19_P" followed by numbers
|
126 |
+
# These are Agilent microarray probe IDs, not human gene symbols
|
127 |
+
requires_gene_mapping = True
|
128 |
+
# Get file paths
|
129 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
130 |
+
|
131 |
+
# Extract gene annotation from SOFT file
|
132 |
+
gene_annotation = get_gene_annotation(soft_file)
|
133 |
+
|
134 |
+
# Preview annotation dataframe structure
|
135 |
+
print("Gene Annotation Preview:")
|
136 |
+
print("Column names:", gene_annotation.columns.tolist())
|
137 |
+
print("\nFirst few rows as dictionary:")
|
138 |
+
print(preview_df(gene_annotation))
|
139 |
+
# 1. Create gene mapping dataframe from annotation
|
140 |
+
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
|
141 |
+
|
142 |
+
# 2. Apply gene mapping to convert probe-level measurements to gene expression values
|
143 |
+
gene_data = apply_gene_mapping(gene_data, mapping_data)
|
144 |
+
|
145 |
+
# 3. Print a quick preview of the mapped gene data
|
146 |
+
print("Gene expression data after mapping:")
|
147 |
+
print("Shape:", gene_data.shape)
|
148 |
+
print("\nFirst few rows:")
|
149 |
+
print(gene_data.head())
|
150 |
+
# 1. Normalize gene symbols
|
151 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
152 |
+
gene_data.to_csv(out_gene_data_file)
|
153 |
+
|
154 |
+
# 2. Link clinical and genetic data
|
155 |
+
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
|
156 |
+
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
|
157 |
+
|
158 |
+
# 3. Handle missing values
|
159 |
+
linked_data = handle_missing_values(linked_data, trait)
|
160 |
+
|
161 |
+
# 4. Evaluate bias
|
162 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
163 |
+
|
164 |
+
# 5. Validate and save cohort info
|
165 |
+
is_usable = validate_and_save_cohort_info(
|
166 |
+
is_final=True,
|
167 |
+
cohort=cohort,
|
168 |
+
info_path=json_path,
|
169 |
+
is_gene_available=True,
|
170 |
+
is_trait_available=True,
|
171 |
+
is_biased=is_biased,
|
172 |
+
df=linked_data,
|
173 |
+
note="Dataset contains RNA transcriptome data in human sinonasal epithelial cells."
|
174 |
+
)
|
175 |
+
|
176 |
+
# 6. Save linked data if usable
|
177 |
+
if is_usable:
|
178 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Asthma/code/GSE184382.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Asthma"
|
6 |
+
cohort = "GSE184382"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Asthma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Asthma/GSE184382"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Asthma/GSE184382.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Asthma/gene_data/GSE184382.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Asthma/clinical_data/GSE184382.csv"
|
16 |
+
json_path = "./output/preprocess/3/Asthma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Based on series title and summary, this dataset contains miRNA data rather than gene expression data
|
38 |
+
is_gene_available = False
|
39 |
+
|
40 |
+
# 2. Variable Availability and Data Type Conversion
|
41 |
+
# 2.1 Check data availability from sample characteristics
|
42 |
+
trait_row = None # Cannot reliably determine asthma status from AIT treatment alone
|
43 |
+
age_row = None # Age data not available
|
44 |
+
gender_row = None # Gender data not available
|
45 |
+
|
46 |
+
# 2.2 Define conversion functions (though data not available in this case)
|
47 |
+
def convert_trait(x):
|
48 |
+
return None
|
49 |
+
|
50 |
+
def convert_age(x):
|
51 |
+
return None
|
52 |
+
|
53 |
+
def convert_gender(x):
|
54 |
+
return None
|
55 |
+
|
56 |
+
# 3. Save metadata about dataset usability
|
57 |
+
validate_and_save_cohort_info(
|
58 |
+
is_final=False,
|
59 |
+
cohort=cohort,
|
60 |
+
info_path=json_path,
|
61 |
+
is_gene_available=is_gene_available,
|
62 |
+
is_trait_available=(trait_row is not None)
|
63 |
+
)
|
64 |
+
|
65 |
+
# 4. Clinical Feature Extraction
|
66 |
+
# Skip this step since trait_row is None
|
p3/preprocess/Asthma/code/GSE185658.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Asthma"
|
6 |
+
cohort = "GSE185658"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Asthma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Asthma/GSE185658"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Asthma/GSE185658.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Asthma/gene_data/GSE185658.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Asthma/clinical_data/GSE185658.csv"
|
16 |
+
json_path = "./output/preprocess/3/Asthma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Yes, this dataset contains microarray data for gene expression (see Series_summary)
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2. Variable Availability and Data Type Conversion
|
41 |
+
# 2.1 Data Availability and Location
|
42 |
+
trait_row = 1 # 'group' feature contains asthma status
|
43 |
+
age_row = None # Age data not available
|
44 |
+
gender_row = None # Gender data not available
|
45 |
+
|
46 |
+
# 2.2 Data Type Conversion Functions
|
47 |
+
def convert_trait(value: str) -> Optional[int]:
|
48 |
+
"""Convert asthma status to binary: 1 for asthma, 0 for healthy"""
|
49 |
+
if not value or ':' not in value:
|
50 |
+
return None
|
51 |
+
value = value.split(':')[1].strip()
|
52 |
+
if 'Asthma' in value: # Both AsthmaHDM and AsthmaHDMNeg are asthma cases
|
53 |
+
return 1
|
54 |
+
elif value == 'Healthy':
|
55 |
+
return 0
|
56 |
+
return None
|
57 |
+
|
58 |
+
convert_age = None # No age data
|
59 |
+
convert_gender = None # No gender data
|
60 |
+
|
61 |
+
# 3. Save Metadata
|
62 |
+
validate_and_save_cohort_info(
|
63 |
+
is_final=False,
|
64 |
+
cohort=cohort,
|
65 |
+
info_path=json_path,
|
66 |
+
is_gene_available=is_gene_available,
|
67 |
+
is_trait_available=trait_row is not None
|
68 |
+
)
|
69 |
+
|
70 |
+
# 4. Clinical Feature Extraction
|
71 |
+
if trait_row is not None:
|
72 |
+
# Extract clinical features
|
73 |
+
clinical_features = geo_select_clinical_features(
|
74 |
+
clinical_df=clinical_data,
|
75 |
+
trait=trait,
|
76 |
+
trait_row=trait_row,
|
77 |
+
convert_trait=convert_trait,
|
78 |
+
age_row=age_row,
|
79 |
+
convert_age=convert_age,
|
80 |
+
gender_row=gender_row,
|
81 |
+
convert_gender=convert_gender
|
82 |
+
)
|
83 |
+
|
84 |
+
# Preview the extracted features
|
85 |
+
print("Preview of clinical features:")
|
86 |
+
print(preview_df(clinical_features))
|
87 |
+
|
88 |
+
# Save to CSV
|
89 |
+
clinical_features.to_csv(out_clinical_data_file)
|
90 |
+
# Get file paths
|
91 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
92 |
+
|
93 |
+
# Extract gene expression data from matrix file
|
94 |
+
gene_data = get_genetic_data(matrix_file)
|
95 |
+
|
96 |
+
# Print first 20 row IDs and shape of data to help debug
|
97 |
+
print("Shape of gene expression data:", gene_data.shape)
|
98 |
+
print("\nFirst few rows of data:")
|
99 |
+
print(gene_data.head())
|
100 |
+
print("\nFirst 20 gene/probe identifiers:")
|
101 |
+
print(gene_data.index[:20])
|
102 |
+
|
103 |
+
# Inspect a snippet of raw file to verify identifier format
|
104 |
+
import gzip
|
105 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
106 |
+
lines = []
|
107 |
+
for i, line in enumerate(f):
|
108 |
+
if "!series_matrix_table_begin" in line:
|
109 |
+
# Get the next 5 lines after the marker
|
110 |
+
for _ in range(5):
|
111 |
+
lines.append(next(f).strip())
|
112 |
+
break
|
113 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
114 |
+
for line in lines:
|
115 |
+
print(line)
|
116 |
+
# The identifiers are numeric IDs like '7892501', not standard gene symbols
|
117 |
+
# These appear to be probe IDs from a microarray platform that need to be mapped to gene symbols
|
118 |
+
requires_gene_mapping = True
|
119 |
+
# Get file paths
|
120 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
121 |
+
|
122 |
+
# Extract gene annotation from SOFT file
|
123 |
+
gene_annotation = get_gene_annotation(soft_file)
|
124 |
+
|
125 |
+
# Preview annotation dataframe structure
|
126 |
+
print("Gene Annotation Preview:")
|
127 |
+
print("Column names:", gene_annotation.columns.tolist())
|
128 |
+
print("\nFirst few rows as dictionary:")
|
129 |
+
print(preview_df(gene_annotation))
|
130 |
+
# 1. Identify mapping columns from gene annotation
|
131 |
+
# 'ID' column in annotation matches probe IDs in gene expression data
|
132 |
+
# 'gene_assignment' contains gene symbols and annotations
|
133 |
+
prob_col = 'ID'
|
134 |
+
gene_col = 'gene_assignment'
|
135 |
+
|
136 |
+
# 2. Get mapping between probe IDs and gene symbols
|
137 |
+
mapping_data = get_gene_mapping(gene_annotation, prob_col, gene_col)
|
138 |
+
|
139 |
+
# 3. Apply gene mapping to convert probe-level data to gene-level data
|
140 |
+
gene_data = apply_gene_mapping(gene_data, mapping_data)
|
141 |
+
|
142 |
+
# Print the shape and preview of mapped gene data
|
143 |
+
print("\nShape of mapped gene expression data:", gene_data.shape)
|
144 |
+
print("\nFirst few rows of mapped gene expression data:")
|
145 |
+
print(gene_data.head())
|
146 |
+
# 1. Normalize gene symbols
|
147 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
148 |
+
gene_data.to_csv(out_gene_data_file)
|
149 |
+
|
150 |
+
# 2. Link clinical and genetic data
|
151 |
+
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
|
152 |
+
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
|
153 |
+
|
154 |
+
# 3. Handle missing values
|
155 |
+
linked_data = handle_missing_values(linked_data, trait)
|
156 |
+
|
157 |
+
# 4. Evaluate bias
|
158 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
159 |
+
|
160 |
+
# 5. Validate and save cohort info
|
161 |
+
is_usable = validate_and_save_cohort_info(
|
162 |
+
is_final=True,
|
163 |
+
cohort=cohort,
|
164 |
+
info_path=json_path,
|
165 |
+
is_gene_available=True,
|
166 |
+
is_trait_available=True,
|
167 |
+
is_biased=is_biased,
|
168 |
+
df=linked_data,
|
169 |
+
note="Dataset contains RNA transcriptome data in human sinonasal epithelial cells."
|
170 |
+
)
|
171 |
+
|
172 |
+
# 6. Save linked data if usable
|
173 |
+
if is_usable:
|
174 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Asthma/code/GSE188424.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Asthma"
|
6 |
+
cohort = "GSE188424"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Asthma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Asthma/GSE188424"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Asthma/GSE188424.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Asthma/gene_data/GSE188424.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Asthma/clinical_data/GSE188424.csv"
|
16 |
+
json_path = "./output/preprocess/3/Asthma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Yes, this dataset contains gene expression data from human blood samples,
|
38 |
+
# not just miRNA or methylation
|
39 |
+
is_gene_available = True
|
40 |
+
|
41 |
+
# 2. Variable Availability and Data Type Conversion
|
42 |
+
# 2.1 Data Availability
|
43 |
+
trait_row = None # Not available in characteristics dictionary
|
44 |
+
gender_row = 0 # Gender data is available at index 0
|
45 |
+
age_row = None # No age data available
|
46 |
+
|
47 |
+
# 2.2 Data Type Conversion Functions
|
48 |
+
def convert_trait(value):
|
49 |
+
# Won't be used since trait data is not available
|
50 |
+
return None
|
51 |
+
|
52 |
+
def convert_gender(value):
|
53 |
+
if not isinstance(value, str):
|
54 |
+
return None
|
55 |
+
value = value.lower().split(': ')[-1].strip()
|
56 |
+
if value == 'female':
|
57 |
+
return 0
|
58 |
+
elif value == 'male':
|
59 |
+
return 1
|
60 |
+
return None
|
61 |
+
|
62 |
+
def convert_age(value):
|
63 |
+
# Won't be used since age data is not available
|
64 |
+
return None
|
65 |
+
|
66 |
+
# 3. Save Metadata - Initial Filtering
|
67 |
+
validate_and_save_cohort_info(
|
68 |
+
is_final=False,
|
69 |
+
cohort=cohort,
|
70 |
+
info_path=json_path,
|
71 |
+
is_gene_available=is_gene_available,
|
72 |
+
is_trait_available=False # trait_row is None
|
73 |
+
)
|
74 |
+
|
75 |
+
# 4. Clinical Feature Extraction
|
76 |
+
# Skip this step since trait_row is None
|
77 |
+
# Get file paths
|
78 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
79 |
+
|
80 |
+
# Extract gene expression data from matrix file
|
81 |
+
gene_data = get_genetic_data(matrix_file)
|
82 |
+
|
83 |
+
# Print first 20 row IDs and shape of data to help debug
|
84 |
+
print("Shape of gene expression data:", gene_data.shape)
|
85 |
+
print("\nFirst few rows of data:")
|
86 |
+
print(gene_data.head())
|
87 |
+
print("\nFirst 20 gene/probe identifiers:")
|
88 |
+
print(gene_data.index[:20])
|
89 |
+
|
90 |
+
# Inspect a snippet of raw file to verify identifier format
|
91 |
+
import gzip
|
92 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
93 |
+
lines = []
|
94 |
+
for i, line in enumerate(f):
|
95 |
+
if "!series_matrix_table_begin" in line:
|
96 |
+
# Get the next 5 lines after the marker
|
97 |
+
for _ in range(5):
|
98 |
+
lines.append(next(f).strip())
|
99 |
+
break
|
100 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
101 |
+
for line in lines:
|
102 |
+
print(line)
|
103 |
+
# These are Illumina probe IDs (starting with ILMN_) and need to be mapped to gene symbols
|
104 |
+
requires_gene_mapping = True
|
105 |
+
# Get file paths
|
106 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
107 |
+
|
108 |
+
# Extract gene annotation from SOFT file
|
109 |
+
gene_annotation = get_gene_annotation(soft_file)
|
110 |
+
|
111 |
+
# Preview annotation dataframe structure
|
112 |
+
print("Gene Annotation Preview:")
|
113 |
+
print("Column names:", gene_annotation.columns.tolist())
|
114 |
+
print("\nFirst few rows as dictionary:")
|
115 |
+
print(preview_df(gene_annotation))
|
116 |
+
# 1. Identify mapping columns from gene annotation data
|
117 |
+
# 'ID' column matches the probe IDs (ILMN_) in expression data
|
118 |
+
# 'Symbol' column contains the gene symbols to map to
|
119 |
+
prob_col = 'ID'
|
120 |
+
gene_col = 'Symbol'
|
121 |
+
|
122 |
+
# 2. Get gene mapping dataframe
|
123 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)
|
124 |
+
|
125 |
+
# 3. Apply gene mapping to convert probe-level data to gene-level data
|
126 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
127 |
+
|
128 |
+
# Print shape and preview mapped data
|
129 |
+
print("\nShape of gene-level expression data:", gene_data.shape)
|
130 |
+
print("\nPreview of gene-level expression data:")
|
131 |
+
print(gene_data.head())
|
132 |
+
# 1. Normalize gene symbols and save gene data
|
133 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
134 |
+
gene_data.to_csv(out_gene_data_file)
|
135 |
+
|
136 |
+
# 2. Update cohort info - dataset not usable due to missing trait data
|
137 |
+
validate_and_save_cohort_info(
|
138 |
+
is_final=True,
|
139 |
+
cohort=cohort,
|
140 |
+
info_path=json_path,
|
141 |
+
is_gene_available=True,
|
142 |
+
is_trait_available=False, # No trait data available
|
143 |
+
is_biased=True, # Dataset unusable without trait data
|
144 |
+
df=gene_data, # Pass gene expression data
|
145 |
+
note="Dataset contains gene expression data but lacks trait information needed for association studies."
|
146 |
+
)
|
p3/preprocess/Asthma/code/GSE205151.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Asthma"
|
6 |
+
cohort = "GSE205151"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Asthma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Asthma/GSE205151"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Asthma/GSE205151.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Asthma/gene_data/GSE205151.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Asthma/clinical_data/GSE205151.csv"
|
16 |
+
json_path = "./output/preprocess/3/Asthma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Yes, this dataset contains gene expression data from Nanostring array
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2.1. Data Availability
|
41 |
+
# Use cluster information as trait data since it represents asthma phenotypes
|
42 |
+
trait_row = 1 # Feature 1 contains cluster info
|
43 |
+
age_row = None # Age not explicitly provided
|
44 |
+
gender_row = None # Gender not provided
|
45 |
+
|
46 |
+
# 2.2. Data Type Conversion Functions
|
47 |
+
def convert_trait(x):
|
48 |
+
if pd.isna(x):
|
49 |
+
return None
|
50 |
+
# Extract cluster number after colon and convert to binary
|
51 |
+
# cluster 1 -> 0, cluster 2 -> 1
|
52 |
+
try:
|
53 |
+
cluster = int(x.split(':')[1].strip())
|
54 |
+
if cluster == 1:
|
55 |
+
return 0
|
56 |
+
elif cluster == 2:
|
57 |
+
return 1
|
58 |
+
return None
|
59 |
+
except:
|
60 |
+
return None
|
61 |
+
|
62 |
+
def convert_age(x):
|
63 |
+
# Not used since age data unavailable
|
64 |
+
return None
|
65 |
+
|
66 |
+
def convert_gender(x):
|
67 |
+
# Not used since gender data unavailable
|
68 |
+
return None
|
69 |
+
|
70 |
+
# 3. Save Metadata
|
71 |
+
is_trait_available = trait_row is not None
|
72 |
+
validate_and_save_cohort_info(
|
73 |
+
is_final=False,
|
74 |
+
cohort=cohort,
|
75 |
+
info_path=json_path,
|
76 |
+
is_gene_available=is_gene_available,
|
77 |
+
is_trait_available=is_trait_available
|
78 |
+
)
|
79 |
+
|
80 |
+
# 4. Clinical Feature Extraction
|
81 |
+
if trait_row is not None:
|
82 |
+
selected_clinical_df = geo_select_clinical_features(
|
83 |
+
clinical_df=clinical_data,
|
84 |
+
trait=trait,
|
85 |
+
trait_row=trait_row,
|
86 |
+
convert_trait=convert_trait
|
87 |
+
)
|
88 |
+
|
89 |
+
# Preview the extracted features
|
90 |
+
print("Preview of extracted clinical features:")
|
91 |
+
print(preview_df(selected_clinical_df))
|
92 |
+
|
93 |
+
# Save to CSV
|
94 |
+
selected_clinical_df.to_csv(out_clinical_data_file)
|
95 |
+
# Get file paths
|
96 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
97 |
+
|
98 |
+
# Extract gene expression data from matrix file
|
99 |
+
gene_data = get_genetic_data(matrix_file)
|
100 |
+
|
101 |
+
# Print first 20 row IDs and shape of data to help debug
|
102 |
+
print("Shape of gene expression data:", gene_data.shape)
|
103 |
+
print("\nFirst few rows of data:")
|
104 |
+
print(gene_data.head())
|
105 |
+
print("\nFirst 20 gene/probe identifiers:")
|
106 |
+
print(gene_data.index[:20])
|
107 |
+
|
108 |
+
# Inspect a snippet of raw file to verify identifier format
|
109 |
+
import gzip
|
110 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
111 |
+
lines = []
|
112 |
+
for i, line in enumerate(f):
|
113 |
+
if "!series_matrix_table_begin" in line:
|
114 |
+
# Get the next 5 lines after the marker
|
115 |
+
for _ in range(5):
|
116 |
+
lines.append(next(f).strip())
|
117 |
+
break
|
118 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
119 |
+
for line in lines:
|
120 |
+
print(line)
|
121 |
+
# Looking at the gene identifiers in the first few rows, they appear to be valid human gene symbols
|
122 |
+
# For example, ABCB1, ABCF1, ABL1, ADA, AHR are all standard human gene symbols
|
123 |
+
# The ID column contains recognized official human gene symbols that do not need mapping
|
124 |
+
requires_gene_mapping = False
|
125 |
+
# 1. Normalize gene symbols
|
126 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
127 |
+
gene_data.to_csv(out_gene_data_file)
|
128 |
+
|
129 |
+
# 2. Link clinical and genetic data
|
130 |
+
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
|
131 |
+
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
|
132 |
+
|
133 |
+
# 3. Handle missing values
|
134 |
+
linked_data = handle_missing_values(linked_data, trait)
|
135 |
+
|
136 |
+
# 4. Evaluate bias
|
137 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
138 |
+
|
139 |
+
# 5. Validate and save cohort info
|
140 |
+
is_usable = validate_and_save_cohort_info(
|
141 |
+
is_final=True,
|
142 |
+
cohort=cohort,
|
143 |
+
info_path=json_path,
|
144 |
+
is_gene_available=True,
|
145 |
+
is_trait_available=True,
|
146 |
+
is_biased=is_biased,
|
147 |
+
df=linked_data,
|
148 |
+
note="Dataset contains RNA transcriptome data in human sinonasal epithelial cells."
|
149 |
+
)
|
150 |
+
|
151 |
+
# 6. Save linked data if usable
|
152 |
+
if is_usable:
|
153 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Asthma/code/GSE230164.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Asthma"
|
6 |
+
cohort = "GSE230164"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Asthma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Asthma/GSE230164"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Asthma/GSE230164.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Asthma/gene_data/GSE230164.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Asthma/clinical_data/GSE230164.csv"
|
16 |
+
json_path = "./output/preprocess/3/Asthma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Since "Gene expression profiling" is mentioned in series title,
|
38 |
+
# and series summary indicates this is a SuperSeries containing SubSeries,
|
39 |
+
# this dataset is likely to contain gene expression data
|
40 |
+
is_gene_available = True
|
41 |
+
|
42 |
+
# 2. Variable Availability and Data Type Conversion
|
43 |
+
# 2.1 Data Availability
|
44 |
+
# Based on sample characteristics, we can find:
|
45 |
+
# - Gender is available at key 0
|
46 |
+
# - Trait and age information are not explicitly available
|
47 |
+
trait_row = None
|
48 |
+
age_row = None
|
49 |
+
gender_row = 0
|
50 |
+
|
51 |
+
# 2.2 Data Type Conversion Functions
|
52 |
+
def convert_trait(x):
|
53 |
+
return None # Not available
|
54 |
+
|
55 |
+
def convert_age(x):
|
56 |
+
return None # Not available
|
57 |
+
|
58 |
+
def convert_gender(x):
|
59 |
+
# Extract value after colon and convert to binary
|
60 |
+
if not isinstance(x, str):
|
61 |
+
return None
|
62 |
+
value = x.split(': ')[-1].lower()
|
63 |
+
if value == 'female':
|
64 |
+
return 0
|
65 |
+
elif value == 'male':
|
66 |
+
return 1
|
67 |
+
return None
|
68 |
+
|
69 |
+
# 3. Save metadata about data availability
|
70 |
+
validate_and_save_cohort_info(
|
71 |
+
is_final=False,
|
72 |
+
cohort=cohort,
|
73 |
+
info_path=json_path,
|
74 |
+
is_gene_available=is_gene_available,
|
75 |
+
is_trait_available=(trait_row is not None)
|
76 |
+
)
|
77 |
+
|
78 |
+
# 4. Since trait_row is None, skip clinical feature extraction
|
79 |
+
# Get file paths
|
80 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
81 |
+
|
82 |
+
# Extract gene expression data from matrix file
|
83 |
+
gene_data = get_genetic_data(matrix_file)
|
84 |
+
|
85 |
+
# Print first 20 row IDs and shape of data to help debug
|
86 |
+
print("Shape of gene expression data:", gene_data.shape)
|
87 |
+
print("\nFirst few rows of data:")
|
88 |
+
print(gene_data.head())
|
89 |
+
print("\nFirst 20 gene/probe identifiers:")
|
90 |
+
print(gene_data.index[:20])
|
91 |
+
|
92 |
+
# Inspect a snippet of raw file to verify identifier format
|
93 |
+
import gzip
|
94 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
95 |
+
lines = []
|
96 |
+
for i, line in enumerate(f):
|
97 |
+
if "!series_matrix_table_begin" in line:
|
98 |
+
# Get the next 5 lines after the marker
|
99 |
+
for _ in range(5):
|
100 |
+
lines.append(next(f).strip())
|
101 |
+
break
|
102 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
103 |
+
for line in lines:
|
104 |
+
print(line)
|
105 |
+
# The identifiers start with ILMN_ which indicates they are Illumina probe IDs
|
106 |
+
# These need to be mapped to human gene symbols for standardization
|
107 |
+
requires_gene_mapping = True
|
108 |
+
# Get file paths
|
109 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
110 |
+
|
111 |
+
# Extract gene annotation from SOFT file
|
112 |
+
gene_annotation = get_gene_annotation(soft_file)
|
113 |
+
|
114 |
+
# Preview annotation dataframe structure
|
115 |
+
print("Gene Annotation Preview:")
|
116 |
+
print("Column names:", gene_annotation.columns.tolist())
|
117 |
+
print("\nFirst few rows as dictionary:")
|
118 |
+
print(preview_df(gene_annotation))
|
119 |
+
# 1. Based on the preview, 'ID' in annotation matches probe IDs in expression data (ILMN_*),
|
120 |
+
# and 'Symbol' contains gene symbols
|
121 |
+
|
122 |
+
# 2. Extract ID and Symbol columns to create mapping dataframe
|
123 |
+
gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
|
124 |
+
|
125 |
+
# 3. Apply gene mapping to convert probe-level measurements to gene-level expression
|
126 |
+
gene_data = apply_gene_mapping(gene_data, gene_mapping)
|
127 |
+
# 1. Normalize gene symbols
|
128 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
129 |
+
gene_data.to_csv(out_gene_data_file)
|
130 |
+
|
131 |
+
# Create a minimal DataFrame for validation
|
132 |
+
linked_data = gene_data.T # Transpose to have samples as rows
|
133 |
+
|
134 |
+
# Validate and save cohort info
|
135 |
+
is_usable = validate_and_save_cohort_info(
|
136 |
+
is_final=True,
|
137 |
+
cohort=cohort,
|
138 |
+
info_path=json_path,
|
139 |
+
is_gene_available=True,
|
140 |
+
is_trait_available=False,
|
141 |
+
is_biased=True, # No trait data means it's biased by definition
|
142 |
+
df=linked_data,
|
143 |
+
note="Dataset contains gene expression data but lacks required trait information."
|
144 |
+
)
|
p3/preprocess/Asthma/code/GSE270312.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Asthma"
|
6 |
+
cohort = "GSE270312"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Asthma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Asthma/GSE270312"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Asthma/GSE270312.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Asthma/gene_data/GSE270312.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Asthma/clinical_data/GSE270312.csv"
|
16 |
+
json_path = "./output/preprocess/3/Asthma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# Data type conversion functions
|
37 |
+
def convert_trait(value: str) -> Optional[int]:
|
38 |
+
if not value or ':' not in value:
|
39 |
+
return None
|
40 |
+
asthma_status = value.split(':')[1].strip().lower()
|
41 |
+
if 'yes' in asthma_status:
|
42 |
+
return 1
|
43 |
+
elif 'no' in asthma_status:
|
44 |
+
return 0
|
45 |
+
return None
|
46 |
+
|
47 |
+
def convert_gender(value: str) -> Optional[int]:
|
48 |
+
if not value or ':' not in value:
|
49 |
+
return None
|
50 |
+
gender = value.split(':')[1].strip().lower()
|
51 |
+
if 'female' in gender:
|
52 |
+
return 0
|
53 |
+
elif 'male' in gender:
|
54 |
+
return 1
|
55 |
+
return None
|
56 |
+
|
57 |
+
# Gene expression data availability
|
58 |
+
is_gene_available = True # RNA transcriptome data available
|
59 |
+
|
60 |
+
# Variable row identification
|
61 |
+
trait_row = 3 # 'asthma status'
|
62 |
+
gender_row = 2 # 'gender'
|
63 |
+
age_row = None # Age not available in characteristics
|
64 |
+
|
65 |
+
# Initial validation and save metadata
|
66 |
+
is_trait_available = trait_row is not None
|
67 |
+
is_usable = validate_and_save_cohort_info(
|
68 |
+
is_final=False,
|
69 |
+
cohort=cohort,
|
70 |
+
info_path=json_path,
|
71 |
+
is_gene_available=is_gene_available,
|
72 |
+
is_trait_available=is_trait_available
|
73 |
+
)
|
74 |
+
|
75 |
+
# Clinical feature extraction since trait_row is not None
|
76 |
+
selected_clinical = geo_select_clinical_features(
|
77 |
+
clinical_df=clinical_data,
|
78 |
+
trait=trait,
|
79 |
+
trait_row=trait_row,
|
80 |
+
convert_trait=convert_trait,
|
81 |
+
gender_row=gender_row,
|
82 |
+
convert_gender=convert_gender
|
83 |
+
)
|
84 |
+
|
85 |
+
# Preview and save clinical data
|
86 |
+
preview_result = preview_df(selected_clinical)
|
87 |
+
print("Preview of clinical data:", preview_result)
|
88 |
+
|
89 |
+
# Save clinical data
|
90 |
+
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
|
91 |
+
selected_clinical.to_csv(out_clinical_data_file)
|
92 |
+
# Get file paths
|
93 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
94 |
+
|
95 |
+
# Extract gene expression data from matrix file
|
96 |
+
gene_data = get_genetic_data(matrix_file)
|
97 |
+
|
98 |
+
# Print first 20 row IDs and shape of data to help debug
|
99 |
+
print("Shape of gene expression data:", gene_data.shape)
|
100 |
+
print("\nFirst few rows of data:")
|
101 |
+
print(gene_data.head())
|
102 |
+
print("\nFirst 20 gene/probe identifiers:")
|
103 |
+
print(gene_data.index[:20])
|
104 |
+
|
105 |
+
# Inspect a snippet of raw file to verify identifier format
|
106 |
+
import gzip
|
107 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
108 |
+
lines = []
|
109 |
+
for i, line in enumerate(f):
|
110 |
+
if "!series_matrix_table_begin" in line:
|
111 |
+
# Get the next 5 lines after the marker
|
112 |
+
for _ in range(5):
|
113 |
+
lines.append(next(f).strip())
|
114 |
+
break
|
115 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
116 |
+
for line in lines:
|
117 |
+
print(line)
|
118 |
+
# The gene IDs appear to be valid human gene symbols like ABCF1, ACE, ACKR2, ACKR3, etc.
|
119 |
+
# The IDs match with official HGNC gene symbols, so no mapping is needed
|
120 |
+
requires_gene_mapping = False
|
121 |
+
# 1. Normalize gene symbols
|
122 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
123 |
+
gene_data.to_csv(out_gene_data_file)
|
124 |
+
|
125 |
+
# 2. Link clinical and genetic data
|
126 |
+
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
|
127 |
+
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
|
128 |
+
|
129 |
+
# 3. Handle missing values
|
130 |
+
linked_data = handle_missing_values(linked_data, trait)
|
131 |
+
|
132 |
+
# 4. Evaluate bias
|
133 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
134 |
+
|
135 |
+
# 5. Validate and save cohort info
|
136 |
+
is_usable = validate_and_save_cohort_info(
|
137 |
+
is_final=True,
|
138 |
+
cohort=cohort,
|
139 |
+
info_path=json_path,
|
140 |
+
is_gene_available=True,
|
141 |
+
is_trait_available=True,
|
142 |
+
is_biased=is_biased,
|
143 |
+
df=linked_data,
|
144 |
+
note="Dataset contains RNA transcriptome data in human sinonasal epithelial cells."
|
145 |
+
)
|
146 |
+
|
147 |
+
# 6. Save linked data if usable
|
148 |
+
if is_usable:
|
149 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Asthma/code/TCGA.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Asthma"
|
6 |
+
|
7 |
+
# Input paths
|
8 |
+
tcga_root_dir = "../DATA/TCGA"
|
9 |
+
|
10 |
+
# Output paths
|
11 |
+
out_data_file = "./output/preprocess/3/Asthma/TCGA.csv"
|
12 |
+
out_gene_data_file = "./output/preprocess/3/Asthma/gene_data/TCGA.csv"
|
13 |
+
out_clinical_data_file = "./output/preprocess/3/Asthma/clinical_data/TCGA.csv"
|
14 |
+
json_path = "./output/preprocess/3/Asthma/cohort_info.json"
|
15 |
+
|
16 |
+
# Review available cohorts for asthma relevance
|
17 |
+
tcga_dirs = os.listdir(tcga_root_dir)
|
18 |
+
# Filter out non-directory files
|
19 |
+
tcga_dirs = [d for d in tcga_dirs if os.path.isdir(os.path.join(tcga_root_dir, d))]
|
20 |
+
|
21 |
+
# For asthma trait, none of the TCGA cancer cohorts are directly relevant
|
22 |
+
print(f"No suitable TCGA cancer cohort was found for the trait: {trait}")
|
23 |
+
|
24 |
+
# Save cohort info to mark this trait as completed
|
25 |
+
_ = validate_and_save_cohort_info(
|
26 |
+
is_final=False,
|
27 |
+
cohort="TCGA",
|
28 |
+
info_path=json_path,
|
29 |
+
is_gene_available=False,
|
30 |
+
is_trait_available=False
|
31 |
+
)
|
32 |
+
# Exit preprocessing as no suitable data exists
|
33 |
+
clinical_df = None
|
34 |
+
genetic_df = None
|
p3/preprocess/Asthma/gene_data/GSE123086.csv
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Gene,GSM3494884,GSM3494885,GSM3494886,GSM3494887,GSM3494888,GSM3494889,GSM3494890,GSM3494891,GSM3494892,GSM3494893,GSM3494894,GSM3494895,GSM3494896,GSM3494897,GSM3494898,GSM3494899,GSM3494900,GSM3494901,GSM3494902,GSM3494903,GSM3494904,GSM3494905,GSM3494906,GSM3494907,GSM3494908,GSM3494909,GSM3494910,GSM3494911,GSM3494912,GSM3494913,GSM3494914,GSM3494915,GSM3494916,GSM3494917,GSM3494918,GSM3494919,GSM3494920,GSM3494921,GSM3494922,GSM3494923,GSM3494924,GSM3494925,GSM3494926,GSM3494927,GSM3494928,GSM3494929,GSM3494930,GSM3494931,GSM3494932,GSM3494933,GSM3494934,GSM3494935,GSM3494936,GSM3494937,GSM3494938,GSM3494939,GSM3494940,GSM3494941,GSM3494942,GSM3494943,GSM3494944,GSM3494945,GSM3494946,GSM3494947,GSM3494948,GSM3494949,GSM3494950,GSM3494951,GSM3494952,GSM3494953,GSM3494954,GSM3494955,GSM3494956,GSM3494957,GSM3494958,GSM3494959,GSM3494960,GSM3494961,GSM3494962,GSM3494963,GSM3494964,GSM3494965,GSM3494966,GSM3494967,GSM3494968,GSM3494969,GSM3494970,GSM3494971,GSM3494972,GSM3494973,GSM3494974,GSM3494975,GSM3494976,GSM3494977,GSM3494978,GSM3494979,GSM3494980,GSM3494981,GSM3494982,GSM3494983,GSM3494984,GSM3494985,GSM3494986,GSM3494987,GSM3494988,GSM3494989,GSM3494990,GSM3494991,GSM3494992,GSM3494993,GSM3494994,GSM3494995,GSM3494996,GSM3494997,GSM3494998,GSM3494999,GSM3495000,GSM3495001,GSM3495002,GSM3495003,GSM3495004,GSM3495005,GSM3495006,GSM3495007,GSM3495008,GSM3495009,GSM3495010,GSM3495011,GSM3495012,GSM3495013,GSM3495014,GSM3495015,GSM3495016,GSM3495017,GSM3495018,GSM3495019,GSM3495020,GSM3495021,GSM3495022,GSM3495023,GSM3495024,GSM3495025,GSM3495026,GSM3495027,GSM3495028,GSM3495029,GSM3495030,GSM3495031,GSM3495032,GSM3495033,GSM3495034,GSM3495035,GSM3495036,GSM3495037,GSM3495038,GSM3495039,GSM3495040,GSM3495041,GSM3495042,GSM3495043,GSM3495044,GSM3495045,GSM3495046,GSM3495047,GSM3495048,GSM3495049
|
p3/preprocess/Asthma/gene_data/GSE123088.csv
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Gene,GSM3494884,GSM3494885,GSM3494886,GSM3494887,GSM3494888,GSM3494889,GSM3494890,GSM3494891,GSM3494892,GSM3494893,GSM3494894,GSM3494895,GSM3494896,GSM3494897,GSM3494898,GSM3494899,GSM3494900,GSM3494901,GSM3494902,GSM3494903,GSM3494904,GSM3494905,GSM3494906,GSM3494907,GSM3494908,GSM3494909,GSM3494910,GSM3494911,GSM3494912,GSM3494913,GSM3494914,GSM3494915,GSM3494916,GSM3494917,GSM3494918,GSM3494919,GSM3494920,GSM3494921,GSM3494922,GSM3494923,GSM3494924,GSM3494925,GSM3494926,GSM3494927,GSM3494928,GSM3494929,GSM3494930,GSM3494931,GSM3494932,GSM3494933,GSM3494934,GSM3494935,GSM3494936,GSM3494937,GSM3494938,GSM3494939,GSM3494940,GSM3494941,GSM3494942,GSM3494943,GSM3494944,GSM3494945,GSM3494946,GSM3494947,GSM3494948,GSM3494949,GSM3494950,GSM3494951,GSM3494952,GSM3494953,GSM3494954,GSM3494955,GSM3494956,GSM3494957,GSM3494958,GSM3494959,GSM3494960,GSM3494961,GSM3494962,GSM3494963,GSM3494964,GSM3494965,GSM3494966,GSM3494967,GSM3494968,GSM3494969,GSM3494970,GSM3494971,GSM3494972,GSM3494973,GSM3494974,GSM3494975,GSM3494976,GSM3494977,GSM3494978,GSM3494979,GSM3494980,GSM3494981,GSM3494982,GSM3494983,GSM3494984,GSM3494985,GSM3494986,GSM3494987,GSM3494988,GSM3494989,GSM3494990,GSM3494991,GSM3494992,GSM3494993,GSM3494994,GSM3494995,GSM3494996,GSM3494997,GSM3494998,GSM3494999,GSM3495000,GSM3495001,GSM3495002,GSM3495003,GSM3495004,GSM3495005,GSM3495006,GSM3495007,GSM3495008,GSM3495009,GSM3495010,GSM3495011,GSM3495012,GSM3495013,GSM3495014,GSM3495015,GSM3495016,GSM3495017,GSM3495018,GSM3495019,GSM3495020,GSM3495021,GSM3495022,GSM3495023,GSM3495024,GSM3495025,GSM3495026,GSM3495027,GSM3495028,GSM3495029,GSM3495030,GSM3495031,GSM3495032,GSM3495033,GSM3495034,GSM3495035,GSM3495036,GSM3495037,GSM3495038,GSM3495039,GSM3495040,GSM3495041,GSM3495042,GSM3495043,GSM3495044,GSM3495045,GSM3495046,GSM3495047,GSM3495048,GSM3495049,GSM3495050,GSM3495051,GSM3495052,GSM3495053,GSM3495054,GSM3495055,GSM3495056,GSM3495057,GSM3495058,GSM3495059,GSM3495060,GSM3495061,GSM3495062,GSM3495063,GSM3495064,GSM3495065,GSM3495066,GSM3495067,GSM3495068,GSM3495069,GSM3495070,GSM3495071,GSM3495072,GSM3495073,GSM3495074,GSM3495075,GSM3495076,GSM3495077,GSM3495078,GSM3495079,GSM3495080,GSM3495081,GSM3495082,GSM3495083,GSM3495084,GSM3495085,GSM3495086,GSM3495087
|
p3/preprocess/Asthma/gene_data/GSE182797.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c89eb3bac7063222f548a70cae9dcf6955d3bae51d8615289f1aed1c762141a
|
3 |
+
size 12907312
|
p3/preprocess/Asthma/gene_data/GSE182798.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1736c1173d0170af9186a9f06194f9a3b4ad28ca3097872349e7e46f3a6bf845
|
3 |
+
size 28328193
|
p3/preprocess/Asthma/gene_data/GSE185658.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c3b064b4ff46319ff3299b7070c722d1dc8c5d18ccd250e48a01a23b881a5478
|
3 |
+
size 18243051
|
p3/preprocess/Asthma/gene_data/GSE188424.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e6255f788c2c7ca89a3dab26eb0d2a82c7ec2fc31f7e4b1b9d184fa1db05eec
|
3 |
+
size 25530449
|
p3/preprocess/Asthma/gene_data/GSE205151.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Asthma/gene_data/GSE230164.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e6255f788c2c7ca89a3dab26eb0d2a82c7ec2fc31f7e4b1b9d184fa1db05eec
|
3 |
+
size 25530449
|
p3/preprocess/Asthma/gene_data/GSE270312.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Atrial_Fibrillation/GSE115574.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3daad640890cf0559e32fcc84a3fdb4e324a6b9efbbe24d355b043bc9baf340a
|
3 |
+
size 15534640
|
p3/preprocess/Atrial_Fibrillation/GSE143924.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Atrial_Fibrillation/GSE235307.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad0f7bf3d07aff5ac673d3e1721eaa5233fa6f9fbf4912b231aedc6f1593c391
|
3 |
+
size 30127846
|
p3/preprocess/Atrial_Fibrillation/GSE41177.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Atrial_Fibrillation/clinical_data/GSE115574.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM3182680,GSM3182681,GSM3182682,GSM3182683,GSM3182684,GSM3182685,GSM3182686,GSM3182687,GSM3182688,GSM3182689,GSM3182690,GSM3182691,GSM3182692,GSM3182693,GSM3182694,GSM3182695,GSM3182696,GSM3182697,GSM3182698,GSM3182699,GSM3182700,GSM3182701,GSM3182702,GSM3182703,GSM3182704,GSM3182705,GSM3182706,GSM3182707,GSM3182708,GSM3182709,GSM3182710,GSM3182711,GSM3182712,GSM3182713,GSM3182714,GSM3182715,GSM3182716,GSM3182717,GSM3182718,GSM3182719,GSM3182720,GSM3182721,GSM3182722,GSM3182723,GSM3182724,GSM3182725,GSM3182726,GSM3182727,GSM3182728,GSM3182729,GSM3182730,GSM3182731,GSM3182732,GSM3182733,GSM3182734,GSM3182735,GSM3182736,GSM3182737,GSM3182738
|
2 |
+
Atrial_Fibrillation,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
p3/preprocess/Atrial_Fibrillation/clinical_data/GSE143924.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM4276706,GSM4276707,GSM4276708,GSM4276709,GSM4276710,GSM4276711,GSM4276712,GSM4276713,GSM4276714,GSM4276715,GSM4276716,GSM4276717,GSM4276718,GSM4276719,GSM4276720,GSM4276721,GSM4276722,GSM4276723,GSM4276724,GSM4276725,GSM4276726,GSM4276727,GSM4276728,GSM4276729,GSM4276730,GSM4276731,GSM4276732,GSM4276733,GSM4276734,GSM4276735
|
2 |
+
Atrial_Fibrillation,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
p3/preprocess/Atrial_Fibrillation/clinical_data/GSE235307.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM7498589,GSM7498590,GSM7498591,GSM7498592,GSM7498593,GSM7498594,GSM7498595,GSM7498596,GSM7498597,GSM7498598,GSM7498599,GSM7498600,GSM7498601,GSM7498602,GSM7498603,GSM7498604,GSM7498605,GSM7498606,GSM7498607,GSM7498608,GSM7498609,GSM7498610,GSM7498611,GSM7498612,GSM7498613,GSM7498614,GSM7498615,GSM7498616,GSM7498617,GSM7498618,GSM7498619,GSM7498620,GSM7498621,GSM7498622,GSM7498623,GSM7498624,GSM7498625,GSM7498626,GSM7498627,GSM7498628,GSM7498629,GSM7498630,GSM7498631,GSM7498632,GSM7498633,GSM7498634,GSM7498635,GSM7498636,GSM7498637,GSM7498638,GSM7498639,GSM7498640,GSM7498641,GSM7498642,GSM7498643,GSM7498644,GSM7498645,GSM7498646,GSM7498647,GSM7498648,GSM7498649,GSM7498650,GSM7498651,GSM7498652,GSM7498653,GSM7498654,GSM7498655,GSM7498656,GSM7498657,GSM7498658,GSM7498659,GSM7498660,GSM7498661,GSM7498662,GSM7498663,GSM7498664,GSM7498665,GSM7498666,GSM7498667,GSM7498668,GSM7498669,GSM7498670,GSM7498671,GSM7498672,GSM7498673,GSM7498674,GSM7498675,GSM7498676,GSM7498677,GSM7498678,GSM7498679,GSM7498680,GSM7498681,GSM7498682,GSM7498683,GSM7498684,GSM7498685,GSM7498686,GSM7498687,GSM7498688,GSM7498689,GSM7498690,GSM7498691,GSM7498692,GSM7498693,GSM7498694,GSM7498695,GSM7498696,GSM7498697,GSM7498698,GSM7498699,GSM7498700,GSM7498701,GSM7498702,GSM7498703,GSM7498704,GSM7498705,GSM7498706,GSM7498707
|
2 |
+
Atrial_Fibrillation,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0
|
3 |
+
Age,63.0,60.0,60.0,72.0,63.0,66.0,70.0,64.0,63.0,61.0,70.0,64.0,63.0,44.0,54.0,44.0,50.0,79.0,63.0,63.0,64.0,60.0,51.0,55.0,55.0,67.0,52.0,70.0,54.0,54.0,73.0,54.0,76.0,76.0,43.0,64.0,64.0,68.0,43.0,54.0,72.0,51.0,68.0,50.0,78.0,69.0,64.0,54.0,54.0,57.0,55.0,60.0,59.0,54.0,54.0,54.0,54.0,53.0,52.0,68.0,72.0,70.0,65.0,64.0,56.0,56.0,63.0,57.0,63.0,68.0,66.0,74.0,38.0,56.0,57.0,71.0,78.0,51.0,50.0,37.0,37.0,70.0,72.0,73.0,69.0,69.0,63.0,62.0,59.0,67.0,76.0,63.0,55.0,57.0,53.0,59.0,77.0,54.0,64.0,75.0,75.0,72.0,58.0,75.0,78.0,58.0,64.0,63.0,61.0,60.0,59.0,68.0,77.0,57.0,62.0,66.0,57.0,65.0,59.0
|
4 |
+
Gender,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0
|
p3/preprocess/Atrial_Fibrillation/clinical_data/GSE41177.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM1005418,GSM1005419,GSM1005420,GSM1005421,GSM1005422,GSM1005423,GSM1005424,GSM1005425,GSM1005426,GSM1005427,GSM1005428,GSM1005429,GSM1005430,GSM1005431,GSM1005432,GSM1005433,GSM1005434,GSM1005435,GSM1005436,GSM1005437,GSM1005438,GSM1005439,GSM1005440,GSM1005441,GSM1005442,GSM1005443,GSM1005444,GSM1005445,GSM1006245,GSM1006246,GSM1006247,GSM1006248,GSM1006249,GSM1006250,GSM1006251,GSM1006252,GSM1006253,GSM1006254
|
2 |
+
Atrial_Fibrillation,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
3 |
+
Age,62.0,62.0,43.0,43.0,55.0,55.0,65.0,65.0,65.0,65.0,61.0,61.0,64.0,64.0,47.0,47.0,60.0,60.0,71.0,71.0,32.0,32.0,59.0,59.0,56.0,56.0,51.0,51.0,59.0,59.0,32.0,32.0,43.0,43.0,66.0,66.0,36.0,36.0
|
4 |
+
Gender,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0
|
p3/preprocess/Atrial_Fibrillation/clinical_data/GSE47727.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM1298251,GSM1298252,GSM1298253,GSM1298254,GSM1298255,GSM1298256,GSM1298257,GSM1298258,GSM1298259,GSM1298260,GSM1298261,GSM1298262,GSM1298263,GSM1298264,GSM1298265,GSM1298266,GSM1298267,GSM1298268,GSM1298269,GSM1298270,GSM1298271,GSM1298272,GSM1298273,GSM1298274,GSM1298275,GSM1298276,GSM1298277,GSM1298278,GSM1298279,GSM1298280,GSM1298281,GSM1298282,GSM1298283,GSM1298284,GSM1298285,GSM1298286,GSM1298287,GSM1298288,GSM1298289,GSM1298290,GSM1298291,GSM1298292,GSM1298293,GSM1298294,GSM1298295,GSM1298296,GSM1298297,GSM1298298,GSM1298299,GSM1298300,GSM1298301,GSM1298302,GSM1298303,GSM1298304,GSM1298305,GSM1298306,GSM1298307,GSM1298308,GSM1298309,GSM1298310,GSM1298311,GSM1298312,GSM1298313,GSM1298314,GSM1298315,GSM1298316,GSM1298317,GSM1298318,GSM1298319,GSM1298320,GSM1298321,GSM1298322,GSM1298323,GSM1298324,GSM1298325,GSM1298326,GSM1298327,GSM1298328,GSM1298329,GSM1298330,GSM1298331,GSM1298332,GSM1298333,GSM1298334,GSM1298335,GSM1298336,GSM1298337,GSM1298338,GSM1298339,GSM1298340,GSM1298341,GSM1298342,GSM1298343,GSM1298344,GSM1298345,GSM1298346,GSM1298347,GSM1298348,GSM1298349,GSM1298350,GSM1298351,GSM1298352,GSM1298353,GSM1298354,GSM1298355,GSM1298356,GSM1298357,GSM1298358,GSM1298359,GSM1298360,GSM1298361,GSM1298362,GSM1298363,GSM1298364,GSM1298365,GSM1298366,GSM1298367,GSM1298368,GSM1298369,GSM1298370,GSM1298371,GSM1298372
|
2 |
+
Atrial_Fibrillation,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
3 |
+
Age,67.0,54.0,73.0,52.0,75.0,59.0,74.0,75.0,74.0,76.0,73.0,67.0,58.0,60.0,66.0,70.0,75.0,70.0,78.0,77.0,72.0,78.0,57.0,77.0,63.0,62.0,52.0,74.0,59.0,64.0,60.0,60.0,63.0,67.0,61.0,69.0,61.0,69.0,60.0,62.0,66.0,60.0,63.0,77.0,78.0,78.0,76.0,69.0,68.0,70.0,72.0,68.0,75.0,76.0,72.0,72.0,73.0,67.0,62.0,76.0,82.0,76.0,73.0,75.0,78.0,57.0,77.0,60.0,75.0,75.0,77.0,72.0,73.0,72.0,74.0,78.0,71.0,70.0,76.0,74.0,76.0,71.0,61.0,63.0,68.0,67.0,64.0,56.0,52.0,72.0,73.0,53.0,63.0,49.0,54.0,54.0,52.0,52.0,51.0,63.0,71.0,76.0,73.0,68.0,73.0,76.0,64.0,79.0,58.0,67.0,71.0,80.0,71.0,73.0,71.0,69.0,70.0,63.0,65.0,64.0,67.0,67.0
|
4 |
+
Gender,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0
|
p3/preprocess/Atrial_Fibrillation/code/GSE115574.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Atrial_Fibrillation"
|
6 |
+
cohort = "GSE115574"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Atrial_Fibrillation"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Atrial_Fibrillation/GSE115574"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Atrial_Fibrillation/GSE115574.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Atrial_Fibrillation/gene_data/GSE115574.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Atrial_Fibrillation/clinical_data/GSE115574.csv"
|
16 |
+
json_path = "./output/preprocess/3/Atrial_Fibrillation/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths for SOFT and matrix files
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data from the matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
|
24 |
+
# Create dictionary of unique values for each feature
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print the information
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nSample Characteristics:")
|
31 |
+
for feature, values in unique_values_dict.items():
|
32 |
+
print(f"\n{feature}:")
|
33 |
+
print(values)
|
34 |
+
# 1. Gene Expression Data Availability
|
35 |
+
# The background info mentions "Affymetrix human gene expression microarrays"
|
36 |
+
is_gene_available = True
|
37 |
+
|
38 |
+
# 2.1 Variable Availability
|
39 |
+
trait_row = 0 # Disease state field contains AF vs SR status
|
40 |
+
age_row = None # Age not available
|
41 |
+
gender_row = None # Gender not available
|
42 |
+
|
43 |
+
# 2.2 Data Type Conversion
|
44 |
+
def convert_trait(value):
|
45 |
+
if not isinstance(value, str):
|
46 |
+
return None
|
47 |
+
val = value.lower().split(': ')[-1].strip()
|
48 |
+
if 'atrial fibrillation' in val:
|
49 |
+
return 1
|
50 |
+
elif 'sinus rhythm' in val:
|
51 |
+
return 0
|
52 |
+
return None
|
53 |
+
|
54 |
+
def convert_age(value):
|
55 |
+
return None # Not used but defined for completeness
|
56 |
+
|
57 |
+
def convert_gender(value):
|
58 |
+
return None # Not used but defined for completeness
|
59 |
+
|
60 |
+
# 3. Save Metadata
|
61 |
+
is_usable = validate_and_save_cohort_info(
|
62 |
+
is_final=False,
|
63 |
+
cohort=cohort,
|
64 |
+
info_path=json_path,
|
65 |
+
is_gene_available=is_gene_available,
|
66 |
+
is_trait_available=(trait_row is not None)
|
67 |
+
)
|
68 |
+
|
69 |
+
# 4. Clinical Feature Extraction
|
70 |
+
if trait_row is not None:
|
71 |
+
clinical_features = geo_select_clinical_features(
|
72 |
+
clinical_df=clinical_data,
|
73 |
+
trait=trait,
|
74 |
+
trait_row=trait_row,
|
75 |
+
convert_trait=convert_trait,
|
76 |
+
age_row=age_row,
|
77 |
+
convert_age=convert_age,
|
78 |
+
gender_row=gender_row,
|
79 |
+
convert_gender=convert_gender
|
80 |
+
)
|
81 |
+
|
82 |
+
# Preview the extracted features
|
83 |
+
preview = preview_df(clinical_features)
|
84 |
+
print("Preview of clinical features:")
|
85 |
+
print(preview)
|
86 |
+
|
87 |
+
# Save to CSV
|
88 |
+
clinical_features.to_csv(out_clinical_data_file)
|
89 |
+
# Extract gene expression data from matrix file
|
90 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
91 |
+
|
92 |
+
# Print first 20 row IDs
|
93 |
+
print("First 20 gene/probe IDs:")
|
94 |
+
print(list(genetic_data.index[:20]))
|
95 |
+
# These appear to be Affymetrix probe IDs (e.g. '1007_s_at') rather than human gene symbols
|
96 |
+
# They will need to be mapped to standard gene symbols for analysis
|
97 |
+
requires_gene_mapping = True
|
98 |
+
# Extract gene annotation data
|
99 |
+
gene_metadata = get_gene_annotation(soft_file_path)
|
100 |
+
|
101 |
+
# Preview column names and first few values
|
102 |
+
preview = preview_df(gene_metadata)
|
103 |
+
print("\nGene annotation columns and sample values:")
|
104 |
+
print(preview)
|
105 |
+
# 1. ID and Gene Symbol columns identified from the annotation preview
|
106 |
+
# ID column matches the probe IDs in gene expression data (e.g. '1007_s_at')
|
107 |
+
# Gene Symbol column contains the target gene symbols
|
108 |
+
prob_col = 'ID'
|
109 |
+
gene_col = 'Gene Symbol'
|
110 |
+
|
111 |
+
# 2. Get gene mapping dataframe
|
112 |
+
mapping_data = get_gene_mapping(gene_metadata, prob_col, gene_col)
|
113 |
+
|
114 |
+
# 3. Apply gene mapping to convert probe measurements to gene expression data
|
115 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_data)
|
116 |
+
|
117 |
+
# Preview the first few rows to verify the mapping
|
118 |
+
print("\nFirst few rows of mapped gene expression data:")
|
119 |
+
print(preview_df(gene_data))
|
120 |
+
# 1. Normalize gene symbols and save gene data
|
121 |
+
genetic_data = normalize_gene_symbols_in_index(gene_data)
|
122 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
123 |
+
genetic_data.to_csv(out_gene_data_file)
|
124 |
+
|
125 |
+
# 2. Link clinical and genetic data
|
126 |
+
clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)
|
127 |
+
linked_data = geo_link_clinical_genetic_data(clinical_features, genetic_data)
|
128 |
+
|
129 |
+
# 3. Handle missing values
|
130 |
+
linked_data = handle_missing_values(linked_data, trait)
|
131 |
+
|
132 |
+
# 4. Judge bias in features and remove biased ones
|
133 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
134 |
+
|
135 |
+
# 5. Final validation and save metadata
|
136 |
+
is_usable = validate_and_save_cohort_info(
|
137 |
+
is_final=True,
|
138 |
+
cohort=cohort,
|
139 |
+
info_path=json_path,
|
140 |
+
is_gene_available=is_gene_available,
|
141 |
+
is_trait_available=True,
|
142 |
+
is_biased=trait_biased,
|
143 |
+
df=linked_data,
|
144 |
+
note="Sample size adequate. Gene expression data quality good. Trait is postoperative atrial fibrillation vs sinus rhythm."
|
145 |
+
)
|
146 |
+
|
147 |
+
# 6. Save linked data if usable
|
148 |
+
if is_usable:
|
149 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
150 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Atrial_Fibrillation/code/GSE143924.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Atrial_Fibrillation"
|
6 |
+
cohort = "GSE143924"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Atrial_Fibrillation"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Atrial_Fibrillation/GSE143924"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Atrial_Fibrillation/GSE143924.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Atrial_Fibrillation/gene_data/GSE143924.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Atrial_Fibrillation/clinical_data/GSE143924.csv"
|
16 |
+
json_path = "./output/preprocess/3/Atrial_Fibrillation/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths for SOFT and matrix files
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data from the matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
|
24 |
+
# Create dictionary of unique values for each feature
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print the information
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nSample Characteristics:")
|
31 |
+
for feature, values in unique_values_dict.items():
|
32 |
+
print(f"\n{feature}:")
|
33 |
+
print(values)
|
34 |
+
# 1. Gene Expression Data Availability
|
35 |
+
# Based on background information, this is a transcriptome analysis study from tissue biopsies
|
36 |
+
is_gene_available = True
|
37 |
+
|
38 |
+
# 2.1 Data Availability
|
39 |
+
# From sample characteristics, trait data is in row 1 (POAF vs SR)
|
40 |
+
trait_row = 1
|
41 |
+
# Age and gender are not available in the sample characteristics
|
42 |
+
age_row = None
|
43 |
+
gender_row = None
|
44 |
+
|
45 |
+
# 2.2 Data Type Conversion Functions
|
46 |
+
def convert_trait(value):
|
47 |
+
if not isinstance(value, str):
|
48 |
+
return None
|
49 |
+
value = value.split(": ")[-1].lower()
|
50 |
+
if "postoperative atrial fibrillation" in value or "poaf" in value:
|
51 |
+
return 1
|
52 |
+
elif "sinus rhythm" in value:
|
53 |
+
return 0
|
54 |
+
return None
|
55 |
+
|
56 |
+
def convert_age(value):
|
57 |
+
return None # Not used since age data not available
|
58 |
+
|
59 |
+
def convert_gender(value):
|
60 |
+
return None # Not used since gender data not available
|
61 |
+
|
62 |
+
# 3. Save Initial Metadata
|
63 |
+
is_trait_available = trait_row is not None
|
64 |
+
validate_and_save_cohort_info(
|
65 |
+
is_final=False,
|
66 |
+
cohort=cohort,
|
67 |
+
info_path=json_path,
|
68 |
+
is_gene_available=is_gene_available,
|
69 |
+
is_trait_available=is_trait_available
|
70 |
+
)
|
71 |
+
|
72 |
+
# 4. Extract Clinical Features
|
73 |
+
if trait_row is not None:
|
74 |
+
clinical_df = geo_select_clinical_features(
|
75 |
+
clinical_df=clinical_data,
|
76 |
+
trait=trait,
|
77 |
+
trait_row=trait_row,
|
78 |
+
convert_trait=convert_trait,
|
79 |
+
age_row=age_row,
|
80 |
+
convert_age=convert_age,
|
81 |
+
gender_row=gender_row,
|
82 |
+
convert_gender=convert_gender
|
83 |
+
)
|
84 |
+
|
85 |
+
# Preview the processed clinical data
|
86 |
+
print("Preview of processed clinical data:")
|
87 |
+
print(preview_df(clinical_df))
|
88 |
+
|
89 |
+
# Save clinical data
|
90 |
+
clinical_df.to_csv(out_clinical_data_file)
|
91 |
+
# Extract gene expression data from matrix file
|
92 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
93 |
+
|
94 |
+
# Print first 20 row IDs
|
95 |
+
print("First 20 gene/probe IDs:")
|
96 |
+
print(list(genetic_data.index[:20]))
|
97 |
+
# These appear to be human gene symbols - they follow standard HUGO nomenclature with accepted formats like:
|
98 |
+
# - Standard gene symbols (e.g. AACS, AADAC)
|
99 |
+
# - Antisense RNA annotations (-AS1 suffix)
|
100 |
+
# - Pseudogene annotations (P suffix)
|
101 |
+
# No mapping needed as they are already in the desired format
|
102 |
+
|
103 |
+
requires_gene_mapping = False
|
104 |
+
# 1. Normalize gene symbols and save gene data
|
105 |
+
genetic_data = normalize_gene_symbols_in_index(genetic_data)
|
106 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
107 |
+
genetic_data.to_csv(out_gene_data_file)
|
108 |
+
|
109 |
+
# 2. Link clinical and genetic data
|
110 |
+
linked_data = geo_link_clinical_genetic_data(clinical_df, genetic_data)
|
111 |
+
|
112 |
+
# 3. Handle missing values
|
113 |
+
linked_data = handle_missing_values(linked_data, trait)
|
114 |
+
|
115 |
+
# 4. Judge bias in features and remove biased ones
|
116 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
117 |
+
|
118 |
+
# 5. Final validation and save metadata
|
119 |
+
is_usable = validate_and_save_cohort_info(
|
120 |
+
is_final=True,
|
121 |
+
cohort=cohort,
|
122 |
+
info_path=json_path,
|
123 |
+
is_gene_available=is_gene_available,
|
124 |
+
is_trait_available=True,
|
125 |
+
is_biased=trait_biased,
|
126 |
+
df=linked_data,
|
127 |
+
note="Sample size adequate. Gene expression data quality good. Trait is postoperative atrial fibrillation vs sinus rhythm."
|
128 |
+
)
|
129 |
+
|
130 |
+
# 6. Save linked data if usable
|
131 |
+
if is_usable:
|
132 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
133 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Atrial_Fibrillation/code/GSE235307.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Atrial_Fibrillation"
|
6 |
+
cohort = "GSE235307"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Atrial_Fibrillation"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Atrial_Fibrillation/GSE235307"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Atrial_Fibrillation/GSE235307.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Atrial_Fibrillation/gene_data/GSE235307.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Atrial_Fibrillation/clinical_data/GSE235307.csv"
|
16 |
+
json_path = "./output/preprocess/3/Atrial_Fibrillation/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths for SOFT and matrix files
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data from the matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
|
24 |
+
# Create dictionary of unique values for each feature
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print the information
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nSample Characteristics:")
|
31 |
+
for feature, values in unique_values_dict.items():
|
32 |
+
print(f"\n{feature}:")
|
33 |
+
print(values)
|
34 |
+
# 1. Gene Expression Data Availability
|
35 |
+
# From background info, this is a blood gene expression study
|
36 |
+
is_gene_available = True
|
37 |
+
|
38 |
+
# 2.1 Data Row Identification
|
39 |
+
trait_row = 5 # cardiac rhythm after 1 year follow-up
|
40 |
+
age_row = 2 # age is available
|
41 |
+
gender_row = 1 # gender is available
|
42 |
+
|
43 |
+
# 2.2 Data Type Conversion Functions
|
44 |
+
def convert_trait(value: str) -> Optional[int]:
|
45 |
+
"""Convert AF status to binary: 1 for AF, 0 for sinus rhythm"""
|
46 |
+
if value is None:
|
47 |
+
return None
|
48 |
+
value = value.split(': ')[-1].lower().strip()
|
49 |
+
if 'atrial fibrillation' in value:
|
50 |
+
return 1
|
51 |
+
elif 'sinus rhythm' in value:
|
52 |
+
return 0
|
53 |
+
return None
|
54 |
+
|
55 |
+
def convert_age(value: str) -> Optional[float]:
|
56 |
+
"""Convert age to float"""
|
57 |
+
if value is None:
|
58 |
+
return None
|
59 |
+
try:
|
60 |
+
return float(value.split(': ')[-1])
|
61 |
+
except:
|
62 |
+
return None
|
63 |
+
|
64 |
+
def convert_gender(value: str) -> Optional[int]:
|
65 |
+
"""Convert gender to binary: 0 for female, 1 for male"""
|
66 |
+
if value is None:
|
67 |
+
return None
|
68 |
+
value = value.split(': ')[-1].lower().strip()
|
69 |
+
if value == 'female':
|
70 |
+
return 0
|
71 |
+
elif value == 'male':
|
72 |
+
return 1
|
73 |
+
return None
|
74 |
+
|
75 |
+
# 3. Save Metadata
|
76 |
+
validate_and_save_cohort_info(
|
77 |
+
is_final=False,
|
78 |
+
cohort=cohort,
|
79 |
+
info_path=json_path,
|
80 |
+
is_gene_available=is_gene_available,
|
81 |
+
is_trait_available=trait_row is not None
|
82 |
+
)
|
83 |
+
|
84 |
+
# 4. Clinical Feature Extraction
|
85 |
+
if trait_row is not None:
|
86 |
+
clinical_features = geo_select_clinical_features(
|
87 |
+
clinical_df=clinical_data,
|
88 |
+
trait=trait,
|
89 |
+
trait_row=trait_row,
|
90 |
+
convert_trait=convert_trait,
|
91 |
+
age_row=age_row,
|
92 |
+
convert_age=convert_age,
|
93 |
+
gender_row=gender_row,
|
94 |
+
convert_gender=convert_gender
|
95 |
+
)
|
96 |
+
|
97 |
+
# Preview the extracted features
|
98 |
+
print("Preview of clinical features:")
|
99 |
+
print(preview_df(clinical_features))
|
100 |
+
|
101 |
+
# Save to CSV
|
102 |
+
clinical_features.to_csv(out_clinical_data_file)
|
103 |
+
# Extract gene expression data from matrix file
|
104 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
105 |
+
|
106 |
+
# Print first 20 row IDs
|
107 |
+
print("First 20 gene/probe IDs:")
|
108 |
+
print(list(genetic_data.index[:20]))
|
109 |
+
# The gene identifiers in this dataset appear to be simple numeric values,
|
110 |
+
# which are not standard human gene symbols.
|
111 |
+
# Standard gene symbols would be like "BRCA1", "TP53", etc
|
112 |
+
# Therefore mapping is required to convert these to proper gene symbols.
|
113 |
+
|
114 |
+
requires_gene_mapping = True
|
115 |
+
# Extract gene annotation data
|
116 |
+
gene_metadata = get_gene_annotation(soft_file_path)
|
117 |
+
|
118 |
+
# Preview column names and first few values
|
119 |
+
preview = preview_df(gene_metadata)
|
120 |
+
print("\nGene annotation columns and sample values:")
|
121 |
+
print(preview)
|
122 |
+
# 1. From the preview, 'ID' contains numeric identifiers matching gene expression data,
|
123 |
+
# and 'GENE_SYMBOL' contains human gene symbols
|
124 |
+
|
125 |
+
# 2. Extract mapping between probe IDs and gene symbols
|
126 |
+
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')
|
127 |
+
|
128 |
+
# 3. Apply mapping to convert probe-level data to gene expression data
|
129 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_data)
|
130 |
+
|
131 |
+
# Normalize gene symbols in the gene expression data
|
132 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
133 |
+
|
134 |
+
# Preview the mapped gene data
|
135 |
+
print("\nFirst 20 genes after mapping:")
|
136 |
+
print(list(gene_data.index[:20]))
|
137 |
+
|
138 |
+
# Save gene expression data
|
139 |
+
gene_data.to_csv(out_gene_data_file)
|
140 |
+
# 1. Normalize gene symbols and save gene data
|
141 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
142 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
143 |
+
gene_data.to_csv(out_gene_data_file)
|
144 |
+
|
145 |
+
# 2. Link clinical and genetic data
|
146 |
+
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
|
147 |
+
|
148 |
+
# 3. Handle missing values
|
149 |
+
linked_data = handle_missing_values(linked_data, trait)
|
150 |
+
|
151 |
+
# 4. Judge bias in features and remove biased ones
|
152 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
153 |
+
|
154 |
+
# 5. Final validation and save metadata
|
155 |
+
is_usable = validate_and_save_cohort_info(
|
156 |
+
is_final=True,
|
157 |
+
cohort=cohort,
|
158 |
+
info_path=json_path,
|
159 |
+
is_gene_available=is_gene_available,
|
160 |
+
is_trait_available=True,
|
161 |
+
is_biased=trait_biased,
|
162 |
+
df=linked_data,
|
163 |
+
note="Sample size adequate. Gene expression data quality good. Trait is early vs late recurrence."
|
164 |
+
)
|
165 |
+
|
166 |
+
# 6. Save linked data if usable
|
167 |
+
if is_usable:
|
168 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
169 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Atrial_Fibrillation/code/GSE41177.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Atrial_Fibrillation"
|
6 |
+
cohort = "GSE41177"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Atrial_Fibrillation"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Atrial_Fibrillation/GSE41177"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Atrial_Fibrillation/GSE41177.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Atrial_Fibrillation/gene_data/GSE41177.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Atrial_Fibrillation/clinical_data/GSE41177.csv"
|
16 |
+
json_path = "./output/preprocess/3/Atrial_Fibrillation/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths for SOFT and matrix files
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data from the matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
|
24 |
+
# Create dictionary of unique values for each feature
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print the information
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nSample Characteristics:")
|
31 |
+
for feature, values in unique_values_dict.items():
|
32 |
+
print(f"\n{feature}:")
|
33 |
+
print(values)
|
34 |
+
# 1. Gene Expression Data Availability
|
35 |
+
is_gene_available = True # Dataset contains microarray gene expression data per background info
|
36 |
+
|
37 |
+
# 2.1 Data Availability
|
38 |
+
trait_row = 3 # 'af duration' indicates AF status duration
|
39 |
+
age_row = 2 # Age data available
|
40 |
+
gender_row = 1 # Gender data available
|
41 |
+
|
42 |
+
# 2.2 Data Type Conversion Functions
|
43 |
+
def convert_trait(x):
|
44 |
+
if not isinstance(x, str):
|
45 |
+
return None
|
46 |
+
value = x.split(': ')[-1].strip()
|
47 |
+
# Convert AF duration to binary - any duration indicates AF presence
|
48 |
+
if value == '0M':
|
49 |
+
return 0
|
50 |
+
elif 'M' in value: # Has months duration
|
51 |
+
return 1
|
52 |
+
return None
|
53 |
+
|
54 |
+
def convert_age(x):
|
55 |
+
if not isinstance(x, str):
|
56 |
+
return None
|
57 |
+
value = x.split(': ')[-1].strip()
|
58 |
+
if value.endswith('Y'):
|
59 |
+
try:
|
60 |
+
return float(value[:-1]) # Remove 'Y' and convert to float
|
61 |
+
except:
|
62 |
+
return None
|
63 |
+
return None
|
64 |
+
|
65 |
+
def convert_gender(x):
|
66 |
+
if not isinstance(x, str):
|
67 |
+
return None
|
68 |
+
value = x.split(': ')[-1].strip().lower()
|
69 |
+
if value == 'female':
|
70 |
+
return 0
|
71 |
+
elif value == 'male':
|
72 |
+
return 1
|
73 |
+
return None
|
74 |
+
|
75 |
+
# 3. Save Metadata
|
76 |
+
validate_and_save_cohort_info(is_final=False,
|
77 |
+
cohort=cohort,
|
78 |
+
info_path=json_path,
|
79 |
+
is_gene_available=is_gene_available,
|
80 |
+
is_trait_available=trait_row is not None)
|
81 |
+
|
82 |
+
# 4. Extract Clinical Features
|
83 |
+
selected_clinical_df = geo_select_clinical_features(clinical_df=clinical_data,
|
84 |
+
trait=trait,
|
85 |
+
trait_row=trait_row,
|
86 |
+
convert_trait=convert_trait,
|
87 |
+
age_row=age_row,
|
88 |
+
convert_age=convert_age,
|
89 |
+
gender_row=gender_row,
|
90 |
+
convert_gender=convert_gender)
|
91 |
+
|
92 |
+
# Preview the processed clinical data
|
93 |
+
print(preview_df(selected_clinical_df))
|
94 |
+
|
95 |
+
# Save clinical data
|
96 |
+
selected_clinical_df.to_csv(out_clinical_data_file)
|
97 |
+
# Extract gene expression data from matrix file
|
98 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
99 |
+
|
100 |
+
# Print first 20 row IDs
|
101 |
+
print("First 20 gene/probe IDs:")
|
102 |
+
print(list(genetic_data.index[:20]))
|
103 |
+
# These are Affymetrix probe IDs (starting with numbers and containing "_at"), not human gene symbols
|
104 |
+
# They need to be mapped to standard gene symbols for analysis
|
105 |
+
requires_gene_mapping = True
|
106 |
+
# Extract gene annotation data
|
107 |
+
gene_metadata = get_gene_annotation(soft_file_path)
|
108 |
+
|
109 |
+
# Preview column names and first few values
|
110 |
+
preview = preview_df(gene_metadata)
|
111 |
+
print("\nGene annotation columns and sample values:")
|
112 |
+
print(preview)
|
113 |
+
# Get gene mapping dataframe from annotation data
|
114 |
+
# 'ID' column contains probe IDs matching genetic_data, 'Gene Symbol' contains gene symbols
|
115 |
+
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol')
|
116 |
+
|
117 |
+
# Apply gene mapping to convert from probes to genes
|
118 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_df)
|
119 |
+
|
120 |
+
# Preview the first few rows and columns of the mapped gene data
|
121 |
+
print("\nFirst few rows of mapped gene expression data:")
|
122 |
+
print(preview_df(gene_data))
|
123 |
+
# 1. Normalize gene symbols and save gene data
|
124 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
125 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
126 |
+
gene_data.to_csv(out_gene_data_file)
|
127 |
+
|
128 |
+
# 2. Link clinical and genetic data
|
129 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
|
130 |
+
|
131 |
+
# 3. Handle missing values
|
132 |
+
linked_data = handle_missing_values(linked_data, trait)
|
133 |
+
|
134 |
+
# 4. Judge bias in features and remove biased ones
|
135 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
136 |
+
|
137 |
+
# 5. Final validation and save metadata
|
138 |
+
is_usable = validate_and_save_cohort_info(
|
139 |
+
is_final=True,
|
140 |
+
cohort=cohort,
|
141 |
+
info_path=json_path,
|
142 |
+
is_gene_available=is_gene_available,
|
143 |
+
is_trait_available=True,
|
144 |
+
is_biased=trait_biased,
|
145 |
+
df=linked_data,
|
146 |
+
note="Sample size adequate. Gene expression data quality good. Trait is early vs late recurrence."
|
147 |
+
)
|
148 |
+
|
149 |
+
# 6. Save linked data if usable
|
150 |
+
if is_usable:
|
151 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
152 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Atrial_Fibrillation/code/GSE47727.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Atrial_Fibrillation"
|
6 |
+
cohort = "GSE47727"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Atrial_Fibrillation"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Atrial_Fibrillation/GSE47727"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Atrial_Fibrillation/GSE47727.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Atrial_Fibrillation/gene_data/GSE47727.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Atrial_Fibrillation/clinical_data/GSE47727.csv"
|
16 |
+
json_path = "./output/preprocess/3/Atrial_Fibrillation/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths for SOFT and matrix files
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data from the matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
|
24 |
+
# Create dictionary of unique values for each feature
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print the information
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nSample Characteristics:")
|
31 |
+
for feature, values in unique_values_dict.items():
|
32 |
+
print(f"\n{feature}:")
|
33 |
+
print(values)
|
34 |
+
# 1. Gene Expression Data Availability
|
35 |
+
# Based on the background info mentioning "gene expression" and "HumanHT-12", this is gene expression data
|
36 |
+
is_gene_available = True
|
37 |
+
|
38 |
+
# 2.1 Data Row Identification
|
39 |
+
# From characteristics dictionary:
|
40 |
+
# For trait: no direct AF status, all are controls based on background info
|
41 |
+
trait_row = None
|
42 |
+
|
43 |
+
# Age is in row 0
|
44 |
+
age_row = 0
|
45 |
+
|
46 |
+
# Gender is in row 1
|
47 |
+
gender_row = 1
|
48 |
+
|
49 |
+
# 2.2 Data Type Conversion Functions
|
50 |
+
def convert_trait(x):
|
51 |
+
# All samples are controls
|
52 |
+
return 0
|
53 |
+
|
54 |
+
def convert_age(x):
|
55 |
+
# Extract numeric age from strings like "age (yrs): 67"
|
56 |
+
try:
|
57 |
+
age = int(x.split(': ')[1])
|
58 |
+
return age
|
59 |
+
except:
|
60 |
+
return None
|
61 |
+
|
62 |
+
def convert_gender(x):
|
63 |
+
# Convert gender strings to binary (female=0, male=1)
|
64 |
+
gender = x.split(': ')[1].lower()
|
65 |
+
if gender == 'female':
|
66 |
+
return 0
|
67 |
+
elif gender == 'male':
|
68 |
+
return 1
|
69 |
+
return None
|
70 |
+
|
71 |
+
# 3. Save initial metadata
|
72 |
+
validate_and_save_cohort_info(
|
73 |
+
is_final=False,
|
74 |
+
cohort=cohort,
|
75 |
+
info_path=json_path,
|
76 |
+
is_gene_available=is_gene_available,
|
77 |
+
is_trait_available=False # trait_row is None
|
78 |
+
)
|
79 |
+
|
80 |
+
# 4. Extract clinical features
|
81 |
+
clinical_df = geo_select_clinical_features(
|
82 |
+
clinical_df=clinical_data,
|
83 |
+
trait=trait,
|
84 |
+
trait_row=trait_row,
|
85 |
+
convert_trait=convert_trait,
|
86 |
+
age_row=age_row,
|
87 |
+
convert_age=convert_age,
|
88 |
+
gender_row=gender_row,
|
89 |
+
convert_gender=convert_gender
|
90 |
+
)
|
91 |
+
|
92 |
+
# Preview the extracted features
|
93 |
+
print("\nPreview of extracted clinical features:")
|
94 |
+
print(preview_df(clinical_df))
|
95 |
+
|
96 |
+
# Save to CSV
|
97 |
+
clinical_df.to_csv(out_clinical_data_file)
|