Liu-Hy commited on
Commit
5cb7ccf
·
verified ·
1 Parent(s): 2e84725

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. input/GEO/Substance_Use_Disorder/GSE161986/GSE161986_family.soft.gz +3 -0
  2. input/GEO/Substance_Use_Disorder/GSE161986/GSE161986_series_matrix.txt.gz +3 -0
  3. input/GEO/Substance_Use_Disorder/GSE161999/GSE161999-GPL16384_series_matrix.txt.gz +3 -0
  4. input/GEO/Substance_Use_Disorder/GSE273630/GSE273630_family.soft.gz +3 -0
  5. input/GEO/Telomere_Length/GSE16058/GSE16058_series_matrix.txt.gz +3 -0
  6. input/GEO/Testicular_Cancer/GSE62523/GSE62523_family.soft.gz +3 -0
  7. input/GEO/Thymoma/GSE29695/GSE29695_family.soft.gz +3 -0
  8. input/GEO/Thymoma/GSE42977/GSE42977_series_matrix.txt.gz +3 -0
  9. input/GEO/Uterine_Carcinosarcoma/GSE68950/GSE68950_family.soft.gz +3 -0
  10. input/GEO/Uterine_Carcinosarcoma/GSE68950/GSE68950_series_matrix.txt.gz +3 -0
  11. input/GEO/Vitamin_D_Levels/GSE118723/GSE118723_series_matrix.txt.gz +3 -0
  12. input/TCGA/TCGA_Bladder_Cancer_(BLCA)/TCGA.BLCA.sampleMap_BLCA_clinicalMatrix +0 -0
  13. input/TCGA/TCGA_Breast_Cancer_(BRCA)/TCGA.BRCA.sampleMap_BRCA_clinicalMatrix +0 -0
  14. input/TCGA/TCGA_Cervical_Cancer_(CESC)/TCGA.CESC.sampleMap_CESC_clinicalMatrix +0 -0
  15. output/preprocess/Polycystic_Ovary_Syndrome/GSE87435.csv +0 -0
  16. output/preprocess/Polycystic_Ovary_Syndrome/clinical_data/GSE151158.csv +3 -0
  17. output/preprocess/Polycystic_Ovary_Syndrome/clinical_data/GSE43322.csv +3 -0
  18. output/preprocess/Polycystic_Ovary_Syndrome/clinical_data/GSE87435.csv +3 -0
  19. output/preprocess/Polycystic_Ovary_Syndrome/clinical_data/TCGA.csv +703 -0
  20. output/preprocess/Polycystic_Ovary_Syndrome/cohort_info.json +42 -0
  21. output/preprocess/Polycystic_Ovary_Syndrome/gene_data/GSE151158.csv +0 -0
  22. output/preprocess/Polycystic_Ovary_Syndrome/gene_data/GSE43322.csv +0 -0
  23. output/preprocess/Polycystic_Ovary_Syndrome/gene_data/GSE87435.csv +0 -0
  24. output/preprocess/Post-Traumatic_Stress_Disorder/GSE199841.csv +0 -0
  25. output/preprocess/Post-Traumatic_Stress_Disorder/cohort_info.json +102 -0
  26. output/preprocess/Psoriasis/GSE183134.csv +0 -0
  27. output/preprocess/Psoriasis/clinical_data/GSE123086.csv +4 -0
  28. output/preprocess/Psoriasis/clinical_data/GSE123088.csv +4 -0
  29. output/preprocess/Psoriasis/clinical_data/GSE158448.csv +2 -0
  30. output/preprocess/Psoriasis/clinical_data/GSE162998.csv +2 -0
  31. output/preprocess/Psoriasis/clinical_data/GSE178228.csv +2 -0
  32. output/preprocess/Rectal_Cancer/cohort_info.json +112 -0
  33. p1/preprocess/Prostate_Cancer/gene_data/GSE259218.csv +9 -0
  34. p1/preprocess/Sarcoma/clinical_data/GSE197147.csv +2 -0
  35. p1/preprocess/Sarcoma/code/GSE118336.py +251 -0
  36. p1/preprocess/Sarcoma/code/GSE133228.py +247 -0
  37. p1/preprocess/Sarcoma/code/GSE142162.py +235 -0
  38. p1/preprocess/Sarcoma/code/GSE159847.py +237 -0
  39. p1/preprocess/Sarcoma/code/GSE159848.py +234 -0
  40. p1/preprocess/Sarcoma/code/GSE162785.py +218 -0
  41. p1/preprocess/Sarcoma/code/GSE162789.py +245 -0
  42. p1/preprocess/Sarcoma/code/GSE197147.py +244 -0
  43. p1/preprocess/Schizophrenia/GSE120340.csv +0 -0
  44. p1/preprocess/Schizophrenia/GSE120342.csv +0 -0
  45. p1/preprocess/Schizophrenia/clinical_data/GSE120340.csv +2 -0
  46. p1/preprocess/Schizophrenia/clinical_data/GSE120342.csv +2 -0
  47. p1/preprocess/Schizophrenia/clinical_data/GSE145554.csv +4 -0
  48. p1/preprocess/Schizophrenia/code/GSE119288.py +120 -0
  49. p1/preprocess/Schizophrenia/code/GSE119289.py +124 -0
  50. p1/preprocess/Schizophrenia/code/GSE120340.py +144 -0
input/GEO/Substance_Use_Disorder/GSE161986/GSE161986_family.soft.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5fabb7e9b7191a95400ec39bb8b2196968f6648917fd217cdf3b19cc44a3aae
3
+ size 11232051
input/GEO/Substance_Use_Disorder/GSE161986/GSE161986_series_matrix.txt.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe0ed7db595f0a1fa8f4f8e8a8f9c17963519c03724ead257c481f41b7709446
3
+ size 2677416
input/GEO/Substance_Use_Disorder/GSE161999/GSE161999-GPL16384_series_matrix.txt.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8fd2f33c7476ea46e40c6783a73ffcaf995bd448b58a1bdacc3cbbc3bf106a6a
3
+ size 216063
input/GEO/Substance_Use_Disorder/GSE273630/GSE273630_family.soft.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f04bdf73ec7d848ccf8f0c89cb1085a64a37705ebc15c7d471666dc027f56024
3
+ size 342110
input/GEO/Telomere_Length/GSE16058/GSE16058_series_matrix.txt.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dfd5d6bbd19ea8c1a8c01ece38858229406cb245a49d9b56cecd99d8bc1b5d7d
3
+ size 5901241
input/GEO/Testicular_Cancer/GSE62523/GSE62523_family.soft.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f44fda1a3d4b8d2832345f787ccc8932a40ad46db6524ec4df672703f4be207
3
+ size 16391600
input/GEO/Thymoma/GSE29695/GSE29695_family.soft.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe6916f7a7ac09341b61be773a14fa93df9afbb135bf9716cc838d96202612a7
3
+ size 18223233
input/GEO/Thymoma/GSE42977/GSE42977_series_matrix.txt.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29764af5134eca4417ac82fc5911de2719ec5fd7a6b5f11a86b53565d60e37f9
3
+ size 29160190
input/GEO/Uterine_Carcinosarcoma/GSE68950/GSE68950_family.soft.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0afb89c03e6dc6af279d5dd144dbd63d8676516dc5f5d819a86e7bd92a96095a
3
+ size 87561521
input/GEO/Uterine_Carcinosarcoma/GSE68950/GSE68950_series_matrix.txt.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ff5e6853968d4e479f9202604ed5febbf24d64309d1cfc415c93b1c120fe6dd
3
+ size 33754853
input/GEO/Vitamin_D_Levels/GSE118723/GSE118723_series_matrix.txt.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc2ca7d518c1fba458b5648650a576597f7970f43b63fb3c25158717bf408f61
3
+ size 252686
input/TCGA/TCGA_Bladder_Cancer_(BLCA)/TCGA.BLCA.sampleMap_BLCA_clinicalMatrix ADDED
The diff for this file is too large to render. See raw diff
 
input/TCGA/TCGA_Breast_Cancer_(BRCA)/TCGA.BRCA.sampleMap_BRCA_clinicalMatrix ADDED
The diff for this file is too large to render. See raw diff
 
input/TCGA/TCGA_Cervical_Cancer_(CESC)/TCGA.CESC.sampleMap_CESC_clinicalMatrix ADDED
The diff for this file is too large to render. See raw diff
 
output/preprocess/Polycystic_Ovary_Syndrome/GSE87435.csv ADDED
The diff for this file is too large to render. See raw diff
 
output/preprocess/Polycystic_Ovary_Syndrome/clinical_data/GSE151158.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ ,GSM4567420,GSM4567421,GSM4567422,GSM4567423,GSM4567424,GSM4567425,GSM4567426,GSM4567427,GSM4567428,GSM4567429,GSM4567430,GSM4567431,GSM4567432,GSM4567433,GSM4567434,GSM4567435,GSM4567436,GSM4567437,GSM4567438,GSM4567439,GSM4567440,GSM4567441,GSM4567442,GSM4567443,GSM4567444,GSM4567445,GSM4567446,GSM4567447,GSM4567448,GSM4567449,GSM4567450,GSM4567451,GSM4567452,GSM4567453,GSM4567454,GSM4567455,GSM4567456,GSM4567457,GSM4567458,GSM4567459,GSM4567460,GSM4567461,GSM4567462,GSM4567463,GSM4567464,GSM4567465,GSM4567466,GSM4567467,GSM4567468,GSM4567469,GSM4567470,GSM4567471,GSM4567472,GSM4567473,GSM4567474,GSM4567475,GSM4567476,GSM4567477,GSM4567478,GSM4567479,GSM4567480,GSM4567481,GSM4567482,GSM4567483,GSM4567484,GSM4567485
2
+ Polycystic_Ovary_Syndrome,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,,,,
3
+ Gender,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
output/preprocess/Polycystic_Ovary_Syndrome/clinical_data/GSE43322.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ ,GSM1059640,GSM1059641,GSM1059642,GSM1059643,GSM1059644,GSM1059645,GSM1059646,GSM1059647,GSM1059648,GSM1059649,GSM1059650,GSM1059651,GSM1059652,GSM1059653,GSM1059654,GSM1059686,GSM1059687,GSM1059688,GSM1059689,GSM1059690,GSM1059691,GSM1059692,GSM1059693,GSM1059694,GSM1059695,GSM1059696,GSM1059697,GSM1059698,GSM1059699,GSM1059700,GSM1059701
2
+ Polycystic_Ovary_Syndrome,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
3
+ Gender,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
output/preprocess/Polycystic_Ovary_Syndrome/clinical_data/GSE87435.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ ,GSM2331293,GSM2331295,GSM2331297,GSM2331299,GSM2331301,GSM2331303,GSM2331305,GSM2331307,GSM2331309,GSM2331311,GSM2331313,GSM2331315,GSM2331317,GSM2331319,GSM2331321,GSM2331323,GSM2331325,GSM2331327
2
+ Polycystic_Ovary_Syndrome,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
3
+ Gender,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
output/preprocess/Polycystic_Ovary_Syndrome/clinical_data/TCGA.csv ADDED
@@ -0,0 +1,703 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,Polycystic_Ovary_Syndrome,Age,Gender
2
+ TCGA-06-0743-01,1,69.0,1.0
3
+ TCGA-26-5136-01,1,78.0,0.0
4
+ TCGA-HT-7857-01,1,24.0,0.0
5
+ TCGA-TQ-A7RW-01,1,32.0,1.0
6
+ TCGA-HT-7879-01,1,31.0,1.0
7
+ TCGA-HT-7609-01,1,34.0,1.0
8
+ TCGA-FG-5963-01,1,23.0,1.0
9
+ TCGA-TM-A7C3-01,1,43.0,0.0
10
+ TCGA-FG-A710-01,1,50.0,0.0
11
+ TCGA-FG-6691-01,1,23.0,0.0
12
+ TCGA-32-2634-01,1,82.0,1.0
13
+ TCGA-TQ-A7RM-01,1,41.0,0.0
14
+ TCGA-HW-7486-01,1,37.0,1.0
15
+ TCGA-06-0882-01,1,30.0,1.0
16
+ TCGA-FG-8186-01,1,42.0,0.0
17
+ TCGA-HT-A4DS-01,1,55.0,0.0
18
+ TCGA-06-0219-01,1,67.0,1.0
19
+ TCGA-FG-A60J-01,1,47.0,0.0
20
+ TCGA-HT-7858-01,1,28.0,1.0
21
+ TCGA-HT-8106-01,1,53.0,1.0
22
+ TCGA-06-0178-01,1,38.0,1.0
23
+ TCGA-76-4929-01,1,76.0,0.0
24
+ TCGA-E1-A7YY-01,1,27.0,0.0
25
+ TCGA-S9-A7R8-01,1,44.0,0.0
26
+ TCGA-QH-A65X-01,1,28.0,0.0
27
+ TCGA-27-2528-01,1,62.0,1.0
28
+ TCGA-14-0781-01,1,49.0,1.0
29
+ TCGA-HT-A5RC-01,1,70.0,0.0
30
+ TCGA-28-1747-01,1,44.0,1.0
31
+ TCGA-S9-A6TY-01,1,50.0,1.0
32
+ TCGA-FG-7638-01,1,31.0,0.0
33
+ TCGA-DB-A64P-01,1,40.0,1.0
34
+ TCGA-P5-A5F4-01,1,35.0,0.0
35
+ TCGA-HT-7467-01,1,54.0,1.0
36
+ TCGA-14-1034-01,1,60.0,0.0
37
+ TCGA-S9-A7J2-01,1,25.0,1.0
38
+ TCGA-S9-A7R2-01,1,69.0,1.0
39
+ TCGA-DU-A5TW-01,1,33.0,0.0
40
+ TCGA-HT-8113-01,1,49.0,0.0
41
+ TCGA-DU-A6S7-01,1,27.0,0.0
42
+ TCGA-QH-A65R-01,1,38.0,0.0
43
+ TCGA-14-1829-01,1,57.0,1.0
44
+ TCGA-06-0644-01,1,71.0,1.0
45
+ TCGA-DB-5273-01,1,33.0,1.0
46
+ TCGA-DU-8166-01,1,29.0,0.0
47
+ TCGA-DU-A5TY-01,1,46.0,0.0
48
+ TCGA-TM-A84R-01,1,46.0,1.0
49
+ TCGA-DU-7018-01,1,57.0,0.0
50
+ TCGA-14-1034-02,1,60.0,0.0
51
+ TCGA-06-0187-01,1,69.0,1.0
52
+ TCGA-HT-A74J-01,1,33.0,1.0
53
+ TCGA-FG-7641-01,1,31.0,1.0
54
+ TCGA-TQ-A7RK-02,1,29.0,1.0
55
+ TCGA-DU-A6S2-01,1,37.0,0.0
56
+ TCGA-06-0158-01,1,73.0,1.0
57
+ TCGA-DB-A4XH-01,1,53.0,0.0
58
+ TCGA-DU-6404-02,1,24.0,0.0
59
+ TCGA-TM-A7CF-02,1,41.0,0.0
60
+ TCGA-FG-8181-01,1,23.0,1.0
61
+ TCGA-DU-7006-01,1,60.0,0.0
62
+ TCGA-CS-5394-01,1,40.0,1.0
63
+ TCGA-E1-A7YK-01,1,52.0,1.0
64
+ TCGA-HT-7470-01,1,37.0,1.0
65
+ TCGA-S9-A7IQ-01,1,45.0,0.0
66
+ TCGA-P5-A5F0-01,1,33.0,1.0
67
+ TCGA-S9-A89V-01,1,70.0,1.0
68
+ TCGA-IK-7675-01,1,43.0,1.0
69
+ TCGA-FG-A4MW-01,1,63.0,1.0
70
+ TCGA-HT-7677-01,1,53.0,1.0
71
+ TCGA-12-5299-01,1,56.0,0.0
72
+ TCGA-DU-6407-02,1,35.0,0.0
73
+ TCGA-06-0747-01,1,53.0,1.0
74
+ TCGA-06-0156-01,1,57.0,1.0
75
+ TCGA-DU-6396-01,1,31.0,0.0
76
+ TCGA-CS-6669-01,1,26.0,0.0
77
+ TCGA-P5-A735-01,1,38.0,0.0
78
+ TCGA-TM-A7CA-01,1,44.0,1.0
79
+ TCGA-DU-7304-01,1,43.0,1.0
80
+ TCGA-P5-A5ET-01,1,27.0,1.0
81
+ TCGA-06-5414-01,1,61.0,1.0
82
+ TCGA-S9-A6TU-01,1,38.0,1.0
83
+ TCGA-E1-A7YS-01,1,71.0,1.0
84
+ TCGA-DH-5144-01,1,56.0,0.0
85
+ TCGA-DB-A64O-01,1,59.0,1.0
86
+ TCGA-HT-8111-01,1,32.0,1.0
87
+ TCGA-14-0736-02,1,49.0,1.0
88
+ TCGA-DB-A64R-01,1,24.0,0.0
89
+ TCGA-FG-8189-01,1,33.0,0.0
90
+ TCGA-27-2521-01,1,34.0,1.0
91
+ TCGA-06-0749-01,1,50.0,1.0
92
+ TCGA-32-2615-01,1,62.0,1.0
93
+ TCGA-QH-A6XC-01,1,48.0,1.0
94
+ TCGA-HT-7856-01,1,35.0,1.0
95
+ TCGA-DB-A75K-01,1,55.0,0.0
96
+ TCGA-DU-5871-01,1,37.0,0.0
97
+ TCGA-06-2557-01,1,76.0,1.0
98
+ TCGA-DU-A5TS-01,1,42.0,1.0
99
+ TCGA-HT-A5RA-01,1,65.0,0.0
100
+ TCGA-06-0132-01,1,49.0,1.0
101
+ TCGA-QH-A6X3-01,1,27.0,1.0
102
+ TCGA-FG-A713-01,1,74.0,0.0
103
+ TCGA-FG-5965-01,1,39.0,0.0
104
+ TCGA-DB-A64L-01,1,67.0,0.0
105
+ TCGA-E1-A7YW-01,1,28.0,1.0
106
+ TCGA-DB-A64Q-01,1,31.0,0.0
107
+ TCGA-TQ-A7RO-01,1,29.0,1.0
108
+ TCGA-HT-7695-01,1,29.0,0.0
109
+ TCGA-06-5859-01,1,63.0,1.0
110
+ TCGA-TM-A7C4-01,1,39.0,0.0
111
+ TCGA-HT-7854-01,1,62.0,1.0
112
+ TCGA-TQ-A7RP-01,1,66.0,1.0
113
+ TCGA-HT-8012-01,1,30.0,0.0
114
+ TCGA-S9-A7R3-01,1,28.0,0.0
115
+ TCGA-HT-8558-01,1,29.0,0.0
116
+ TCGA-E1-5311-01,1,31.0,1.0
117
+ TCGA-TM-A84Q-01,1,31.0,1.0
118
+ TCGA-HW-8322-01,1,39.0,1.0
119
+ TCGA-HW-A5KL-01,1,42.0,0.0
120
+ TCGA-27-2523-01,1,63.0,1.0
121
+ TCGA-HT-7605-01,1,38.0,1.0
122
+ TCGA-DU-8163-01,1,29.0,1.0
123
+ TCGA-FG-5962-01,1,54.0,1.0
124
+ TCGA-TQ-A7RV-01,1,27.0,1.0
125
+ TCGA-HT-7684-01,1,58.0,1.0
126
+ TCGA-CS-6290-01,1,31.0,1.0
127
+ TCGA-06-5858-01,1,45.0,0.0
128
+ TCGA-DU-5847-01,1,34.0,0.0
129
+ TCGA-HT-7485-01,1,42.0,1.0
130
+ TCGA-06-0129-01,1,30.0,1.0
131
+ TCGA-HT-A74H-01,1,62.0,1.0
132
+ TCGA-TQ-A7RH-01,1,39.0,1.0
133
+ TCGA-27-1832-01,1,59.0,0.0
134
+ TCGA-HT-7611-01,1,36.0,1.0
135
+ TCGA-DU-A5TR-01,1,51.0,1.0
136
+ TCGA-TM-A84M-01,1,40.0,1.0
137
+ TCGA-FG-7643-01,1,49.0,0.0
138
+ TCGA-DU-8164-01,1,51.0,1.0
139
+ TCGA-32-5222-01,1,66.0,1.0
140
+ TCGA-HW-7487-01,1,39.0,1.0
141
+ TCGA-RY-A83Z-01,1,54.0,0.0
142
+ TCGA-E1-A7YQ-01,1,58.0,0.0
143
+ TCGA-FG-7637-01,1,49.0,1.0
144
+ TCGA-DH-A66F-01,1,49.0,1.0
145
+ TCGA-FG-A87N-01,1,37.0,0.0
146
+ TCGA-QH-A6CZ-01,1,38.0,1.0
147
+ TCGA-CS-4943-01,1,37.0,1.0
148
+ TCGA-FG-A4MU-01,1,58.0,1.0
149
+ TCGA-DU-6408-01,1,23.0,0.0
150
+ TCGA-28-5218-01,1,63.0,1.0
151
+ TCGA-06-0211-02,1,47.0,1.0
152
+ TCGA-DU-5855-01,1,49.0,0.0
153
+ TCGA-TM-A7CF-01,1,41.0,0.0
154
+ TCGA-TQ-A7RG-01,1,36.0,1.0
155
+ TCGA-HT-7610-01,1,25.0,0.0
156
+ TCGA-S9-A7J3-01,1,52.0,0.0
157
+ TCGA-DH-A7US-01,1,50.0,1.0
158
+ TCGA-QH-A65V-01,1,43.0,0.0
159
+ TCGA-06-0678-11,0,46.765467625899284,1.0
160
+ TCGA-S9-A7IY-01,1,39.0,1.0
161
+ TCGA-VM-A8C9-01,1,37.0,0.0
162
+ TCGA-HT-8110-01,1,57.0,1.0
163
+ TCGA-06-0675-11,0,46.765467625899284,1.0
164
+ TCGA-CS-4938-01,1,31.0,0.0
165
+ TCGA-HT-7603-01,1,29.0,1.0
166
+ TCGA-15-1444-01,1,21.0,1.0
167
+ TCGA-06-0152-02,1,68.0,1.0
168
+ TCGA-DU-7011-01,1,25.0,1.0
169
+ TCGA-DU-6395-01,1,31.0,1.0
170
+ TCGA-DU-8162-01,1,61.0,0.0
171
+ TCGA-DU-8161-01,1,63.0,0.0
172
+ TCGA-WY-A859-01,1,34.0,0.0
173
+ TCGA-HT-7902-01,1,30.0,0.0
174
+ TCGA-HT-A5R9-01,1,48.0,0.0
175
+ TCGA-RY-A845-01,1,40.0,0.0
176
+ TCGA-HT-A5RB-01,1,24.0,1.0
177
+ TCGA-FG-6690-01,1,70.0,1.0
178
+ TCGA-DB-A4XG-01,1,34.0,1.0
179
+ TCGA-QH-A6X9-01,1,73.0,0.0
180
+ TCGA-E1-A7YO-01,1,45.0,1.0
181
+ TCGA-26-1442-01,1,43.0,1.0
182
+ TCGA-RY-A843-01,1,30.0,1.0
183
+ TCGA-WH-A86K-01,1,65.0,1.0
184
+ TCGA-S9-A7QW-01,1,54.0,0.0
185
+ TCGA-DU-7019-01,1,39.0,1.0
186
+ TCGA-32-2616-01,1,48.0,0.0
187
+ TCGA-DB-5270-01,1,38.0,0.0
188
+ TCGA-28-2510-01,1,46.765467625899284,1.0
189
+ TCGA-08-0386-01,1,74.0,1.0
190
+ TCGA-S9-A6WE-01,1,34.0,1.0
191
+ TCGA-41-3915-01,1,48.0,1.0
192
+ TCGA-TQ-A7RF-01,1,27.0,0.0
193
+ TCGA-TQ-A7RR-01,1,38.0,1.0
194
+ TCGA-19-1787-01,1,48.0,1.0
195
+ TCGA-06-0190-01,1,62.0,1.0
196
+ TCGA-DH-A66B-01,1,52.0,1.0
197
+ TCGA-DB-A4XB-01,1,38.0,1.0
198
+ TCGA-WY-A85D-01,1,60.0,1.0
199
+ TCGA-FG-A4MY-01,1,44.0,0.0
200
+ TCGA-28-5209-01,1,66.0,0.0
201
+ TCGA-HT-7681-01,1,29.0,0.0
202
+ TCGA-DU-8168-01,1,55.0,0.0
203
+ TCGA-CS-6666-01,1,22.0,1.0
204
+ TCGA-28-5216-01,1,52.0,1.0
205
+ TCGA-32-1982-01,1,76.0,0.0
206
+ TCGA-28-2499-01,1,59.0,1.0
207
+ TCGA-19-4065-02,1,36.0,1.0
208
+ TCGA-06-0141-01,1,62.0,1.0
209
+ TCGA-DB-A4X9-01,1,33.0,0.0
210
+ TCGA-HT-7860-01,1,60.0,0.0
211
+ TCGA-27-2526-01,1,79.0,0.0
212
+ TCGA-DH-5141-01,1,32.0,1.0
213
+ TCGA-DU-5872-02,1,43.0,0.0
214
+ TCGA-QH-A6CV-01,1,51.0,1.0
215
+ TCGA-CS-6667-01,1,39.0,0.0
216
+ TCGA-S9-A6UA-01,1,66.0,1.0
217
+ TCGA-TQ-A7RJ-01,1,25.0,0.0
218
+ TCGA-S9-A6U1-01,1,22.0,0.0
219
+ TCGA-TQ-A8XE-02,1,42.0,0.0
220
+ TCGA-FG-A6J1-01,1,44.0,0.0
221
+ TCGA-FG-A87Q-01,1,61.0,0.0
222
+ TCGA-41-2571-01,1,89.0,1.0
223
+ TCGA-QH-A6CW-01,1,43.0,1.0
224
+ TCGA-14-1402-02,1,58.0,0.0
225
+ TCGA-12-5295-01,1,60.0,0.0
226
+ TCGA-FG-8185-01,1,37.0,1.0
227
+ TCGA-DU-6407-01,1,35.0,0.0
228
+ TCGA-S9-A6TW-01,1,40.0,1.0
229
+ TCGA-14-0871-01,1,74.0,0.0
230
+ TCGA-E1-A7Z6-01,1,41.0,0.0
231
+ TCGA-14-0790-01,1,64.0,0.0
232
+ TCGA-DU-A76K-01,1,87.0,1.0
233
+ TCGA-12-0616-01,1,36.0,0.0
234
+ TCGA-E1-5303-01,1,38.0,1.0
235
+ TCGA-06-0680-11,0,46.765467625899284,1.0
236
+ TCGA-S9-A7R7-01,1,27.0,1.0
237
+ TCGA-E1-5304-01,1,42.0,1.0
238
+ TCGA-06-5410-01,1,72.0,0.0
239
+ TCGA-P5-A5F2-01,1,36.0,0.0
240
+ TCGA-R8-A6ML-01,1,52.0,1.0
241
+ TCGA-19-5960-01,1,56.0,1.0
242
+ TCGA-CS-5396-01,1,53.0,0.0
243
+ TCGA-19-2629-01,1,60.0,1.0
244
+ TCGA-S9-A7QY-01,1,35.0,0.0
245
+ TCGA-DB-5277-01,1,34.0,1.0
246
+ TCGA-HT-7474-01,1,52.0,1.0
247
+ TCGA-EZ-7264-01,1,47.0,0.0
248
+ TCGA-76-4927-01,1,58.0,1.0
249
+ TCGA-S9-A7J0-01,1,30.0,0.0
250
+ TCGA-TQ-A7RV-02,1,27.0,1.0
251
+ TCGA-HT-A619-01,1,51.0,0.0
252
+ TCGA-HT-8010-01,1,64.0,0.0
253
+ TCGA-E1-A7YE-01,1,32.0,0.0
254
+ TCGA-DH-A7UR-01,1,59.0,0.0
255
+ TCGA-HT-7881-01,1,38.0,1.0
256
+ TCGA-E1-A7Z3-01,1,31.0,0.0
257
+ TCGA-QH-A6XA-01,1,23.0,0.0
258
+ TCGA-E1-A7Z2-01,1,58.0,0.0
259
+ TCGA-32-2638-01,1,67.0,1.0
260
+ TCGA-HT-A74K-01,1,58.0,0.0
261
+ TCGA-QH-A86X-01,1,33.0,1.0
262
+ TCGA-06-5415-01,1,60.0,1.0
263
+ TCGA-DU-6401-01,1,31.0,0.0
264
+ TCGA-16-1045-01,1,49.0,0.0
265
+ TCGA-DU-7007-01,1,33.0,1.0
266
+ TCGA-CS-4944-01,1,50.0,1.0
267
+ TCGA-P5-A736-01,1,44.0,0.0
268
+ TCGA-R8-A6MK-01,1,40.0,1.0
269
+ TCGA-06-0157-01,1,63.0,0.0
270
+ TCGA-DU-7301-01,1,53.0,1.0
271
+ TCGA-19-4065-01,1,36.0,1.0
272
+ TCGA-CS-5390-01,1,47.0,0.0
273
+ TCGA-FG-6689-01,1,30.0,1.0
274
+ TCGA-HT-7875-01,1,56.0,1.0
275
+ TCGA-P5-A5EZ-01,1,39.0,1.0
276
+ TCGA-DU-A7TG-01,1,40.0,1.0
277
+ TCGA-FG-6692-01,1,63.0,1.0
278
+ TCGA-DB-5275-01,1,36.0,1.0
279
+ TCGA-VM-A8CE-01,1,25.0,1.0
280
+ TCGA-KT-A74X-01,1,26.0,1.0
281
+ TCGA-DH-A66D-01,1,43.0,0.0
282
+ TCGA-06-5416-01,1,23.0,0.0
283
+ TCGA-DB-5278-01,1,17.0,1.0
284
+ TCGA-TM-A84S-01,1,36.0,1.0
285
+ TCGA-12-0619-01,1,60.0,1.0
286
+ TCGA-CS-6665-01,1,51.0,0.0
287
+ TCGA-DU-5872-01,1,43.0,0.0
288
+ TCGA-HT-A615-01,1,38.0,0.0
289
+ TCGA-26-5139-01,1,65.0,0.0
290
+ TCGA-06-0174-01,1,54.0,1.0
291
+ TCGA-CS-5393-01,1,39.0,1.0
292
+ TCGA-06-0645-01,1,55.0,0.0
293
+ TCGA-FG-5965-02,1,39.0,0.0
294
+ TCGA-HT-7693-01,1,51.0,0.0
295
+ TCGA-HT-7469-01,1,30.0,1.0
296
+ TCGA-32-2632-01,1,80.0,1.0
297
+ TCGA-32-1980-01,1,72.0,1.0
298
+ TCGA-DU-6406-01,1,59.0,0.0
299
+ TCGA-QH-A870-01,1,38.0,0.0
300
+ TCGA-06-2562-01,1,81.0,1.0
301
+ TCGA-HT-8114-01,1,36.0,1.0
302
+ TCGA-DU-A6S6-01,1,35.0,0.0
303
+ TCGA-HT-7694-01,1,60.0,1.0
304
+ TCGA-DU-A6S8-01,1,74.0,0.0
305
+ TCGA-R8-A6YH-01,1,46.765467625899284,1.0
306
+ TCGA-FG-A6J3-01,1,52.0,0.0
307
+ TCGA-DU-7014-01,1,59.0,1.0
308
+ TCGA-FG-A4MT-02,1,27.0,0.0
309
+ TCGA-HT-7477-01,1,62.0,1.0
310
+ TCGA-DU-7015-01,1,41.0,0.0
311
+ TCGA-DH-5143-01,1,30.0,1.0
312
+ TCGA-FG-A6IZ-01,1,60.0,1.0
313
+ TCGA-VW-A7QS-01,1,35.0,0.0
314
+ TCGA-HT-7680-01,1,32.0,0.0
315
+ TCGA-HT-8109-01,1,64.0,1.0
316
+ TCGA-HT-A618-01,1,37.0,0.0
317
+ TCGA-06-0171-02,1,65.0,1.0
318
+ TCGA-DU-6542-01,1,25.0,1.0
319
+ TCGA-FG-5964-01,1,62.0,1.0
320
+ TCGA-DB-A75M-01,1,47.0,1.0
321
+ TCGA-DU-A7T8-01,1,35.0,1.0
322
+ TCGA-FG-8182-01,1,35.0,1.0
323
+ TCGA-14-1825-01,1,70.0,1.0
324
+ TCGA-S9-A6WH-01,1,73.0,0.0
325
+ TCGA-HT-8563-01,1,30.0,0.0
326
+ TCGA-28-5213-01,1,72.0,1.0
327
+ TCGA-06-5412-01,1,78.0,0.0
328
+ TCGA-DU-7290-01,1,45.0,0.0
329
+ TCGA-DB-5276-01,1,32.0,1.0
330
+ TCGA-P5-A5EX-01,1,41.0,0.0
331
+ TCGA-12-3653-01,1,34.0,0.0
332
+ TCGA-HW-8320-01,1,36.0,1.0
333
+ TCGA-DU-A76O-01,1,30.0,1.0
334
+ TCGA-HT-7882-01,1,66.0,1.0
335
+ TCGA-HT-8105-01,1,54.0,1.0
336
+ TCGA-P5-A5EV-01,1,39.0,1.0
337
+ TCGA-HT-7481-01,1,39.0,1.0
338
+ TCGA-DU-8167-01,1,69.0,0.0
339
+ TCGA-WY-A85B-01,1,24.0,1.0
340
+ TCGA-HW-7489-01,1,38.0,1.0
341
+ TCGA-76-4928-01,1,85.0,0.0
342
+ TCGA-06-5408-01,1,54.0,0.0
343
+ TCGA-DU-7009-01,1,32.0,0.0
344
+ TCGA-FG-6688-01,1,59.0,0.0
345
+ TCGA-28-5220-01,1,67.0,1.0
346
+ TCGA-QH-A6CS-01,1,41.0,1.0
347
+ TCGA-06-0130-01,1,54.0,1.0
348
+ TCGA-TM-A84L-01,1,31.0,1.0
349
+ TCGA-DH-A669-01,1,70.0,1.0
350
+ TCGA-HT-7692-01,1,43.0,1.0
351
+ TCGA-F6-A8O3-01,1,34.0,1.0
352
+ TCGA-DU-6410-01,1,56.0,1.0
353
+ TCGA-06-5411-01,1,51.0,1.0
354
+ TCGA-HT-7686-01,1,29.0,0.0
355
+ TCGA-28-2514-01,1,45.0,1.0
356
+ TCGA-FG-A60L-01,1,34.0,0.0
357
+ TCGA-HT-7688-01,1,59.0,1.0
358
+ TCGA-HT-8104-01,1,51.0,0.0
359
+ TCGA-TM-A84I-01,1,30.0,1.0
360
+ TCGA-06-5417-01,1,45.0,0.0
361
+ TCGA-DU-5849-01,1,48.0,1.0
362
+ TCGA-S9-A7IZ-01,1,48.0,0.0
363
+ TCGA-DB-5280-01,1,43.0,1.0
364
+ TCGA-DU-A7TJ-01,1,55.0,1.0
365
+ TCGA-FG-A711-01,1,33.0,0.0
366
+ TCGA-26-5133-01,1,59.0,1.0
367
+ TCGA-06-2567-01,1,65.0,1.0
368
+ TCGA-P5-A72X-01,1,21.0,1.0
369
+ TCGA-HT-7602-01,1,21.0,1.0
370
+ TCGA-HT-8564-01,1,47.0,1.0
371
+ TCGA-S9-A6WP-01,1,42.0,1.0
372
+ TCGA-06-5413-01,1,67.0,1.0
373
+ TCGA-DU-5870-02,1,34.0,0.0
374
+ TCGA-P5-A5F1-01,1,30.0,1.0
375
+ TCGA-32-1970-01,1,59.0,1.0
376
+ TCGA-14-1823-01,1,58.0,0.0
377
+ TCGA-HT-A617-01,1,47.0,1.0
378
+ TCGA-HT-7884-01,1,44.0,0.0
379
+ TCGA-P5-A780-01,1,44.0,0.0
380
+ TCGA-E1-A7YL-01,1,46.0,1.0
381
+ TCGA-HT-A614-01,1,47.0,1.0
382
+ TCGA-CS-4942-01,1,44.0,0.0
383
+ TCGA-TM-A84O-01,1,61.0,0.0
384
+ TCGA-DU-5852-01,1,61.0,0.0
385
+ TCGA-S9-A7J1-01,1,43.0,1.0
386
+ TCGA-S9-A7R4-01,1,46.0,1.0
387
+ TCGA-P5-A733-01,1,52.0,0.0
388
+ TCGA-DU-A7TA-01,1,32.0,1.0
389
+ TCGA-P5-A737-01,1,47.0,1.0
390
+ TCGA-S9-A6U9-01,1,36.0,1.0
391
+ TCGA-27-1830-01,1,57.0,1.0
392
+ TCGA-QH-A6CU-01,1,52.0,0.0
393
+ TCGA-27-1835-01,1,53.0,0.0
394
+ TCGA-HW-7490-01,1,41.0,1.0
395
+ TCGA-R8-A73M-01,1,48.0,0.0
396
+ TCGA-06-0750-01,1,43.0,1.0
397
+ TCGA-32-4213-01,1,47.0,0.0
398
+ TCGA-06-0210-02,1,72.0,0.0
399
+ TCGA-06-2563-01,1,72.0,0.0
400
+ TCGA-HT-8013-01,1,37.0,0.0
401
+ TCGA-27-1837-01,1,36.0,1.0
402
+ TCGA-WY-A85C-01,1,36.0,1.0
403
+ TCGA-DU-7304-02,1,43.0,1.0
404
+ TCGA-28-2513-01,1,69.0,0.0
405
+ TCGA-DB-A4XA-01,1,30.0,1.0
406
+ TCGA-DB-A64X-01,1,56.0,0.0
407
+ TCGA-CS-6668-01,1,57.0,0.0
408
+ TCGA-VM-A8CD-01,1,58.0,1.0
409
+ TCGA-HT-8019-01,1,34.0,0.0
410
+ TCGA-06-2561-01,1,53.0,0.0
411
+ TCGA-TM-A84F-01,1,48.0,1.0
412
+ TCGA-DU-7010-01,1,58.0,0.0
413
+ TCGA-QH-A65Z-01,1,54.0,1.0
414
+ TCGA-HT-7616-01,1,75.0,1.0
415
+ TCGA-P5-A72Z-01,1,64.0,0.0
416
+ TCGA-06-5418-01,1,75.0,0.0
417
+ TCGA-06-0138-01,1,43.0,1.0
418
+ TCGA-HT-A5R5-01,1,33.0,0.0
419
+ TCGA-IK-8125-01,1,62.0,1.0
420
+ TCGA-CS-6188-01,1,48.0,1.0
421
+ TCGA-HT-7480-01,1,33.0,1.0
422
+ TCGA-E1-A7YI-01,1,33.0,0.0
423
+ TCGA-19-2620-01,1,70.0,1.0
424
+ TCGA-12-3650-01,1,46.0,1.0
425
+ TCGA-26-5134-01,1,74.0,1.0
426
+ TCGA-19-2624-01,1,51.0,1.0
427
+ TCGA-06-0646-01,1,60.0,1.0
428
+ TCGA-06-2559-01,1,83.0,1.0
429
+ TCGA-VV-A86M-01,1,36.0,0.0
430
+ TCGA-S9-A6U2-01,1,48.0,0.0
431
+ TCGA-HW-8319-01,1,34.0,0.0
432
+ TCGA-HT-7479-01,1,44.0,1.0
433
+ TCGA-TM-A84C-01,1,32.0,1.0
434
+ TCGA-S9-A6WL-01,1,52.0,1.0
435
+ TCGA-HT-A61B-01,1,22.0,1.0
436
+ TCGA-DU-6393-01,1,66.0,1.0
437
+ TCGA-HT-A74L-01,1,22.0,0.0
438
+ TCGA-S9-A7R1-01,1,35.0,1.0
439
+ TCGA-VM-A8CF-01,1,44.0,0.0
440
+ TCGA-E1-A7Z4-01,1,35.0,1.0
441
+ TCGA-06-0184-01,1,63.0,1.0
442
+ TCGA-DU-6397-02,1,45.0,1.0
443
+ TCGA-06-AABW-11,0,46.765467625899284,1.0
444
+ TCGA-HT-A4DV-01,1,51.0,0.0
445
+ TCGA-02-2485-01,1,53.0,1.0
446
+ TCGA-02-2483-01,1,43.0,1.0
447
+ TCGA-P5-A731-01,1,59.0,0.0
448
+ TCGA-HT-7608-01,1,61.0,1.0
449
+ TCGA-E1-A7YU-01,1,42.0,1.0
450
+ TCGA-E1-A7YN-01,1,63.0,0.0
451
+ TCGA-TQ-A7RS-01,1,25.0,0.0
452
+ TCGA-06-0221-02,1,31.0,1.0
453
+ TCGA-DU-7302-01,1,48.0,0.0
454
+ TCGA-DU-6403-01,1,60.0,0.0
455
+ TCGA-41-5651-01,1,59.0,0.0
456
+ TCGA-HT-7473-01,1,28.0,1.0
457
+ TCGA-HW-A5KJ-01,1,68.0,1.0
458
+ TCGA-HW-7493-01,1,40.0,0.0
459
+ TCGA-P5-A781-01,1,34.0,0.0
460
+ TCGA-HW-8321-01,1,31.0,1.0
461
+ TCGA-28-5207-01,1,71.0,1.0
462
+ TCGA-DU-8165-01,1,60.0,0.0
463
+ TCGA-12-3652-01,1,60.0,1.0
464
+ TCGA-26-5132-01,1,74.0,1.0
465
+ TCGA-RY-A847-01,1,45.0,1.0
466
+ TCGA-WY-A85A-01,1,20.0,1.0
467
+ TCGA-06-0190-02,1,62.0,1.0
468
+ TCGA-DU-7309-01,1,41.0,0.0
469
+ TCGA-TQ-A7RN-01,1,32.0,1.0
470
+ TCGA-TM-A84G-01,1,54.0,0.0
471
+ TCGA-06-0238-01,1,46.0,1.0
472
+ TCGA-DU-6402-01,1,52.0,1.0
473
+ TCGA-DH-A7UV-01,1,49.0,1.0
474
+ TCGA-DU-A7TB-01,1,56.0,1.0
475
+ TCGA-DU-6400-01,1,66.0,0.0
476
+ TCGA-FG-A70Y-01,1,20.0,0.0
477
+ TCGA-RY-A83X-01,1,46.0,0.0
478
+ TCGA-02-0047-01,1,78.0,1.0
479
+ TCGA-76-4925-01,1,76.0,1.0
480
+ TCGA-19-0957-02,1,48.0,0.0
481
+ TCGA-06-0681-11,0,46.765467625899284,1.0
482
+ TCGA-HT-7607-01,1,61.0,0.0
483
+ TCGA-DH-A7UU-01,1,43.0,1.0
484
+ TCGA-41-4097-01,1,63.0,0.0
485
+ TCGA-CS-5395-01,1,43.0,1.0
486
+ TCGA-P5-A5EW-01,1,20.0,0.0
487
+ TCGA-TQ-A7RK-01,1,29.0,1.0
488
+ TCGA-06-0745-01,1,59.0,1.0
489
+ TCGA-E1-5319-01,1,48.0,0.0
490
+ TCGA-S9-A7IX-01,1,57.0,1.0
491
+ TCGA-HT-7855-01,1,39.0,1.0
492
+ TCGA-28-1753-01,1,53.0,1.0
493
+ TCGA-E1-A7YM-01,1,63.0,1.0
494
+ TCGA-WY-A85E-01,1,48.0,0.0
495
+ TCGA-P5-A5F6-01,1,26.0,1.0
496
+ TCGA-76-4926-01,1,68.0,1.0
497
+ TCGA-DB-A64U-01,1,38.0,0.0
498
+ TCGA-28-5204-01,1,72.0,1.0
499
+ TCGA-CS-6186-01,1,58.0,1.0
500
+ TCGA-E1-5305-01,1,34.0,1.0
501
+ TCGA-HT-7483-01,1,14.0,1.0
502
+ TCGA-DU-A6S3-01,1,60.0,1.0
503
+ TCGA-19-2625-01,1,76.0,0.0
504
+ TCGA-S9-A89Z-01,1,40.0,1.0
505
+ TCGA-DU-7306-01,1,67.0,1.0
506
+ TCGA-DB-5279-01,1,59.0,1.0
507
+ TCGA-FG-8191-01,1,30.0,1.0
508
+ TCGA-27-1831-01,1,66.0,1.0
509
+ TCGA-14-0787-01,1,69.0,1.0
510
+ TCGA-14-0817-01,1,69.0,0.0
511
+ TCGA-06-0168-01,1,59.0,0.0
512
+ TCGA-HT-A61A-01,1,20.0,0.0
513
+ TCGA-DU-5854-01,1,57.0,0.0
514
+ TCGA-HT-7687-01,1,74.0,1.0
515
+ TCGA-RY-A840-01,1,47.0,1.0
516
+ TCGA-06-0878-01,1,74.0,1.0
517
+ TCGA-DU-6405-01,1,51.0,0.0
518
+ TCGA-DH-A669-02,1,70.0,1.0
519
+ TCGA-QH-A65S-01,1,32.0,0.0
520
+ TCGA-HT-7601-01,1,30.0,0.0
521
+ TCGA-DB-A64V-01,1,54.0,1.0
522
+ TCGA-28-5215-01,1,62.0,0.0
523
+ TCGA-DU-A7TD-01,1,52.0,1.0
524
+ TCGA-S9-A6WD-01,1,58.0,1.0
525
+ TCGA-HT-7475-01,1,67.0,1.0
526
+ TCGA-WY-A858-01,1,32.0,0.0
527
+ TCGA-TQ-A8XE-01,1,42.0,0.0
528
+ TCGA-DU-6392-01,1,35.0,0.0
529
+ TCGA-DB-A75L-01,1,36.0,0.0
530
+ TCGA-HT-8018-01,1,40.0,0.0
531
+ TCGA-E1-5322-01,1,38.0,0.0
532
+ TCGA-RY-A83Y-01,1,45.0,1.0
533
+ TCGA-HT-7606-01,1,30.0,0.0
534
+ TCGA-E1-5302-01,1,41.0,1.0
535
+ TCGA-DU-A76R-01,1,51.0,1.0
536
+ TCGA-P5-A72W-01,1,35.0,1.0
537
+ TCGA-FG-8188-01,1,41.0,1.0
538
+ TCGA-HT-7468-01,1,30.0,1.0
539
+ TCGA-HT-7877-01,1,20.0,0.0
540
+ TCGA-VW-A8FI-01,1,66.0,1.0
541
+ TCGA-06-0744-01,1,66.0,1.0
542
+ TCGA-DB-A64S-01,1,20.0,1.0
543
+ TCGA-12-0618-01,1,49.0,1.0
544
+ TCGA-HT-A616-01,1,36.0,0.0
545
+ TCGA-VM-A8CH-01,1,24.0,0.0
546
+ TCGA-S9-A6UB-01,1,52.0,1.0
547
+ TCGA-02-0055-01,1,62.0,0.0
548
+ TCGA-DU-6394-01,1,53.0,1.0
549
+ TCGA-W9-A837-01,1,47.0,1.0
550
+ TCGA-S9-A7IS-01,1,33.0,0.0
551
+ TCGA-DB-A4XD-01,1,32.0,1.0
552
+ TCGA-P5-A77X-01,1,55.0,0.0
553
+ TCGA-S9-A6WI-01,1,56.0,0.0
554
+ TCGA-16-0846-01,1,85.0,1.0
555
+ TCGA-TQ-A7RQ-01,1,38.0,0.0
556
+ TCGA-76-4932-01,1,50.0,0.0
557
+ TCGA-P5-A730-01,1,22.0,1.0
558
+ TCGA-HT-7478-01,1,36.0,1.0
559
+ TCGA-HT-7620-01,1,40.0,1.0
560
+ TCGA-QH-A6CY-01,1,38.0,1.0
561
+ TCGA-HT-7689-01,1,58.0,0.0
562
+ TCGA-HW-A5KK-01,1,64.0,1.0
563
+ TCGA-DU-A5TP-01,1,33.0,1.0
564
+ TCGA-12-0821-01,1,62.0,1.0
565
+ TCGA-DU-A76L-01,1,54.0,1.0
566
+ TCGA-06-1804-01,1,81.0,0.0
567
+ TCGA-HW-7491-01,1,35.0,1.0
568
+ TCGA-S9-A6U5-01,1,33.0,1.0
569
+ TCGA-P5-A5EU-01,1,35.0,1.0
570
+ TCGA-15-0742-01,1,65.0,1.0
571
+ TCGA-VM-A8C8-01,1,50.0,0.0
572
+ TCGA-HT-7873-01,1,29.0,1.0
573
+ TCGA-DU-7008-01,1,41.0,0.0
574
+ TCGA-FG-A70Z-01,1,53.0,0.0
575
+ TCGA-HT-A5R7-01,1,33.0,0.0
576
+ TCGA-DH-5140-01,1,38.0,0.0
577
+ TCGA-S9-A6WQ-01,1,57.0,0.0
578
+ TCGA-DU-7298-01,1,38.0,0.0
579
+ TCGA-TM-A84J-01,1,63.0,1.0
580
+ TCGA-DH-A7UT-01,1,30.0,1.0
581
+ TCGA-DU-A5TU-01,1,62.0,0.0
582
+ TCGA-DU-7294-01,1,53.0,0.0
583
+ TCGA-14-2554-01,1,52.0,0.0
584
+ TCGA-TM-A84T-01,1,19.0,1.0
585
+ TCGA-HW-7495-01,1,45.0,0.0
586
+ TCGA-DB-A75P-01,1,25.0,0.0
587
+ TCGA-FG-A4MX-01,1,47.0,1.0
588
+ TCGA-19-1390-01,1,63.0,0.0
589
+ TCGA-27-1834-01,1,56.0,1.0
590
+ TCGA-DB-5274-01,1,37.0,0.0
591
+ TCGA-FG-8187-01,1,31.0,1.0
592
+ TCGA-KT-A7W1-01,1,45.0,0.0
593
+ TCGA-28-2509-01,1,77.0,0.0
594
+ TCGA-HT-7482-01,1,18.0,0.0
595
+ TCGA-HT-8108-01,1,26.0,0.0
596
+ TCGA-QH-A6X5-01,1,58.0,0.0
597
+ TCGA-DU-6404-01,1,24.0,0.0
598
+ TCGA-S9-A6U0-01,1,46.0,1.0
599
+ TCGA-FG-7636-01,1,48.0,1.0
600
+ TCGA-F6-A8O4-01,1,44.0,1.0
601
+ TCGA-HT-7476-01,1,26.0,1.0
602
+ TCGA-TM-A84B-01,1,40.0,1.0
603
+ TCGA-76-4931-01,1,70.0,0.0
604
+ TCGA-DH-5142-01,1,29.0,1.0
605
+ TCGA-FG-A60K-01,1,34.0,0.0
606
+ TCGA-06-2570-01,1,21.0,0.0
607
+ TCGA-S9-A6WO-01,1,29.0,1.0
608
+ TCGA-HW-A5KM-01,1,35.0,1.0
609
+ TCGA-E1-A7YH-01,1,47.0,0.0
610
+ TCGA-CS-4941-01,1,67.0,1.0
611
+ TCGA-QH-A6CX-01,1,66.0,1.0
612
+ TCGA-FG-7634-01,1,28.0,1.0
613
+ TCGA-14-0789-01,1,54.0,1.0
614
+ TCGA-DU-5874-01,1,62.0,0.0
615
+ TCGA-HT-7676-01,1,26.0,1.0
616
+ TCGA-P5-A72U-01,1,71.0,0.0
617
+ TCGA-FG-5963-02,1,23.0,1.0
618
+ TCGA-E1-5318-01,1,42.0,0.0
619
+ TCGA-S9-A7QZ-01,1,41.0,1.0
620
+ TCGA-E1-A7YD-01,1,57.0,1.0
621
+ TCGA-CS-6670-01,1,43.0,1.0
622
+ TCGA-DB-5281-01,1,61.0,1.0
623
+ TCGA-DU-6399-01,1,54.0,1.0
624
+ TCGA-HT-7690-01,1,29.0,1.0
625
+ TCGA-HT-7472-01,1,38.0,1.0
626
+ TCGA-DU-7300-01,1,53.0,0.0
627
+ TCGA-06-2565-01,1,59.0,1.0
628
+ TCGA-06-2558-01,1,75.0,0.0
629
+ TCGA-HT-7471-01,1,37.0,0.0
630
+ TCGA-HT-A61C-01,1,66.0,1.0
631
+ TCGA-06-0125-02,1,63.0,0.0
632
+ TCGA-DH-A66G-01,1,49.0,0.0
633
+ TCGA-12-1597-01,1,62.0,0.0
634
+ TCGA-27-2524-01,1,56.0,1.0
635
+ TCGA-S9-A6TS-01,1,48.0,0.0
636
+ TCGA-S9-A6WM-01,1,59.0,0.0
637
+ TCGA-TQ-A7RI-01,1,37.0,0.0
638
+ TCGA-DU-6397-01,1,45.0,1.0
639
+ TCGA-HT-8011-01,1,55.0,1.0
640
+ TCGA-S9-A6WG-01,1,31.0,1.0
641
+ TCGA-06-0125-01,1,63.0,0.0
642
+ TCGA-DB-A4XE-01,1,27.0,0.0
643
+ TCGA-DU-8158-01,1,57.0,0.0
644
+ TCGA-P5-A77W-01,1,37.0,0.0
645
+ TCGA-HT-8107-01,1,62.0,1.0
646
+ TCGA-DB-A4XF-01,1,41.0,0.0
647
+ TCGA-06-0686-01,1,53.0,1.0
648
+ TCGA-HT-8015-01,1,21.0,1.0
649
+ TCGA-06-0211-01,1,47.0,1.0
650
+ TCGA-HT-7874-01,1,41.0,0.0
651
+ TCGA-S9-A6WN-01,1,38.0,0.0
652
+ TCGA-TQ-A7RU-01,1,51.0,1.0
653
+ TCGA-06-5856-01,1,58.0,1.0
654
+ TCGA-HT-7691-01,1,31.0,0.0
655
+ TCGA-HT-7604-01,1,50.0,1.0
656
+ TCGA-E1-A7YJ-01,1,55.0,1.0
657
+ TCGA-HT-7880-01,1,30.0,1.0
658
+ TCGA-DU-5851-01,1,40.0,0.0
659
+ TCGA-S9-A6TX-01,1,46.0,1.0
660
+ TCGA-QH-A6X4-01,1,47.0,1.0
661
+ TCGA-DB-A4XC-01,1,26.0,1.0
662
+ TCGA-VM-A8CA-01,1,54.0,1.0
663
+ TCGA-DU-7299-01,1,33.0,1.0
664
+ TCGA-TM-A7C5-01,1,30.0,1.0
665
+ TCGA-06-0649-01,1,73.0,0.0
666
+ TCGA-06-2569-01,1,24.0,0.0
667
+ TCGA-DB-A75O-01,1,29.0,1.0
668
+ TCGA-DU-7013-01,1,59.0,1.0
669
+ TCGA-S9-A6TZ-01,1,39.0,0.0
670
+ TCGA-41-2572-01,1,67.0,1.0
671
+ TCGA-02-2486-01,1,64.0,1.0
672
+ TCGA-DU-5870-01,1,34.0,0.0
673
+ TCGA-28-5208-01,1,52.0,1.0
674
+ TCGA-DU-A7T6-01,1,73.0,0.0
675
+ TCGA-E1-5307-01,1,62.0,0.0
676
+ TCGA-R8-A6MO-01,1,53.0,0.0
677
+ TCGA-FN-7833-01,1,25.0,1.0
678
+ TCGA-TM-A84H-01,1,44.0,0.0
679
+ TCGA-DU-5853-01,1,29.0,1.0
680
+ TCGA-CS-5397-01,1,54.0,0.0
681
+ TCGA-DU-A7TC-01,1,32.0,1.0
682
+ TCGA-19-2619-01,1,55.0,0.0
683
+ TCGA-DB-A64W-01,1,65.0,0.0
684
+ TCGA-06-0210-01,1,72.0,0.0
685
+ TCGA-VV-A829-01,1,44.0,1.0
686
+ TCGA-27-2519-01,1,48.0,1.0
687
+ TCGA-QH-A6X8-01,1,56.0,0.0
688
+ TCGA-HT-A74O-01,1,34.0,1.0
689
+ TCGA-06-2564-01,1,50.0,1.0
690
+ TCGA-DU-7012-01,1,74.0,0.0
691
+ TCGA-S9-A6U8-01,1,24.0,1.0
692
+ TCGA-E1-A7YV-01,1,26.0,0.0
693
+ TCGA-FG-A4MT-01,1,27.0,0.0
694
+ TCGA-VM-A8CB-01,1,33.0,1.0
695
+ TCGA-P5-A5EY-01,1,21.0,1.0
696
+ TCGA-26-5135-01,1,72.0,0.0
697
+ TCGA-S9-A7QX-01,1,36.0,0.0
698
+ TCGA-S9-A6TV-01,1,50.0,1.0
699
+ TCGA-DU-7292-01,1,69.0,1.0
700
+ TCGA-S9-A6U6-01,1,28.0,1.0
701
+ TCGA-DU-A7TI-01,1,32.0,1.0
702
+ TCGA-DU-A5TT-01,1,70.0,1.0
703
+ TCGA-19-1389-02,1,51.0,1.0
output/preprocess/Polycystic_Ovary_Syndrome/cohort_info.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "GSE87435": {
3
+ "is_usable": true,
4
+ "is_gene_available": true,
5
+ "is_trait_available": true,
6
+ "is_available": true,
7
+ "is_biased": false,
8
+ "has_age": false,
9
+ "has_gender": false,
10
+ "sample_size": 18
11
+ },
12
+ "GSE43322": {
13
+ "is_usable": false,
14
+ "is_gene_available": true,
15
+ "is_trait_available": true,
16
+ "is_available": true,
17
+ "is_biased": true,
18
+ "has_age": false,
19
+ "has_gender": false,
20
+ "sample_size": 31
21
+ },
22
+ "GSE151158": {
23
+ "is_usable": false,
24
+ "is_gene_available": true,
25
+ "is_trait_available": true,
26
+ "is_available": true,
27
+ "is_biased": true,
28
+ "has_age": false,
29
+ "has_gender": false,
30
+ "sample_size": 61
31
+ },
32
+ "TCGA": {
33
+ "is_usable": false,
34
+ "is_gene_available": true,
35
+ "is_trait_available": true,
36
+ "is_available": true,
37
+ "is_biased": true,
38
+ "has_age": true,
39
+ "has_gender": false,
40
+ "sample_size": 308
41
+ }
42
+ }
output/preprocess/Polycystic_Ovary_Syndrome/gene_data/GSE151158.csv ADDED
The diff for this file is too large to render. See raw diff
 
output/preprocess/Polycystic_Ovary_Syndrome/gene_data/GSE43322.csv ADDED
The diff for this file is too large to render. See raw diff
 
output/preprocess/Polycystic_Ovary_Syndrome/gene_data/GSE87435.csv ADDED
The diff for this file is too large to render. See raw diff
 
output/preprocess/Post-Traumatic_Stress_Disorder/GSE199841.csv ADDED
The diff for this file is too large to render. See raw diff
 
output/preprocess/Post-Traumatic_Stress_Disorder/cohort_info.json ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "GSE81761": {
3
+ "is_usable": true,
4
+ "is_gene_available": true,
5
+ "is_trait_available": true,
6
+ "is_available": true,
7
+ "is_biased": false,
8
+ "has_age": true,
9
+ "has_gender": true,
10
+ "sample_size": 109
11
+ },
12
+ "GSE77164": {
13
+ "is_usable": true,
14
+ "is_gene_available": true,
15
+ "is_trait_available": true,
16
+ "is_available": true,
17
+ "is_biased": false,
18
+ "has_age": true,
19
+ "has_gender": true,
20
+ "sample_size": 254
21
+ },
22
+ "GSE67663": {
23
+ "is_usable": true,
24
+ "is_gene_available": true,
25
+ "is_trait_available": true,
26
+ "is_available": true,
27
+ "is_biased": false,
28
+ "has_age": true,
29
+ "has_gender": true,
30
+ "sample_size": 184
31
+ },
32
+ "GSE64814": {
33
+ "is_usable": true,
34
+ "is_gene_available": true,
35
+ "is_trait_available": true,
36
+ "is_available": true,
37
+ "is_biased": false,
38
+ "has_age": false,
39
+ "has_gender": false,
40
+ "sample_size": 96
41
+ },
42
+ "GSE63878": {
43
+ "is_usable": true,
44
+ "is_gene_available": true,
45
+ "is_trait_available": true,
46
+ "is_available": true,
47
+ "is_biased": false,
48
+ "has_age": false,
49
+ "has_gender": false,
50
+ "sample_size": 96
51
+ },
52
+ "GSE52875": {
53
+ "is_usable": false,
54
+ "is_gene_available": false,
55
+ "is_trait_available": false,
56
+ "is_available": false,
57
+ "is_biased": null,
58
+ "has_age": null,
59
+ "has_gender": null,
60
+ "sample_size": null
61
+ },
62
+ "GSE44456": {
63
+ "is_usable": true,
64
+ "is_gene_available": true,
65
+ "is_trait_available": true,
66
+ "is_available": true,
67
+ "is_biased": false,
68
+ "has_age": true,
69
+ "has_gender": true,
70
+ "sample_size": 39
71
+ },
72
+ "GSE199841": {
73
+ "is_usable": true,
74
+ "is_gene_available": true,
75
+ "is_trait_available": true,
76
+ "is_available": true,
77
+ "is_biased": false,
78
+ "has_age": true,
79
+ "has_gender": false,
80
+ "sample_size": 48
81
+ },
82
+ "GSE114852": {
83
+ "is_usable": true,
84
+ "is_gene_available": true,
85
+ "is_trait_available": true,
86
+ "is_available": true,
87
+ "is_biased": false,
88
+ "has_age": false,
89
+ "has_gender": true,
90
+ "sample_size": 149
91
+ },
92
+ "TCGA": {
93
+ "is_usable": false,
94
+ "is_gene_available": false,
95
+ "is_trait_available": false,
96
+ "is_available": false,
97
+ "is_biased": null,
98
+ "has_age": null,
99
+ "has_gender": null,
100
+ "sample_size": null
101
+ }
102
+ }
output/preprocess/Psoriasis/GSE183134.csv ADDED
The diff for this file is too large to render. See raw diff
 
output/preprocess/Psoriasis/clinical_data/GSE123086.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM3494884,GSM3494885,GSM3494886,GSM3494887,GSM3494888,GSM3494889,GSM3494890,GSM3494891,GSM3494892,GSM3494893,GSM3494894,GSM3494895,GSM3494896,GSM3494897,GSM3494898,GSM3494899,GSM3494900,GSM3494901,GSM3494902,GSM3494903,GSM3494904,GSM3494905,GSM3494906,GSM3494907,GSM3494908,GSM3494909,GSM3494910,GSM3494911,GSM3494912,GSM3494913,GSM3494914,GSM3494915,GSM3494916,GSM3494917,GSM3494918,GSM3494919,GSM3494920,GSM3494921,GSM3494922,GSM3494923,GSM3494924,GSM3494925,GSM3494926,GSM3494927,GSM3494928,GSM3494929,GSM3494930,GSM3494931,GSM3494932,GSM3494933,GSM3494934,GSM3494935,GSM3494936,GSM3494937,GSM3494938,GSM3494939,GSM3494940,GSM3494941,GSM3494942,GSM3494943,GSM3494944,GSM3494945,GSM3494946,GSM3494947,GSM3494948,GSM3494949,GSM3494950,GSM3494951,GSM3494952,GSM3494953,GSM3494954,GSM3494955,GSM3494956,GSM3494957,GSM3494958,GSM3494959,GSM3494960,GSM3494961,GSM3494962,GSM3494963,GSM3494964,GSM3494965,GSM3494966,GSM3494967,GSM3494968,GSM3494969,GSM3494970,GSM3494971,GSM3494972,GSM3494973,GSM3494974,GSM3494975,GSM3494976,GSM3494977,GSM3494978,GSM3494979,GSM3494980,GSM3494981,GSM3494982,GSM3494983,GSM3494984,GSM3494985,GSM3494986,GSM3494987,GSM3494988,GSM3494989,GSM3494990,GSM3494991,GSM3494992,GSM3494993,GSM3494994,GSM3494995,GSM3494996,GSM3494997,GSM3494998,GSM3494999,GSM3495000,GSM3495001,GSM3495002,GSM3495003,GSM3495004,GSM3495005,GSM3495006,GSM3495007,GSM3495008,GSM3495009,GSM3495010,GSM3495011,GSM3495012,GSM3495013,GSM3495014,GSM3495015,GSM3495016,GSM3495017,GSM3495018,GSM3495019,GSM3495020,GSM3495021,GSM3495022,GSM3495023,GSM3495024,GSM3495025,GSM3495026,GSM3495027,GSM3495028,GSM3495029,GSM3495030,GSM3495031,GSM3495032,GSM3495033,GSM3495034,GSM3495035,GSM3495036,GSM3495037,GSM3495038,GSM3495039,GSM3495040,GSM3495041,GSM3495042,GSM3495043,GSM3495044,GSM3495045,GSM3495046,GSM3495047,GSM3495048,GSM3495049
2
+ Psoriasis,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
3
+ Age,56.0,,20.0,51.0,37.0,61.0,,31.0,56.0,41.0,61.0,,80.0,53.0,61.0,73.0,60.0,76.0,77.0,74.0,69.0,77.0,81.0,70.0,82.0,69.0,82.0,67.0,67.0,78.0,67.0,74.0,,51.0,72.0,66.0,80.0,36.0,67.0,31.0,31.0,45.0,56.0,65.0,53.0,48.0,50.0,76.0,,24.0,42.0,76.0,22.0,,23.0,34.0,43.0,47.0,24.0,55.0,48.0,58.0,30.0,28.0,41.0,63.0,55.0,55.0,67.0,47.0,46.0,49.0,23.0,68.0,39.0,24.0,36.0,58.0,38.0,27.0,67.0,61.0,69.0,63.0,60.0,17.0,10.0,9.0,13.0,10.0,13.0,15.0,12.0,13.0,81.0,94.0,51.0,40.0,,97.0,23.0,93.0,58.0,28.0,54.0,15.0,8.0,11.0,12.0,8.0,14.0,8.0,10.0,14.0,13.0,40.0,52.0,42.0,29.0,43.0,41.0,54.0,42.0,49.0,45.0,56.0,64.0,71.0,48.0,20.0,53.0,32.0,26.0,28.0,47.0,24.0,48.0,,19.0,41.0,38.0,,15.0,12.0,13.0,,11.0,,16.0,11.0,,35.0,26.0,39.0,46.0,42.0,20.0,69.0,69.0,47.0,47.0,56.0,54.0,53.0,50.0,22.0
4
+ Gender,1.0,,1.0,1.0,1.0,1.0,,1.0,1.0,1.0,1.0,,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,,1.0,1.0,1.0,1.0,,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,,1.0,1.0,1.0,,1.0,1.0,1.0,,1.0,,1.0,1.0,,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
output/preprocess/Psoriasis/clinical_data/GSE123088.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29
2
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,,,,,,,,,,,,,,
3
+ 56.0,,20.0,51.0,37.0,61.0,31.0,41.0,80.0,53.0,73.0,60.0,76.0,77.0,74.0,69.0,81.0,70.0,82.0,67.0,78.0,72.0,66.0,36.0,45.0,65.0,48.0,50.0,24.0,42.0
4
+ 1.0,,0.0,,,,,,,,,,,,,,,,,,,,,,,,,,,
output/preprocess/Psoriasis/clinical_data/GSE158448.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM4800737,GSM4800738,GSM4800739,GSM4800740,GSM4800741,GSM4800742,GSM4800743,GSM4800744,GSM4800745,GSM4800746,GSM4800747,GSM4800748,GSM4800749,GSM4800750,GSM4800751,GSM4800752,GSM4800753,GSM4800754,GSM4800755,GSM4800756,GSM4800757,GSM4800758,GSM4800759,GSM4800760,GSM4800761,GSM4800762,GSM4800763,GSM4800764,GSM4800765,GSM4800766,GSM4800767,GSM4800768,GSM4800769,GSM4800770,GSM4800771,GSM4800772,GSM4800773,GSM4800774,GSM4800775,GSM4800776,GSM4800777,GSM4800778,GSM4800779,GSM4800780,GSM4800781,GSM4800782,GSM4800783,GSM4800784,GSM4800785,GSM4800786,GSM4800787,GSM4800788,GSM4800789,GSM4800790,GSM4800791,GSM4800792,GSM4800793,GSM4800794,GSM4800795,GSM4800796
2
+ Psoriasis,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
output/preprocess/Psoriasis/clinical_data/GSE162998.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM4969892,GSM4969893,GSM4969894,GSM4969895,GSM4969896,GSM4969897,GSM4969898,GSM4969899,GSM4969900,GSM4969901,GSM4969902,GSM4969903,GSM4969904,GSM4969905,GSM4969906,GSM4969907,GSM4969908,GSM4969909,GSM4969910,GSM4969911,GSM4969912,GSM4969913,GSM4969914,GSM4969915,GSM4969916,GSM4969917,GSM4969918,GSM4969919,GSM4969920,GSM4969921,GSM4969922,GSM4969923,GSM4969924,GSM4969925,GSM4969926,GSM4969927,GSM4969928,GSM4969929,GSM4969930,GSM4969931,GSM4969932,GSM4969933,GSM4969934,GSM4969935,GSM4969936,GSM4969937,GSM4969938,GSM4969939
2
+ Psoriasis,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
output/preprocess/Psoriasis/clinical_data/GSE178228.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM5384796,GSM5384797,GSM5384798,GSM5384799,GSM5384800,GSM5384801,GSM5384802,GSM5384803,GSM5384804,GSM5384805,GSM5384806,GSM5384807,GSM5384808,GSM5384809,GSM5384810,GSM5384811,GSM5384812,GSM5384813,GSM5384814,GSM5384815,GSM5384816,GSM5384817,GSM5384818,GSM5384819,GSM5384820,GSM5384821,GSM5384822,GSM5384823,GSM5384824,GSM5384825,GSM5384826,GSM5384827,GSM5384828,GSM5384829,GSM5384830,GSM5384831,GSM5384832,GSM5384833,GSM5384834,GSM5384835,GSM5384836,GSM5384837,GSM5384838,GSM5384839,GSM5384840,GSM5384841,GSM5384842,GSM5384843,GSM5384844,GSM5384845,GSM5384846,GSM5384847,GSM5384848,GSM5384849,GSM5384850,GSM5384851,GSM5384852,GSM5384853,GSM5384854,GSM5384855,GSM5384856,GSM5384857,GSM5384858,GSM5384859,GSM5384860,GSM5384861,GSM5384862,GSM5384863,GSM5384864,GSM5384865,GSM5384866,GSM5384867,GSM5384868,GSM5384869,GSM5384870,GSM5384871,GSM5384872,GSM5384873,GSM5384874,GSM5384875,GSM5384876,GSM5384877,GSM5384878,GSM5384879,GSM5384880,GSM5384881,GSM5384882,GSM5384883,GSM5384884,GSM5384885,GSM5384886,GSM5384887,GSM5384888,GSM5384889,GSM5384890,GSM5384891,GSM5384892,GSM5384893,GSM5384894,GSM5384895,GSM5384896,GSM5384897,GSM5384898,GSM5384899,GSM5384900,GSM5384901,GSM5384902,GSM5384903,GSM5384904,GSM5384905,GSM5384906,GSM5384907,GSM5384908,GSM5384909,GSM5384910,GSM5384911,GSM5384912
2
+ Psoriasis,14.7,2.9,7.2,15.5,3.0,8.2,6.4,3.0,6.0,7.8,10.3,20.1,3.2,5.0,8.39999999999999,2.6,22.8,4.7,13.4,4.3,10.0,10.6,7.2,1.6,10.2,4.4,9.2,12.6,12.0,5.8,5.0,11.9,12.0,3.0,12.7,0.7,4.1,1.8,5.2,2.7,13.2,15.2,13.8999999999999,4.3,16.7,9.4,6.0,11.1,19.2,8.4,12.4,15.6,14.0,22.0,3.6,6.8,8.5,4.6,7.6,2.8,27.7,2.2,4.2,12.0,2.4,12.3999999999999,2.4,31.9,5.3,25.0,1.8,14.9,2.7,15.6,8.4,15.2,5.2,16.7,53.8,5.8,11.8,7.8,22.3,15.3,6.6,2.8,7.2,12.4,17.8,9.0,10.1,7.39999999999999,22.0,10.5,29.8,4.1,18.3,12.0,8.8,16.0,41.4,13.5,6.9,12.4,15.7,15.6,12.3,2.4,14.6,14.9,8.8,22.2,19.2,6.1,11.2,10.6,14.2
output/preprocess/Rectal_Cancer/cohort_info.json ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "GSE94104": {
3
+ "is_usable": true,
4
+ "is_gene_available": true,
5
+ "is_trait_available": true,
6
+ "is_available": true,
7
+ "is_biased": false,
8
+ "has_age": false,
9
+ "has_gender": false,
10
+ "sample_size": 80
11
+ },
12
+ "GSE40492": {
13
+ "is_usable": true,
14
+ "is_gene_available": true,
15
+ "is_trait_available": true,
16
+ "is_available": true,
17
+ "is_biased": false,
18
+ "has_age": true,
19
+ "has_gender": true,
20
+ "sample_size": 245
21
+ },
22
+ "GSE170999": {
23
+ "is_usable": false,
24
+ "is_gene_available": false,
25
+ "is_trait_available": true,
26
+ "is_available": false,
27
+ "is_biased": null,
28
+ "has_age": null,
29
+ "has_gender": null,
30
+ "sample_size": null
31
+ },
32
+ "GSE150082": {
33
+ "is_usable": true,
34
+ "is_gene_available": true,
35
+ "is_trait_available": true,
36
+ "is_available": true,
37
+ "is_biased": false,
38
+ "has_age": true,
39
+ "has_gender": true,
40
+ "sample_size": 39
41
+ },
42
+ "GSE145037": {
43
+ "is_usable": false,
44
+ "is_gene_available": false,
45
+ "is_trait_available": false,
46
+ "is_available": false,
47
+ "is_biased": null,
48
+ "has_age": null,
49
+ "has_gender": null,
50
+ "sample_size": null
51
+ },
52
+ "GSE139255": {
53
+ "is_usable": true,
54
+ "is_gene_available": true,
55
+ "is_trait_available": true,
56
+ "is_available": true,
57
+ "is_biased": false,
58
+ "has_age": false,
59
+ "has_gender": false,
60
+ "sample_size": 156
61
+ },
62
+ "GSE133057": {
63
+ "is_usable": true,
64
+ "is_gene_available": true,
65
+ "is_trait_available": true,
66
+ "is_available": true,
67
+ "is_biased": false,
68
+ "has_age": true,
69
+ "has_gender": true,
70
+ "sample_size": 33
71
+ },
72
+ "GSE123390": {
73
+ "is_usable": true,
74
+ "is_gene_available": true,
75
+ "is_trait_available": true,
76
+ "is_available": true,
77
+ "is_biased": false,
78
+ "has_age": false,
79
+ "has_gender": false,
80
+ "sample_size": 28
81
+ },
82
+ "GSE119409": {
83
+ "is_usable": true,
84
+ "is_gene_available": true,
85
+ "is_trait_available": true,
86
+ "is_available": true,
87
+ "is_biased": false,
88
+ "has_age": false,
89
+ "has_gender": false,
90
+ "sample_size": 2
91
+ },
92
+ "GSE109057": {
93
+ "is_usable": true,
94
+ "is_gene_available": true,
95
+ "is_trait_available": true,
96
+ "is_available": true,
97
+ "is_biased": false,
98
+ "has_age": false,
99
+ "has_gender": false,
100
+ "sample_size": 3
101
+ },
102
+ "TCGA": {
103
+ "is_usable": true,
104
+ "is_gene_available": true,
105
+ "is_trait_available": true,
106
+ "is_available": true,
107
+ "is_biased": false,
108
+ "has_age": true,
109
+ "has_gender": true,
110
+ "sample_size": 105
111
+ }
112
+ }
p1/preprocess/Prostate_Cancer/gene_data/GSE259218.csv ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ Gene,GSM8111504,GSM8111505,GSM8111506,GSM8111507,GSM8111508,GSM8111509,GSM8111510,GSM8111511,GSM8111512,GSM8111513,GSM8111514,GSM8111515,GSM8111516,GSM8111517,GSM8111518,GSM8111519,GSM8111520,GSM8111521,GSM8111522,GSM8111523,GSM8111524,GSM8111525,GSM8111526,GSM8111527,GSM8111528,GSM8111529,GSM8111530,GSM8111531,GSM8111532,GSM8111533,GSM8111534,GSM8111535,GSM8111536,GSM8111537,GSM8111538,GSM8111539,GSM8111540,GSM8111541,GSM8111542,GSM8111543,GSM8111544,GSM8111545,GSM8111546,GSM8111547,GSM8111548,GSM8111549,GSM8111550,GSM8111551
2
+ OR4F16,92.62348,96.1646,93.14436,94.60566,92.70193,92.29272,91.78902,92.52548,93.50397,92.1257,96.85947,94.30385,97.46374,93.60451,95.8289,94.38887,94.15765,103.0378,98.61027,95.02132,91.14053,91.06796,88.63256,92.14626,91.37267,94.98623,101.7025,89.04741,87.51493,91.45093,92.14801,91.39998,95.84787,101.9999,102.0307,96.79668,93.29488,96.59714,92.74218,98.79894,95.86237,97.19956,88.95374,97.59253,96.86462,101.3525,93.17311,101.5774
3
+ OR4F17,95.95036,92.17675,95.10325,97.2383,95.29253,95.43927,97.35049,89.20792,89.4932,99.43916,91.68876,96.58812,90.92703,94.91365,92.69555,95.66331,92.49176,92.31004,88.7634,93.99573,97.19251,92.02088,96.45043,96.03814,85.89545,94.34533,93.72083,87.66558,94.98042,91.70341,94.19315,95.05149,101.9253,95.44308,94.8525,94.31593,90.55092,98.94518,88.25571,90.87545,97.49011,100.3776,99.07206,93.27406,98.19466,97.44492,89.79266,94.12099
4
+ OR4F21,194.74611,186.88168,190.15385,181.11916,178.31121000000002,184.65344,188.38761,178.48894,194.89199,177.79680000000002,193.97115,182.50745,190.86485,182.33688999999998,182.21885,182.94562000000002,177.87921999999998,186.89138,189.26441,188.15188999999998,182.46785,180.54367000000002,191.29709,187.45098000000002,185.33479,192.87718,189.13256,189.64796,188.87382000000002,190.46150999999998,180.07397,193.73802999999998,191.74015,172.2509,182.79140999999998,187.5306,188.00284,191.33695,185.6642,187.09397,174.51728,186.72394,182.62914999999998,194.90013,177.22823,189.14454,189.91125,194.63229
5
+ OR4F29,92.24358,89.94441,89.95223,98.43713,89.74045,96.29741,95.3726,93.66099,97.79916,94.63802,101.3678,94.41834,90.03468,92.87086,92.09503,89.26066,93.0051,95.06699,96.16346,97.88391,97.2855,91.0332,92.92427,90.21371,93.44091,105.5865,94.52934,94.67641,89.50008,86.55812,100.8829,93.54269,93.49877,93.25122,94.51927,94.1384,89.56702,88.95223,94.93038,101.357,95.3435,96.06966,94.9967,92.35013,91.80289,93.66821,93.57048,106.7245
6
+ OR4F3,88.85523,99.21703,93.07277,92.55325,103.4661,96.36249,87.33717,89.64014,94.17142,89.8408,89.92381,85.75546,84.27009,100.2968,92.61087,90.13343,99.7556,88.1498,93.37534,83.51451,98.2854,85.96048,86.21328,87.64319,112.7936,91.5827,102.1816,93.98384,91.56601,97.36145,93.86375,94.18634,88.72652,98.50233,93.08009,89.75155,93.01897,93.31461,93.08166,91.45093,90.98116,90.30466,92.83686,99.3224,93.97758,96.25475,93.86806,101.1472
7
+ OR4F4,185.54547,194.06567,178.2003,179.3677,187.96043,185.4264,187.26728,180.66799,180.91118,195.51704,184.94928,191.36651999999998,179.3657,186.35577,188.39845,180.58699000000001,184.59861,178.37243,223.03966000000003,182.16378,183.27353,193.34502,183.68752,192.70065,190.92311,182.46614,184.8333,192.32474,188.13522,183.3831,181.88657999999998,200.99063999999998,181.95177999999999,186.65825,190.39247999999998,178.49754000000001,184.68518999999998,190.71572,189.74538,186.71528999999998,185.85718,183.27321999999998,179.03733,193.36665,186.28352,186.86105,183.40856,178.75342999999998
8
+ OR4F5,177.38063,193.30158,181.50494,183.54149999999998,190.07296,187.14512000000002,185.42806000000002,196.42499,181.18968,187.92471,190.47345,171.50689,185.02333,193.10395,181.83245,171.15949,190.42229,176.70373,179.64164,183.80202,193.4931,174.96405,185.48614,179.86972,194.84206,194.39896,178.81445000000002,191.69397,188.44806,181.77506,184.58217000000002,178.47466,187.66017,188.75498,178.94450999999998,178.88846,186.95185,183.97177,179.43383,178.94745999999998,184.0177,176.41209,195.80340999999999,188.28372000000002,191.02737,181.54261,186.93289,186.16651000000002
9
+ PCMTD2,363.8437,355.2527,356.9194,371.5242,360.1638,344.6977,319.2271,375.2348,395.4962,389.5339,396.8118,388.0998,370.6284,359.8901,369.9979,350.8168,282.4656,313.0189,324.2806,301.9114,304.5741,333.6693,358.0184,335.6337,252.3954,285.7505,291.4072,264.9956,299.0491,288.4565,280.4529,296.4833,290.6401,242.5474,318.5953,226.6705,257.2045,254.083,259.6339,237.0867,304.7521,238.2254,327.6698,254.5902,238.7073,250.4888,290.0233,286.8727
p1/preprocess/Sarcoma/clinical_data/GSE197147.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ GSM5910186,GSM5910187,GSM5910188,GSM5910189,GSM5910190,GSM5910191,GSM5910192,GSM5910193,GSM5910194,GSM5910195,GSM5910196,GSM5910197,GSM5910198,GSM5910199,GSM5910200,GSM5910201,GSM5910202,GSM5910203,GSM5910204,GSM5910205,GSM5910206,GSM5910207,GSM5910208,GSM5910209,GSM5910210,GSM5910211,GSM5910212,GSM5910213,GSM5910214,GSM5910215,GSM5910216,GSM5910217,GSM5910218,GSM5910219,GSM5910220,GSM5910221,GSM5910222,GSM5910223,GSM5910224,GSM5910225,GSM5910226,GSM5910227,GSM5910228,GSM5910229,GSM5910230,GSM5910231,GSM5910232,GSM5910233,GSM5910234,GSM5910235,GSM5910236,GSM5910237,GSM5910238,GSM5910239,GSM5910240,GSM5910241,GSM5910242,GSM5910243,GSM5910244,GSM5910245,GSM5910246,GSM5910247,GSM5910248,GSM5910249,GSM5910250,GSM5910251,GSM5910252,GSM5910253,GSM5910254,GSM5910255,GSM5910256,GSM5910257,GSM5910258,GSM5910259,GSM5910260,GSM5910261,GSM5910262,GSM5910263,GSM5910264
2
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
p1/preprocess/Sarcoma/code/GSE118336.py ADDED
@@ -0,0 +1,251 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Sarcoma"
6
+ cohort = "GSE118336"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Sarcoma"
10
+ in_cohort_dir = "../DATA/GEO/Sarcoma/GSE118336"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Sarcoma/GSE118336.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Sarcoma/gene_data/GSE118336.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Sarcoma/clinical_data/GSE118336.csv"
16
+ json_path = "./output/preprocess/1/Sarcoma/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # Step: Dataset Analysis and Clinical Feature Extraction
37
+
38
+ # 1. Gene Expression Data Availability
39
+ # The Series title indicates "HTA2.0 (human transcriptome array) analysis", which suggests
40
+ # actual gene expression data is available (and not simply miRNA or methylation data).
41
+ is_gene_available = True
42
+
43
+ # 2. Variable Availability and Data Type Conversion
44
+
45
+ # 2.1 Identify keys in the sample characteristics for each variable:
46
+ trait_row = None # No mention of 'Sarcoma' or a relevant disease key in the dictionary.
47
+ age_row = None # No age information found.
48
+ gender_row = None # No gender information found.
49
+
50
+ # 2.2 Define data-type conversion functions. Even though data is not available,
51
+ # we provide them as placeholders.
52
+
53
+ def convert_trait(x: str) -> int:
54
+ # Not used because trait_row is None, but here's a placeholder function.
55
+ # Convert to 'binary' if used, or return None for unknown.
56
+ return None
57
+
58
+ def convert_age(x: str) -> float:
59
+ # Not used because age_row is None, placeholder function
60
+ return None
61
+
62
+ def convert_gender(x: str) -> int:
63
+ # Not used because gender_row is None, placeholder function
64
+ return None
65
+
66
+ # 3. Save Metadata (initial filtering).
67
+ # Trait data availability depends on trait_row. Since trait_row is None, is_trait_available=False.
68
+ is_trait_available = False
69
+
70
+ is_usable = validate_and_save_cohort_info(
71
+ is_final=False,
72
+ cohort=cohort,
73
+ info_path=json_path,
74
+ is_gene_available=is_gene_available,
75
+ is_trait_available=is_trait_available
76
+ )
77
+
78
+ # 4. Since trait_row is None, we skip clinical feature extraction and do not call geo_select_clinical_features.
79
+ # STEP3
80
+ import gzip
81
+ import pandas as pd
82
+
83
+ try:
84
+ # 1. Attempt to extract gene expression data using the library function
85
+ gene_data = get_genetic_data(matrix_file)
86
+ except KeyError:
87
+ # Fallback: the expected "ID_REF" column may be absent, so manually parse the file
88
+ # and rename the first column to "ID".
89
+ marker = "!series_matrix_table_begin"
90
+ skip_rows = None
91
+
92
+ # Determine how many rows to skip before the matrix data begins
93
+ with gzip.open(matrix_file, 'rt') as f:
94
+ for i, line in enumerate(f):
95
+ if marker in line:
96
+ skip_rows = i + 1
97
+ break
98
+ else:
99
+ raise ValueError(f"Marker '{marker}' not found in the file.")
100
+
101
+ # Read the data from the determined position
102
+ gene_data = pd.read_csv(
103
+ matrix_file,
104
+ compression='gzip',
105
+ skiprows=skip_rows,
106
+ comment='!',
107
+ delimiter='\t',
108
+ on_bad_lines='skip'
109
+ )
110
+
111
+ # If a different column name is used instead of 'ID_REF', rename appropriately
112
+ if 'ID_REF' in gene_data.columns:
113
+ gene_data.rename(columns={'ID_REF': 'ID'}, inplace=True)
114
+ else:
115
+ first_col = gene_data.columns[0]
116
+ gene_data.rename(columns={first_col: 'ID'}, inplace=True)
117
+
118
+ gene_data['ID'] = gene_data['ID'].astype(str)
119
+ gene_data.set_index('ID', inplace=True)
120
+
121
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
122
+ print(gene_data.index[:20])
123
+ requires_gene_mapping = True
124
+ # STEP5
125
+ # 1 & 2. Only extract and preview gene annotation data if the SOFT file exists, otherwise skip.
126
+ if soft_file is None:
127
+ print("No SOFT file found. Skipping gene annotation extraction.")
128
+ gene_annotation = pd.DataFrame()
129
+ else:
130
+ try:
131
+ # Attempt to extract gene annotation with the default method
132
+ gene_annotation = get_gene_annotation(soft_file)
133
+ except UnicodeDecodeError:
134
+ # Fallback if UTF-8 decoding fails: read with a more lenient encoding and pass the content as a string
135
+ import gzip
136
+ with gzip.open(soft_file, 'rt', encoding='latin-1', errors='replace') as f:
137
+ content = f.read()
138
+ gene_annotation = filter_content_by_prefix(
139
+ content,
140
+ prefixes_a=['^','!','#'],
141
+ unselect=True,
142
+ source_type='string',
143
+ return_df_a=True
144
+ )[0]
145
+
146
+ print("Gene annotation preview:")
147
+ print(preview_df(gene_annotation))
148
+ # STEP 6: Gene Identifier Mapping
149
+
150
+ # We'll attempt to map the probe-level data to gene symbols only if there's a genuine overlap
151
+ # between the expression data indices and the annotation IDs.
152
+
153
+ probe_column_candidates = ["ID", "probeset_id"]
154
+ gene_symbol_column_candidates = ["gene_assignment", "mrna_assignment"]
155
+
156
+ chosen_probe_col = None
157
+ chosen_symbol_col = None
158
+
159
+ # 1. Find a probe column with overlap
160
+ for col in probe_column_candidates:
161
+ if col in gene_annotation.columns:
162
+ overlap = set(gene_annotation[col]) & set(gene_data.index)
163
+ if len(overlap) > 0:
164
+ chosen_probe_col = col
165
+ break
166
+
167
+ # 2. Pick a gene symbol column
168
+ for col in gene_symbol_column_candidates:
169
+ if col in gene_annotation.columns:
170
+ chosen_symbol_col = col
171
+ break
172
+
173
+ # If none found, skip mapping
174
+ if not chosen_probe_col or not chosen_symbol_col:
175
+ print("No suitable probe or gene symbol columns found in the annotation. Skipping mapping.")
176
+ else:
177
+ # Build a preliminary mapping DataFrame
178
+ mapping_df = get_gene_mapping(
179
+ gene_annotation,
180
+ prob_col=chosen_probe_col,
181
+ gene_col=chosen_symbol_col
182
+ )
183
+
184
+ # 3. Check for genuine overlap after dropping invalid entries
185
+ mapped_ids = set(mapping_df["ID"].unique()) & set(gene_data.index)
186
+ if len(mapped_ids) == 0:
187
+ print("No overlapping probe IDs after cleaning. Skipping mapping.")
188
+ else:
189
+ # Proceed with the mapping since there is an actual overlap
190
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
191
+ print("Gene-level mapping performed successfully.")
192
+ print("Mapped gene_data shape:", gene_data.shape)
193
+ print("First few gene symbols after mapping:", gene_data.index[:10].tolist())
194
+ import os
195
+ import pandas as pd
196
+
197
+ # STEP 7: Data Normalization and Linking
198
+
199
+ # First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
200
+ if not os.path.exists(out_clinical_data_file):
201
+ # No trait data file => dataset is not usable for trait analysis
202
+ df_null = pd.DataFrame()
203
+ is_biased = True # Arbitrary boolean to satisfy function requirement
204
+ validate_and_save_cohort_info(
205
+ is_final=True,
206
+ cohort=cohort,
207
+ info_path=json_path,
208
+ is_gene_available=True,
209
+ is_trait_available=False,
210
+ is_biased=is_biased,
211
+ df=df_null,
212
+ note="No trait data file found; dataset not usable for trait analysis."
213
+ )
214
+
215
+ else:
216
+ # 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
217
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
218
+ normalized_gene_data.to_csv(out_gene_data_file)
219
+
220
+ # 2. Load the previously extracted clinical CSV.
221
+ selected_clinical_df = pd.read_csv(out_clinical_data_file)
222
+ # If we had a single-row trait, rename row 0 to the trait name (example usage).
223
+ selected_clinical_df = selected_clinical_df.rename(index={0: trait})
224
+
225
+ # Combine these as our final clinical data; in this dataset, we only have trait info (if any).
226
+ combined_clinical_df = selected_clinical_df
227
+
228
+ # Link the clinical and genetic data by matching sample IDs in columns.
229
+ linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
230
+
231
+ # 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
232
+ processed_data = handle_missing_values(linked_data, trait)
233
+
234
+ # 4. Check trait bias and remove any biased demographic features (if any).
235
+ trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
236
+
237
+ # 5. Final validation and metadata saving.
238
+ is_usable = validate_and_save_cohort_info(
239
+ is_final=True,
240
+ cohort=cohort,
241
+ info_path=json_path,
242
+ is_gene_available=True,
243
+ is_trait_available=True,
244
+ is_biased=trait_biased,
245
+ df=processed_data,
246
+ note="Completed trait-based preprocessing."
247
+ )
248
+
249
+ # 6. If final dataset is usable, save. Otherwise, skip.
250
+ if is_usable:
251
+ processed_data.to_csv(out_data_file)
p1/preprocess/Sarcoma/code/GSE133228.py ADDED
@@ -0,0 +1,247 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Sarcoma"
6
+ cohort = "GSE133228"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Sarcoma"
10
+ in_cohort_dir = "../DATA/GEO/Sarcoma/GSE133228"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Sarcoma/GSE133228.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Sarcoma/gene_data/GSE133228.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Sarcoma/clinical_data/GSE133228.csv"
16
+ json_path = "./output/preprocess/1/Sarcoma/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1) Gene Expression Data Availability
37
+ is_gene_available = True # Based on background info, we assume these data measure gene expression
38
+
39
+ # 2) Variable Availability and Data Type Conversion
40
+
41
+ # From the sample characteristics:
42
+ # 0 -> ['gender: Male', 'gender: Female']
43
+ # 1 -> ['age: 3', 'age: 11', 'age: 4', 'age: 25', ...] (multiple distinct ages)
44
+ # 2 -> ['tumor type: primary tumor'] (only one value)
45
+
46
+ # The trait "Sarcoma" is not explicitly found in any row, and row 2 has only one unique value.
47
+ # Hence, trait_row = None (not useful for a variation-based analysis).
48
+ trait_row = None
49
+
50
+ # Age data is in row=1 with multiple distinct values
51
+ age_row = 1
52
+
53
+ # Gender data is in row=0 with multiple distinct values
54
+ gender_row = 0
55
+
56
+ # 2.2) Define data type converters
57
+
58
+ def convert_trait(value: str) -> int:
59
+ # Not used because trait_row is None, but define for consistency.
60
+ # If we had data, we might extract part after the colon and map accordingly.
61
+ return None
62
+
63
+ def convert_age(value: str) -> float:
64
+ # Typical pattern: "age: 25"
65
+ # Split by colon and take the numeric part
66
+ parts = value.split(':')
67
+ if len(parts) == 2:
68
+ try:
69
+ return float(parts[1].strip())
70
+ except ValueError:
71
+ return None
72
+ return None
73
+
74
+ def convert_gender(value: str) -> int:
75
+ # Typical pattern: "gender: Male"/"gender: Female"
76
+ # Convert Female->0, Male->1, otherwise None
77
+ parts = value.split(':')
78
+ if len(parts) == 2:
79
+ g = parts[1].strip().lower()
80
+ if g == 'male':
81
+ return 1
82
+ elif g == 'female':
83
+ return 0
84
+ return None
85
+
86
+ # 3) Save Metadata (initial filtering)
87
+ # Trait data availability depends on whether trait_row is None
88
+ is_trait_available = (trait_row is not None)
89
+
90
+ is_usable = validate_and_save_cohort_info(
91
+ is_final=False,
92
+ cohort=cohort,
93
+ info_path=json_path,
94
+ is_gene_available=is_gene_available,
95
+ is_trait_available=is_trait_available
96
+ )
97
+
98
+ # 4) Clinical Feature Extraction
99
+ # Since trait_row is None, we skip extracting clinical features
100
+ # STEP3
101
+ import gzip
102
+ import pandas as pd
103
+
104
+ try:
105
+ # 1. Attempt to extract gene expression data using the library function
106
+ gene_data = get_genetic_data(matrix_file)
107
+ except KeyError:
108
+ # Fallback: the expected "ID_REF" column may be absent, so manually parse the file
109
+ # and rename the first column to "ID".
110
+ marker = "!series_matrix_table_begin"
111
+ skip_rows = None
112
+
113
+ # Determine how many rows to skip before the matrix data begins
114
+ with gzip.open(matrix_file, 'rt') as f:
115
+ for i, line in enumerate(f):
116
+ if marker in line:
117
+ skip_rows = i + 1
118
+ break
119
+ else:
120
+ raise ValueError(f"Marker '{marker}' not found in the file.")
121
+
122
+ # Read the data from the determined position
123
+ gene_data = pd.read_csv(
124
+ matrix_file,
125
+ compression='gzip',
126
+ skiprows=skip_rows,
127
+ comment='!',
128
+ delimiter='\t',
129
+ on_bad_lines='skip'
130
+ )
131
+
132
+ # If a different column name is used instead of 'ID_REF', rename appropriately
133
+ if 'ID_REF' in gene_data.columns:
134
+ gene_data.rename(columns={'ID_REF': 'ID'}, inplace=True)
135
+ else:
136
+ first_col = gene_data.columns[0]
137
+ gene_data.rename(columns={first_col: 'ID'}, inplace=True)
138
+
139
+ gene_data['ID'] = gene_data['ID'].astype(str)
140
+ gene_data.set_index('ID', inplace=True)
141
+
142
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
143
+ print(gene_data.index[:20])
144
+ # These identifiers (e.g., "100009676_at", "10000_at") appear to be microarray probe IDs, not standard human gene symbols.
145
+ # Typically, such probe IDs need to be mapped to the corresponding gene symbols.
146
+
147
+ print("requires_gene_mapping = True")
148
+ # STEP5
149
+ # 1 & 2. Only extract and preview gene annotation data if the SOFT file exists, otherwise skip.
150
+ if soft_file is None:
151
+ print("No SOFT file found. Skipping gene annotation extraction.")
152
+ gene_annotation = pd.DataFrame()
153
+ else:
154
+ try:
155
+ # Attempt to extract gene annotation with the default method
156
+ gene_annotation = get_gene_annotation(soft_file)
157
+ except UnicodeDecodeError:
158
+ # Fallback if UTF-8 decoding fails: read with a more lenient encoding and pass the content as a string
159
+ import gzip
160
+ with gzip.open(soft_file, 'rt', encoding='latin-1', errors='replace') as f:
161
+ content = f.read()
162
+ gene_annotation = filter_content_by_prefix(
163
+ content,
164
+ prefixes_a=['^','!','#'],
165
+ unselect=True,
166
+ source_type='string',
167
+ return_df_a=True
168
+ )[0]
169
+
170
+ print("Gene annotation preview:")
171
+ print(preview_df(gene_annotation))
172
+ # STEP: Gene Identifier Mapping
173
+
174
+ # 1) Decide which key in the gene annotation dataframe corresponds to the probe IDs
175
+ # (same as those in the gene expression data) and which key corresponds to the gene symbol.
176
+ # From our preview, "ID" in the annotation matches the probe IDs in the gene expression data,
177
+ # while "Description" appears to hold gene names/symbols (albeit as descriptive text).
178
+
179
+ prob_col = "ID"
180
+ gene_col = "Description"
181
+
182
+ # 2) Get a gene mapping dataframe using these columns.
183
+ mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)
184
+
185
+ # 3) Convert probe-level measurements to gene-level data.
186
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
187
+
188
+ # Optional: Inspect the resulting gene_data shape
189
+ print("Mapped gene expression data shape:", gene_data.shape)
190
+ import os
191
+ import pandas as pd
192
+
193
+ # STEP 7: Data Normalization and Linking
194
+
195
+ # First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
196
+ if not os.path.exists(out_clinical_data_file):
197
+ # No trait data file => dataset is not usable for trait analysis
198
+ df_null = pd.DataFrame()
199
+ is_biased = True # Arbitrary boolean to satisfy function requirement
200
+ validate_and_save_cohort_info(
201
+ is_final=True,
202
+ cohort=cohort,
203
+ info_path=json_path,
204
+ is_gene_available=True,
205
+ is_trait_available=False,
206
+ is_biased=is_biased,
207
+ df=df_null,
208
+ note="No trait data file found; dataset not usable for trait analysis."
209
+ )
210
+
211
+ else:
212
+ # 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
213
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
214
+ normalized_gene_data.to_csv(out_gene_data_file)
215
+
216
+ # 2. Load the previously extracted clinical CSV.
217
+ selected_clinical_df = pd.read_csv(out_clinical_data_file)
218
+ # If we had a single-row trait, rename row 0 to the trait name (example usage).
219
+ selected_clinical_df = selected_clinical_df.rename(index={0: trait})
220
+
221
+ # Combine these as our final clinical data; in this dataset, we only have trait info (if any).
222
+ combined_clinical_df = selected_clinical_df
223
+
224
+ # Link the clinical and genetic data by matching sample IDs in columns.
225
+ linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
226
+
227
+ # 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
228
+ processed_data = handle_missing_values(linked_data, trait)
229
+
230
+ # 4. Check trait bias and remove any biased demographic features (if any).
231
+ trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
232
+
233
+ # 5. Final validation and metadata saving.
234
+ is_usable = validate_and_save_cohort_info(
235
+ is_final=True,
236
+ cohort=cohort,
237
+ info_path=json_path,
238
+ is_gene_available=True,
239
+ is_trait_available=True,
240
+ is_biased=trait_biased,
241
+ df=processed_data,
242
+ note="Completed trait-based preprocessing."
243
+ )
244
+
245
+ # 6. If final dataset is usable, save. Otherwise, skip.
246
+ if is_usable:
247
+ processed_data.to_csv(out_data_file)
p1/preprocess/Sarcoma/code/GSE142162.py ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Sarcoma"
6
+ cohort = "GSE142162"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Sarcoma"
10
+ in_cohort_dir = "../DATA/GEO/Sarcoma/GSE142162"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Sarcoma/GSE142162.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Sarcoma/gene_data/GSE142162.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Sarcoma/clinical_data/GSE142162.csv"
16
+ json_path = "./output/preprocess/1/Sarcoma/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1) Determine gene expression availability
37
+ is_gene_available = True # Based on Affymetrix hgu133Plus2 arrays and "Expression profiling" indication
38
+
39
+ # 2) Identify data availability (rows) and define conversion functions
40
+
41
+ # For this dataset, the trait is effectively constant ("tumor type: primary tumor"), so it's not useful
42
+ # for an association study. Hence, trait_row is None.
43
+ trait_row = None
44
+
45
+ # Age is variable under key 1
46
+ age_row = 1
47
+
48
+ # Gender is variable under key 0
49
+ gender_row = 0
50
+
51
+ # 2.2) Data type conversion functions
52
+
53
+ def convert_trait(value: str):
54
+ """
55
+ This dataset does not contain meaningful variation for the primary trait 'Sarcoma'.
56
+ We'll return None for all inputs.
57
+ """
58
+ return None
59
+
60
+ def convert_age(value: str):
61
+ """
62
+ Converts age values after the colon to a continuous numeric type.
63
+ Unknown values are returned as None.
64
+ Example input: "age: 25"
65
+ """
66
+ parts = value.split(':')
67
+ if len(parts) < 2:
68
+ return None
69
+ raw_val = parts[1].strip()
70
+ if not raw_val.isdigit():
71
+ return None
72
+ return float(raw_val)
73
+
74
+ def convert_gender(value: str):
75
+ """
76
+ Converts gender to a binary variable:
77
+ Female -> 0
78
+ Male -> 1
79
+ Unknown values are returned as None.
80
+ Example input: "gender: Male"
81
+ """
82
+ parts = value.split(':')
83
+ if len(parts) < 2:
84
+ return None
85
+ raw_val = parts[1].strip().lower()
86
+ if raw_val == 'male':
87
+ return 1
88
+ elif raw_val == 'female':
89
+ return 0
90
+ return None
91
+
92
+ # 3) Conduct initial dataset filtering and save metadata
93
+ is_trait_available = (trait_row is not None)
94
+ is_usable = validate_and_save_cohort_info(
95
+ is_final=False,
96
+ cohort=cohort,
97
+ info_path=json_path,
98
+ is_gene_available=is_gene_available,
99
+ is_trait_available=is_trait_available
100
+ )
101
+
102
+ # 4) Since trait_row is None, we skip clinical feature extraction.
103
+ # STEP3
104
+ import gzip
105
+ import pandas as pd
106
+
107
+ try:
108
+ # 1. Attempt to extract gene expression data using the library function
109
+ gene_data = get_genetic_data(matrix_file)
110
+ except KeyError:
111
+ # Fallback: the expected "ID_REF" column may be absent, so manually parse the file
112
+ # and rename the first column to "ID".
113
+ marker = "!series_matrix_table_begin"
114
+ skip_rows = None
115
+
116
+ # Determine how many rows to skip before the matrix data begins
117
+ with gzip.open(matrix_file, 'rt') as f:
118
+ for i, line in enumerate(f):
119
+ if marker in line:
120
+ skip_rows = i + 1
121
+ break
122
+ else:
123
+ raise ValueError(f"Marker '{marker}' not found in the file.")
124
+
125
+ # Read the data from the determined position
126
+ gene_data = pd.read_csv(
127
+ matrix_file,
128
+ compression='gzip',
129
+ skiprows=skip_rows,
130
+ comment='!',
131
+ delimiter='\t',
132
+ on_bad_lines='skip'
133
+ )
134
+
135
+ # If a different column name is used instead of 'ID_REF', rename appropriately
136
+ if 'ID_REF' in gene_data.columns:
137
+ gene_data.rename(columns={'ID_REF': 'ID'}, inplace=True)
138
+ else:
139
+ first_col = gene_data.columns[0]
140
+ gene_data.rename(columns={first_col: 'ID'}, inplace=True)
141
+
142
+ gene_data['ID'] = gene_data['ID'].astype(str)
143
+ gene_data.set_index('ID', inplace=True)
144
+
145
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
146
+ print(gene_data.index[:20])
147
+ print("requires_gene_mapping = True")
148
+ # STEP5
149
+ # 1 & 2. Only extract and preview gene annotation data if the SOFT file exists, otherwise skip.
150
+ if soft_file is None:
151
+ print("No SOFT file found. Skipping gene annotation extraction.")
152
+ gene_annotation = pd.DataFrame()
153
+ else:
154
+ try:
155
+ # Attempt to extract gene annotation with the default method
156
+ gene_annotation = get_gene_annotation(soft_file)
157
+ except UnicodeDecodeError:
158
+ # Fallback if UTF-8 decoding fails: read with a more lenient encoding and pass the content as a string
159
+ import gzip
160
+ with gzip.open(soft_file, 'rt', encoding='latin-1', errors='replace') as f:
161
+ content = f.read()
162
+ gene_annotation = filter_content_by_prefix(
163
+ content,
164
+ prefixes_a=['^','!','#'],
165
+ unselect=True,
166
+ source_type='string',
167
+ return_df_a=True
168
+ )[0]
169
+
170
+ print("Gene annotation preview:")
171
+ print(preview_df(gene_annotation))
172
+ # Gene Identifier Mapping
173
+ probe_col = "ID" # column in gene_annotation that matches the probe IDs in gene_data
174
+ gene_symbol_col = "Description" # column in gene_annotation containing the gene symbol or descriptive info
175
+
176
+ mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=gene_symbol_col)
177
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
178
+ import os
179
+ import pandas as pd
180
+
181
+ # STEP 7: Data Normalization and Linking
182
+
183
+ # First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
184
+ if not os.path.exists(out_clinical_data_file):
185
+ # No trait data file => dataset is not usable for trait analysis
186
+ df_null = pd.DataFrame()
187
+ is_biased = True # Arbitrary boolean to satisfy function requirement
188
+ validate_and_save_cohort_info(
189
+ is_final=True,
190
+ cohort=cohort,
191
+ info_path=json_path,
192
+ is_gene_available=True,
193
+ is_trait_available=False,
194
+ is_biased=is_biased,
195
+ df=df_null,
196
+ note="No trait data file found; dataset not usable for trait analysis."
197
+ )
198
+
199
+ else:
200
+ # 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
201
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
202
+ normalized_gene_data.to_csv(out_gene_data_file)
203
+
204
+ # 2. Load the previously extracted clinical CSV.
205
+ selected_clinical_df = pd.read_csv(out_clinical_data_file)
206
+ # If we had a single-row trait, rename row 0 to the trait name (example usage).
207
+ selected_clinical_df = selected_clinical_df.rename(index={0: trait})
208
+
209
+ # Combine these as our final clinical data; in this dataset, we only have trait info (if any).
210
+ combined_clinical_df = selected_clinical_df
211
+
212
+ # Link the clinical and genetic data by matching sample IDs in columns.
213
+ linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
214
+
215
+ # 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
216
+ processed_data = handle_missing_values(linked_data, trait)
217
+
218
+ # 4. Check trait bias and remove any biased demographic features (if any).
219
+ trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
220
+
221
+ # 5. Final validation and metadata saving.
222
+ is_usable = validate_and_save_cohort_info(
223
+ is_final=True,
224
+ cohort=cohort,
225
+ info_path=json_path,
226
+ is_gene_available=True,
227
+ is_trait_available=True,
228
+ is_biased=trait_biased,
229
+ df=processed_data,
230
+ note="Completed trait-based preprocessing."
231
+ )
232
+
233
+ # 6. If final dataset is usable, save. Otherwise, skip.
234
+ if is_usable:
235
+ processed_data.to_csv(out_data_file)
p1/preprocess/Sarcoma/code/GSE159847.py ADDED
@@ -0,0 +1,237 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Sarcoma"
6
+ cohort = "GSE159847"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Sarcoma"
10
+ in_cohort_dir = "../DATA/GEO/Sarcoma/GSE159847"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Sarcoma/GSE159847.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Sarcoma/gene_data/GSE159847.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Sarcoma/clinical_data/GSE159847.csv"
16
+ json_path = "./output/preprocess/1/Sarcoma/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Gene Expression Data Availability
37
+ is_gene_available = True # This dataset likely contains gene expression data (Affymetrix/Agilent transcriptome).
38
+
39
+ # 2. Variable Availability and Data Type Conversion
40
+
41
+ # Since all samples are "complex sarcomas" (one trait), there's effectively no variation in the trait.
42
+ trait_row = None
43
+
44
+ # We do see multiple ages under key=1, so age is available.
45
+ age_row = 1
46
+
47
+ # We see males and females under key=0, so gender is available.
48
+ gender_row = 0
49
+
50
+ # Conversion functions
51
+ def convert_trait(value: str):
52
+ # Not used since trait_row is None, but defined as per instructions
53
+ return None
54
+
55
+ def convert_age(value: str):
56
+ # Example value: "age: 73"
57
+ try:
58
+ val = value.split(":", 1)[1].strip()
59
+ return float(val)
60
+ except:
61
+ return None
62
+
63
+ def convert_gender(value: str):
64
+ # Example value: "Sex: M" or "Sex: F"
65
+ val = value.split(":", 1)[1].strip().lower()
66
+ if val == "m":
67
+ return 1
68
+ elif val == "f":
69
+ return 0
70
+ return None
71
+
72
+ # 3. Save Metadata (initial filtering)
73
+ is_trait_available = (trait_row is not None)
74
+ validate_and_save_cohort_info(
75
+ is_final=False,
76
+ cohort=cohort,
77
+ info_path=json_path,
78
+ is_gene_available=is_gene_available,
79
+ is_trait_available=is_trait_available
80
+ )
81
+
82
+ # 4. Clinical Feature Extraction
83
+ # Skip this step if trait_row is None
84
+ if trait_row is not None:
85
+ selected_clinical_df = geo_select_clinical_features(
86
+ clinical_df=clinical_data,
87
+ trait="Sarcoma",
88
+ trait_row=trait_row,
89
+ convert_trait=convert_trait,
90
+ age_row=age_row,
91
+ convert_age=convert_age,
92
+ gender_row=gender_row,
93
+ convert_gender=convert_gender
94
+ )
95
+ print("Preview of selected clinical features:", preview_df(selected_clinical_df))
96
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
97
+ # STEP3
98
+ import gzip
99
+ import pandas as pd
100
+
101
+ try:
102
+ # 1. Attempt to extract gene expression data using the library function
103
+ gene_data = get_genetic_data(matrix_file)
104
+ except KeyError:
105
+ # Fallback: the expected "ID_REF" column may be absent, so manually parse the file
106
+ # and rename the first column to "ID".
107
+ marker = "!series_matrix_table_begin"
108
+ skip_rows = None
109
+
110
+ # Determine how many rows to skip before the matrix data begins
111
+ with gzip.open(matrix_file, 'rt') as f:
112
+ for i, line in enumerate(f):
113
+ if marker in line:
114
+ skip_rows = i + 1
115
+ break
116
+ else:
117
+ raise ValueError(f"Marker '{marker}' not found in the file.")
118
+
119
+ # Read the data from the determined position
120
+ gene_data = pd.read_csv(
121
+ matrix_file,
122
+ compression='gzip',
123
+ skiprows=skip_rows,
124
+ comment='!',
125
+ delimiter='\t',
126
+ on_bad_lines='skip'
127
+ )
128
+
129
+ # If a different column name is used instead of 'ID_REF', rename appropriately
130
+ if 'ID_REF' in gene_data.columns:
131
+ gene_data.rename(columns={'ID_REF': 'ID'}, inplace=True)
132
+ else:
133
+ first_col = gene_data.columns[0]
134
+ gene_data.rename(columns={first_col: 'ID'}, inplace=True)
135
+
136
+ gene_data['ID'] = gene_data['ID'].astype(str)
137
+ gene_data.set_index('ID', inplace=True)
138
+
139
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
140
+ print(gene_data.index[:20])
141
+ # These appear to be microarray probe IDs that are not standard human gene symbols.
142
+ print("requires_gene_mapping = True")
143
+ # STEP5
144
+ # 1 & 2. Only extract and preview gene annotation data if the SOFT file exists, otherwise skip.
145
+ if soft_file is None:
146
+ print("No SOFT file found. Skipping gene annotation extraction.")
147
+ gene_annotation = pd.DataFrame()
148
+ else:
149
+ try:
150
+ # Attempt to extract gene annotation with the default method
151
+ gene_annotation = get_gene_annotation(soft_file)
152
+ except UnicodeDecodeError:
153
+ # Fallback if UTF-8 decoding fails: read with a more lenient encoding and pass the content as a string
154
+ import gzip
155
+ with gzip.open(soft_file, 'rt', encoding='latin-1', errors='replace') as f:
156
+ content = f.read()
157
+ gene_annotation = filter_content_by_prefix(
158
+ content,
159
+ prefixes_a=['^','!','#'],
160
+ unselect=True,
161
+ source_type='string',
162
+ return_df_a=True
163
+ )[0]
164
+
165
+ print("Gene annotation preview:")
166
+ print(preview_df(gene_annotation))
167
+ # STEP6: Gene Identifier Mapping
168
+
169
+ # 1. Identify the matching columns in gene_annotation for probe ID and gene symbol
170
+ # Based on the preview, 'ID' corresponds to the probe IDs (e.g., A_23_P1000xx),
171
+ # and 'GENE_SYMBOL' holds the gene symbol.
172
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
173
+
174
+ # 2. Apply the mapping to convert probe-level data into gene-level data
175
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
176
+
177
+ # 3. Check a small part of the resulting gene_data
178
+ print("Mapped gene expression data shape:", gene_data.shape)
179
+ print("First 5 genes in gene_data index:", gene_data.index[:5].tolist())
180
+ import os
181
+ import pandas as pd
182
+
183
+ # STEP 7: Data Normalization and Linking
184
+
185
+ # First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
186
+ if not os.path.exists(out_clinical_data_file):
187
+ # No trait data file => dataset is not usable for trait analysis
188
+ df_null = pd.DataFrame()
189
+ is_biased = True # Arbitrary boolean to satisfy function requirement
190
+ validate_and_save_cohort_info(
191
+ is_final=True,
192
+ cohort=cohort,
193
+ info_path=json_path,
194
+ is_gene_available=True,
195
+ is_trait_available=False,
196
+ is_biased=is_biased,
197
+ df=df_null,
198
+ note="No trait data file found; dataset not usable for trait analysis."
199
+ )
200
+
201
+ else:
202
+ # 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
203
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
204
+ normalized_gene_data.to_csv(out_gene_data_file)
205
+
206
+ # 2. Load the previously extracted clinical CSV.
207
+ selected_clinical_df = pd.read_csv(out_clinical_data_file)
208
+ # If we had a single-row trait, rename row 0 to the trait name (example usage).
209
+ selected_clinical_df = selected_clinical_df.rename(index={0: trait})
210
+
211
+ # Combine these as our final clinical data; in this dataset, we only have trait info (if any).
212
+ combined_clinical_df = selected_clinical_df
213
+
214
+ # Link the clinical and genetic data by matching sample IDs in columns.
215
+ linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
216
+
217
+ # 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
218
+ processed_data = handle_missing_values(linked_data, trait)
219
+
220
+ # 4. Check trait bias and remove any biased demographic features (if any).
221
+ trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
222
+
223
+ # 5. Final validation and metadata saving.
224
+ is_usable = validate_and_save_cohort_info(
225
+ is_final=True,
226
+ cohort=cohort,
227
+ info_path=json_path,
228
+ is_gene_available=True,
229
+ is_trait_available=True,
230
+ is_biased=trait_biased,
231
+ df=processed_data,
232
+ note="Completed trait-based preprocessing."
233
+ )
234
+
235
+ # 6. If final dataset is usable, save. Otherwise, skip.
236
+ if is_usable:
237
+ processed_data.to_csv(out_data_file)
p1/preprocess/Sarcoma/code/GSE159848.py ADDED
@@ -0,0 +1,234 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Sarcoma"
6
+ cohort = "GSE159848"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Sarcoma"
10
+ in_cohort_dir = "../DATA/GEO/Sarcoma/GSE159848"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Sarcoma/GSE159848.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Sarcoma/gene_data/GSE159848.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Sarcoma/clinical_data/GSE159848.csv"
16
+ json_path = "./output/preprocess/1/Sarcoma/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Determine if gene expression data is available
37
+ is_gene_available = True # The dataset is described as "Expression data from 50 mixoid liposarcomas"
38
+
39
+ # 2. Identify availability of variables and define their data-conversion functions
40
+ # According to the dictionary, row 0 has sex: M/F, and row 1 has age
41
+ # For the trait "Sarcoma," the dataset is entirely mixoid liposarcomas (no variation), so we consider it unavailable.
42
+ trait_row = None
43
+ age_row = 1
44
+ gender_row = 0
45
+
46
+ def convert_trait(value: str):
47
+ """
48
+ Since trait is not available/variable in this dataset, always return None.
49
+ """
50
+ return None
51
+
52
+ def convert_age(value: str):
53
+ """
54
+ Extract the age value after the colon, converting it to float if possible.
55
+ Return None for invalid or unknown values.
56
+ """
57
+ val = value.split(':')[-1].strip()
58
+ try:
59
+ return float(val)
60
+ except ValueError:
61
+ return None
62
+
63
+ def convert_gender(value: str):
64
+ """
65
+ Extract the gender value (M or F) after the colon and convert to binary:
66
+ M or male -> 1
67
+ F or female -> 0
68
+ Others -> None
69
+ """
70
+ val = value.split(':')[-1].strip().lower()
71
+ if val in ['m', 'male']:
72
+ return 1
73
+ elif val in ['f', 'female']:
74
+ return 0
75
+ else:
76
+ return None
77
+
78
+ # 3. Save metadata with initial filtering
79
+ is_trait_available = (trait_row is not None)
80
+ is_usable = validate_and_save_cohort_info(
81
+ is_final=False,
82
+ cohort=cohort,
83
+ info_path=json_path,
84
+ is_gene_available=is_gene_available,
85
+ is_trait_available=is_trait_available
86
+ )
87
+
88
+ # 4. Since trait_row is None, skip extraction of clinical features
89
+ # STEP3
90
+ import gzip
91
+ import pandas as pd
92
+
93
+ try:
94
+ # 1. Attempt to extract gene expression data using the library function
95
+ gene_data = get_genetic_data(matrix_file)
96
+ except KeyError:
97
+ # Fallback: the expected "ID_REF" column may be absent, so manually parse the file
98
+ # and rename the first column to "ID".
99
+ marker = "!series_matrix_table_begin"
100
+ skip_rows = None
101
+
102
+ # Determine how many rows to skip before the matrix data begins
103
+ with gzip.open(matrix_file, 'rt') as f:
104
+ for i, line in enumerate(f):
105
+ if marker in line:
106
+ skip_rows = i + 1
107
+ break
108
+ else:
109
+ raise ValueError(f"Marker '{marker}' not found in the file.")
110
+
111
+ # Read the data from the determined position
112
+ gene_data = pd.read_csv(
113
+ matrix_file,
114
+ compression='gzip',
115
+ skiprows=skip_rows,
116
+ comment='!',
117
+ delimiter='\t',
118
+ on_bad_lines='skip'
119
+ )
120
+
121
+ # If a different column name is used instead of 'ID_REF', rename appropriately
122
+ if 'ID_REF' in gene_data.columns:
123
+ gene_data.rename(columns={'ID_REF': 'ID'}, inplace=True)
124
+ else:
125
+ first_col = gene_data.columns[0]
126
+ gene_data.rename(columns={first_col: 'ID'}, inplace=True)
127
+
128
+ gene_data['ID'] = gene_data['ID'].astype(str)
129
+ gene_data.set_index('ID', inplace=True)
130
+
131
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
132
+ print(gene_data.index[:20])
133
+ # Based on the observed probe IDs (e.g., "A_23_P100001"), these are not standard human gene symbols.
134
+ # Thus, gene-to-symbol mapping is required.
135
+
136
+ print("requires_gene_mapping = True")
137
+ # STEP5
138
+ # 1 & 2. Only extract and preview gene annotation data if the SOFT file exists, otherwise skip.
139
+ if soft_file is None:
140
+ print("No SOFT file found. Skipping gene annotation extraction.")
141
+ gene_annotation = pd.DataFrame()
142
+ else:
143
+ try:
144
+ # Attempt to extract gene annotation with the default method
145
+ gene_annotation = get_gene_annotation(soft_file)
146
+ except UnicodeDecodeError:
147
+ # Fallback if UTF-8 decoding fails: read with a more lenient encoding and pass the content as a string
148
+ import gzip
149
+ with gzip.open(soft_file, 'rt', encoding='latin-1', errors='replace') as f:
150
+ content = f.read()
151
+ gene_annotation = filter_content_by_prefix(
152
+ content,
153
+ prefixes_a=['^','!','#'],
154
+ unselect=True,
155
+ source_type='string',
156
+ return_df_a=True
157
+ )[0]
158
+
159
+ print("Gene annotation preview:")
160
+ print(preview_df(gene_annotation))
161
+ # STEP6: Gene Identifier Mapping
162
+
163
+ # 1. Identify the matching columns in the gene annotation dataframe.
164
+ # From the preview, the probe identifiers are under "ID" and the gene symbols are under "GENE_SYMBOL".
165
+ probe_col = "ID"
166
+ symbol_col = "GENE_SYMBOL"
167
+
168
+ # 2. Create the mapping dataframe from probe to gene symbol.
169
+ mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=symbol_col)
170
+
171
+ # 3. Convert probe-level measurements into gene expression data using the mapping dataframe.
172
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
173
+
174
+ # (Optional) Print the shape and a small index preview to verify successful mapping
175
+ print("Mapped gene_data shape:", gene_data.shape)
176
+ print("First 20 gene symbols in mapped gene_data:", list(gene_data.index[:20]))
177
+ import os
178
+ import pandas as pd
179
+
180
+ # STEP 7: Data Normalization and Linking
181
+
182
+ # First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
183
+ if not os.path.exists(out_clinical_data_file):
184
+ # No trait data file => dataset is not usable for trait analysis
185
+ df_null = pd.DataFrame()
186
+ is_biased = True # Arbitrary boolean to satisfy function requirement
187
+ validate_and_save_cohort_info(
188
+ is_final=True,
189
+ cohort=cohort,
190
+ info_path=json_path,
191
+ is_gene_available=True,
192
+ is_trait_available=False,
193
+ is_biased=is_biased,
194
+ df=df_null,
195
+ note="No trait data file found; dataset not usable for trait analysis."
196
+ )
197
+
198
+ else:
199
+ # 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
200
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
201
+ normalized_gene_data.to_csv(out_gene_data_file)
202
+
203
+ # 2. Load the previously extracted clinical CSV.
204
+ selected_clinical_df = pd.read_csv(out_clinical_data_file)
205
+ # If we had a single-row trait, rename row 0 to the trait name (example usage).
206
+ selected_clinical_df = selected_clinical_df.rename(index={0: trait})
207
+
208
+ # Combine these as our final clinical data; in this dataset, we only have trait info (if any).
209
+ combined_clinical_df = selected_clinical_df
210
+
211
+ # Link the clinical and genetic data by matching sample IDs in columns.
212
+ linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
213
+
214
+ # 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
215
+ processed_data = handle_missing_values(linked_data, trait)
216
+
217
+ # 4. Check trait bias and remove any biased demographic features (if any).
218
+ trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
219
+
220
+ # 5. Final validation and metadata saving.
221
+ is_usable = validate_and_save_cohort_info(
222
+ is_final=True,
223
+ cohort=cohort,
224
+ info_path=json_path,
225
+ is_gene_available=True,
226
+ is_trait_available=True,
227
+ is_biased=trait_biased,
228
+ df=processed_data,
229
+ note="Completed trait-based preprocessing."
230
+ )
231
+
232
+ # 6. If final dataset is usable, save. Otherwise, skip.
233
+ if is_usable:
234
+ processed_data.to_csv(out_data_file)
p1/preprocess/Sarcoma/code/GSE162785.py ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Sarcoma"
6
+ cohort = "GSE162785"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Sarcoma"
10
+ in_cohort_dir = "../DATA/GEO/Sarcoma/GSE162785"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Sarcoma/GSE162785.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Sarcoma/gene_data/GSE162785.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Sarcoma/clinical_data/GSE162785.csv"
16
+ json_path = "./output/preprocess/1/Sarcoma/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1) Determine gene expression data availability
37
+ is_gene_available = True # Microarray analysis suggests gene expression data is available
38
+
39
+ # 2) Variable availability and data type conversion
40
+
41
+ # From the sample characteristics dictionary:
42
+ # {0: ['cell line: A673', 'cell line: CHLA-10', 'cell line: EW7', 'cell line: SK-N-MC']}
43
+ # There is only one key (0), whose values all refer to Ewing sarcoma cell lines. For our trait of interest ("Sarcoma"),
44
+ # this dataset effectively has just one value for all samples (i.e., all are Ewing Sarcoma), so it is considered constant
45
+ # and therefore not available for association analysis.
46
+ trait_row = None # No variability in the trait
47
+ age_row = None # No age data available
48
+ gender_row = None # No gender data available
49
+
50
+ # Although the rows are None, we still define the conversion functions as requested.
51
+ def convert_trait(value: str):
52
+ # Not used here because trait_row is None
53
+ # Typically, we would parse the string after the colon and convert, but there's no relevant data to parse.
54
+ return None
55
+
56
+ def convert_age(value: str):
57
+ # Not used here because age_row is None
58
+ return None
59
+
60
+ def convert_gender(value: str):
61
+ # Not used here because gender_row is None
62
+ return None
63
+
64
+ # 3) Save metadata (initial filtering)
65
+ # Trait data is considered unavailable since trait_row is None.
66
+ is_trait_available = False
67
+ is_usable = validate_and_save_cohort_info(
68
+ is_final=False,
69
+ cohort=cohort,
70
+ info_path=json_path,
71
+ is_gene_available=is_gene_available,
72
+ is_trait_available=is_trait_available
73
+ )
74
+
75
+ # 4) Clinical feature extraction is skipped because trait_row is None (no clinical data for trait).
76
+ # STEP3
77
+ import gzip
78
+ import pandas as pd
79
+
80
+ try:
81
+ # 1. Attempt to extract gene expression data using the library function
82
+ gene_data = get_genetic_data(matrix_file)
83
+ except KeyError:
84
+ # Fallback: the expected "ID_REF" column may be absent, so manually parse the file
85
+ # and rename the first column to "ID".
86
+ marker = "!series_matrix_table_begin"
87
+ skip_rows = None
88
+
89
+ # Determine how many rows to skip before the matrix data begins
90
+ with gzip.open(matrix_file, 'rt') as f:
91
+ for i, line in enumerate(f):
92
+ if marker in line:
93
+ skip_rows = i + 1
94
+ break
95
+ else:
96
+ raise ValueError(f"Marker '{marker}' not found in the file.")
97
+
98
+ # Read the data from the determined position
99
+ gene_data = pd.read_csv(
100
+ matrix_file,
101
+ compression='gzip',
102
+ skiprows=skip_rows,
103
+ comment='!',
104
+ delimiter='\t',
105
+ on_bad_lines='skip'
106
+ )
107
+
108
+ # If a different column name is used instead of 'ID_REF', rename appropriately
109
+ if 'ID_REF' in gene_data.columns:
110
+ gene_data.rename(columns={'ID_REF': 'ID'}, inplace=True)
111
+ else:
112
+ first_col = gene_data.columns[0]
113
+ gene_data.rename(columns={first_col: 'ID'}, inplace=True)
114
+
115
+ gene_data['ID'] = gene_data['ID'].astype(str)
116
+ gene_data.set_index('ID', inplace=True)
117
+
118
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
119
+ print(gene_data.index[:20])
120
+ print("requires_gene_mapping = True")
121
+ # STEP5
122
+ # 1 & 2. Only extract and preview gene annotation data if the SOFT file exists, otherwise skip.
123
+ if soft_file is None:
124
+ print("No SOFT file found. Skipping gene annotation extraction.")
125
+ gene_annotation = pd.DataFrame()
126
+ else:
127
+ try:
128
+ # Attempt to extract gene annotation with the default method
129
+ gene_annotation = get_gene_annotation(soft_file)
130
+ except UnicodeDecodeError:
131
+ # Fallback if UTF-8 decoding fails: read with a more lenient encoding and pass the content as a string
132
+ import gzip
133
+ with gzip.open(soft_file, 'rt', encoding='latin-1', errors='replace') as f:
134
+ content = f.read()
135
+ gene_annotation = filter_content_by_prefix(
136
+ content,
137
+ prefixes_a=['^','!','#'],
138
+ unselect=True,
139
+ source_type='string',
140
+ return_df_a=True
141
+ )[0]
142
+
143
+ print("Gene annotation preview:")
144
+ print(preview_df(gene_annotation))
145
+ # STEP: Gene Identifier Mapping
146
+
147
+ # 1. Identify the columns in the annotation dataframe that match our probe IDs and contain gene symbols.
148
+ # From the preview, the "ID" column matches the numerical probe identifiers, and "gene_assignment" contains gene symbols.
149
+ prob_col = "ID"
150
+ gene_col = "gene_assignment"
151
+
152
+ # 2. Create a mapping dataframe with these two columns.
153
+ mapping_df = get_gene_mapping(gene_annotation, prob_col=prob_col, gene_col=gene_col)
154
+
155
+ # 3. Convert the probe-level expression data to gene-level expression data using this mapping.
156
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
157
+
158
+ # (Optional) Print shape and a small preview of the resulting mapped data
159
+ print("Mapped gene_data shape:", gene_data.shape)
160
+ print("Mapped gene_data preview:\n", gene_data.head())
161
+ import os
162
+ import pandas as pd
163
+
164
+ # STEP 7: Data Normalization and Linking
165
+
166
+ # First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
167
+ if not os.path.exists(out_clinical_data_file):
168
+ # No trait data file => dataset is not usable for trait analysis
169
+ df_null = pd.DataFrame()
170
+ is_biased = True # Arbitrary boolean to satisfy function requirement
171
+ validate_and_save_cohort_info(
172
+ is_final=True,
173
+ cohort=cohort,
174
+ info_path=json_path,
175
+ is_gene_available=True,
176
+ is_trait_available=False,
177
+ is_biased=is_biased,
178
+ df=df_null,
179
+ note="No trait data file found; dataset not usable for trait analysis."
180
+ )
181
+
182
+ else:
183
+ # 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
184
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
185
+ normalized_gene_data.to_csv(out_gene_data_file)
186
+
187
+ # 2. Load the previously extracted clinical CSV.
188
+ selected_clinical_df = pd.read_csv(out_clinical_data_file)
189
+ # If we had a single-row trait, rename row 0 to the trait name (example usage).
190
+ selected_clinical_df = selected_clinical_df.rename(index={0: trait})
191
+
192
+ # Combine these as our final clinical data; in this dataset, we only have trait info (if any).
193
+ combined_clinical_df = selected_clinical_df
194
+
195
+ # Link the clinical and genetic data by matching sample IDs in columns.
196
+ linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
197
+
198
+ # 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
199
+ processed_data = handle_missing_values(linked_data, trait)
200
+
201
+ # 4. Check trait bias and remove any biased demographic features (if any).
202
+ trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
203
+
204
+ # 5. Final validation and metadata saving.
205
+ is_usable = validate_and_save_cohort_info(
206
+ is_final=True,
207
+ cohort=cohort,
208
+ info_path=json_path,
209
+ is_gene_available=True,
210
+ is_trait_available=True,
211
+ is_biased=trait_biased,
212
+ df=processed_data,
213
+ note="Completed trait-based preprocessing."
214
+ )
215
+
216
+ # 6. If final dataset is usable, save. Otherwise, skip.
217
+ if is_usable:
218
+ processed_data.to_csv(out_data_file)
p1/preprocess/Sarcoma/code/GSE162789.py ADDED
@@ -0,0 +1,245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Sarcoma"
6
+ cohort = "GSE162789"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Sarcoma"
10
+ in_cohort_dir = "../DATA/GEO/Sarcoma/GSE162789"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Sarcoma/GSE162789.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Sarcoma/gene_data/GSE162789.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Sarcoma/clinical_data/GSE162789.csv"
16
+ json_path = "./output/preprocess/1/Sarcoma/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1) Determine if gene expression data is available
37
+ is_gene_available = True # Based on the dataset description focusing on Ewing sarcoma pathogenesis via HDAC
38
+
39
+ # 2) Identify and set availability of trait, age, and gender
40
+ # Inspecting the sample characteristics, we see only one key (0).
41
+ # All samples appear to have the same trait (Ewing sarcoma), so there's no variation -> trait not available
42
+ trait_row = None
43
+
44
+ # Age is available for 2 samples (14, 20). The other 4 do not mention age but we will treat them as missing
45
+ age_row = 0
46
+
47
+ # Gender is only explicitly "female" for 2 samples and unknown for the rest, so there's effectively only one unique known value
48
+ gender_row = None
49
+
50
+ # 2) Define converters for trait, age, and gender
51
+ def convert_trait(x: str) -> int:
52
+ """
53
+ Convert the trait from string to a binary or categorical label.
54
+ Not used here because trait_row is None, but defined for completeness.
55
+ """
56
+ # Example logic (convert to 1 if "Ewing sarcoma" appears, else None):
57
+ parts = x.split(":")
58
+ if len(parts) > 1:
59
+ val = parts[1].strip().lower()
60
+ if "ewing sarcoma" in val:
61
+ return 1
62
+ return None
63
+
64
+ def convert_age(x: str) -> float:
65
+ """
66
+ Convert the age from string to a continuous float.
67
+ If no age information is present, return None.
68
+ """
69
+ # Example logic to parse "14 year old"
70
+ match = re.search(r'(\d+)\s*year\s*old', x.lower())
71
+ if match:
72
+ return float(match.group(1))
73
+ return None
74
+
75
+ def convert_gender(x: str) -> int:
76
+ """
77
+ Convert the gender from string to binary (female -> 0, male -> 1).
78
+ If unknown, return None.
79
+ """
80
+ parts = x.split(":")
81
+ val = parts[-1].strip().lower() if len(parts) > 1 else x.lower()
82
+ if "female" in val:
83
+ return 0
84
+ elif "male" in val:
85
+ return 1
86
+ return None
87
+
88
+ # 3) Save metadata using initial filtering
89
+ is_trait_available = (trait_row is not None)
90
+
91
+ # Since this is just the initial filtering, set is_final=False
92
+ _ = validate_and_save_cohort_info(
93
+ is_final=False,
94
+ cohort=cohort,
95
+ info_path=json_path,
96
+ is_gene_available=is_gene_available,
97
+ is_trait_available=is_trait_available
98
+ )
99
+
100
+ # 4) Because trait_row is None, we skip clinical feature extraction
101
+ # (No further steps for clinical data since the trait is considered not available.)
102
+ # STEP3
103
+ import gzip
104
+ import pandas as pd
105
+
106
+ try:
107
+ # 1. Attempt to extract gene expression data using the library function
108
+ gene_data = get_genetic_data(matrix_file)
109
+ except KeyError:
110
+ # Fallback: the expected "ID_REF" column may be absent, so manually parse the file
111
+ # and rename the first column to "ID".
112
+ marker = "!series_matrix_table_begin"
113
+ skip_rows = None
114
+
115
+ # Determine how many rows to skip before the matrix data begins
116
+ with gzip.open(matrix_file, 'rt') as f:
117
+ for i, line in enumerate(f):
118
+ if marker in line:
119
+ skip_rows = i + 1
120
+ break
121
+ else:
122
+ raise ValueError(f"Marker '{marker}' not found in the file.")
123
+
124
+ # Read the data from the determined position
125
+ gene_data = pd.read_csv(
126
+ matrix_file,
127
+ compression='gzip',
128
+ skiprows=skip_rows,
129
+ comment='!',
130
+ delimiter='\t',
131
+ on_bad_lines='skip'
132
+ )
133
+
134
+ # If a different column name is used instead of 'ID_REF', rename appropriately
135
+ if 'ID_REF' in gene_data.columns:
136
+ gene_data.rename(columns={'ID_REF': 'ID'}, inplace=True)
137
+ else:
138
+ first_col = gene_data.columns[0]
139
+ gene_data.rename(columns={first_col: 'ID'}, inplace=True)
140
+
141
+ gene_data['ID'] = gene_data['ID'].astype(str)
142
+ gene_data.set_index('ID', inplace=True)
143
+
144
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
145
+ print(gene_data.index[:20])
146
+ # Based on the numeric identifiers (e.g., 7892501, 7892502, etc.), these look like probe IDs rather than official gene symbols.
147
+ # Therefore, they need to be mapped to standard human gene symbols.
148
+ print("requires_gene_mapping = True")
149
+ # STEP5
150
+ # 1 & 2. Only extract and preview gene annotation data if the SOFT file exists, otherwise skip.
151
+ if soft_file is None:
152
+ print("No SOFT file found. Skipping gene annotation extraction.")
153
+ gene_annotation = pd.DataFrame()
154
+ else:
155
+ try:
156
+ # Attempt to extract gene annotation with the default method
157
+ gene_annotation = get_gene_annotation(soft_file)
158
+ except UnicodeDecodeError:
159
+ # Fallback if UTF-8 decoding fails: read with a more lenient encoding and pass the content as a string
160
+ import gzip
161
+ with gzip.open(soft_file, 'rt', encoding='latin-1', errors='replace') as f:
162
+ content = f.read()
163
+ gene_annotation = filter_content_by_prefix(
164
+ content,
165
+ prefixes_a=['^','!','#'],
166
+ unselect=True,
167
+ source_type='string',
168
+ return_df_a=True
169
+ )[0]
170
+
171
+ print("Gene annotation preview:")
172
+ print(preview_df(gene_annotation))
173
+ # STEP 6: Gene Identifier Mapping
174
+
175
+ # 1. Identify the annotation columns that match the expression data IDs and the gene symbols.
176
+ # From inspection, "ID" corresponds to the probe ID (same format as gene_data.index),
177
+ # and "mrna_assignment" appears to have clearer references to actual gene symbols (e.g. "OR4F4", "SEPT14").
178
+
179
+ # 2. Get the gene mapping DataFrame using "mrna_assignment" as the gene symbol source
180
+ mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="mrna_assignment")
181
+
182
+ # 3. Convert probe-level measurements to gene-level expression
183
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
184
+
185
+ # Let's see the result
186
+ print("Gene data shape after mapping:", gene_data.shape)
187
+ print("First 5 gene indices after mapping:", gene_data.index[:5].tolist())
188
+ import os
189
+ import pandas as pd
190
+
191
+ # STEP 7: Data Normalization and Linking
192
+
193
+ # First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
194
+ if not os.path.exists(out_clinical_data_file):
195
+ # No trait data file => dataset is not usable for trait analysis
196
+ df_null = pd.DataFrame()
197
+ is_biased = True # Arbitrary boolean to satisfy function requirement
198
+ validate_and_save_cohort_info(
199
+ is_final=True,
200
+ cohort=cohort,
201
+ info_path=json_path,
202
+ is_gene_available=True,
203
+ is_trait_available=False,
204
+ is_biased=is_biased,
205
+ df=df_null,
206
+ note="No trait data file found; dataset not usable for trait analysis."
207
+ )
208
+
209
+ else:
210
+ # 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
211
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
212
+ normalized_gene_data.to_csv(out_gene_data_file)
213
+
214
+ # 2. Load the previously extracted clinical CSV.
215
+ selected_clinical_df = pd.read_csv(out_clinical_data_file)
216
+ # If we had a single-row trait, rename row 0 to the trait name (example usage).
217
+ selected_clinical_df = selected_clinical_df.rename(index={0: trait})
218
+
219
+ # Combine these as our final clinical data; in this dataset, we only have trait info (if any).
220
+ combined_clinical_df = selected_clinical_df
221
+
222
+ # Link the clinical and genetic data by matching sample IDs in columns.
223
+ linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
224
+
225
+ # 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
226
+ processed_data = handle_missing_values(linked_data, trait)
227
+
228
+ # 4. Check trait bias and remove any biased demographic features (if any).
229
+ trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
230
+
231
+ # 5. Final validation and metadata saving.
232
+ is_usable = validate_and_save_cohort_info(
233
+ is_final=True,
234
+ cohort=cohort,
235
+ info_path=json_path,
236
+ is_gene_available=True,
237
+ is_trait_available=True,
238
+ is_biased=trait_biased,
239
+ df=processed_data,
240
+ note="Completed trait-based preprocessing."
241
+ )
242
+
243
+ # 6. If final dataset is usable, save. Otherwise, skip.
244
+ if is_usable:
245
+ processed_data.to_csv(out_data_file)
p1/preprocess/Sarcoma/code/GSE197147.py ADDED
@@ -0,0 +1,244 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Sarcoma"
6
+ cohort = "GSE197147"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Sarcoma"
10
+ in_cohort_dir = "../DATA/GEO/Sarcoma/GSE197147"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Sarcoma/GSE197147.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Sarcoma/gene_data/GSE197147.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Sarcoma/clinical_data/GSE197147.csv"
16
+ json_path = "./output/preprocess/1/Sarcoma/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Determine if the dataset contains gene expression data
37
+ is_gene_available = True # The series description explicitly mentions "Gene expression profiling"
38
+
39
+ # 2. Identify variable availability and define row indices
40
+ # Only one key (0) is present with multiple histotypes ("HB","NB","RMS","WT").
41
+ # We'll map "RMS" to the trait of interest (Sarcoma=1) and others to 0.
42
+ trait_row = 0 # We can infer the Sarcoma trait from 'histotype: RMS' vs others
43
+ age_row = None # No age information in the sample dictionary
44
+ gender_row = None # No gender information in the sample dictionary
45
+
46
+ # 2.2 Define conversion functions
47
+ def convert_trait(value: str):
48
+ # Extract the part after the colon.
49
+ val = value.split(':')[-1].strip().lower()
50
+ # Map RMS => 1 (Sarcoma), others => 0
51
+ if val == 'rms':
52
+ return 1
53
+ elif val in ['hb', 'nb', 'wt']:
54
+ return 0
55
+ return None # For any unexpected values
56
+
57
+ def convert_age(value: str):
58
+ # No rows found for age, so no real conversion logic needed
59
+ return None
60
+
61
+ def convert_gender(value: str):
62
+ # No rows found for gender, so no real conversion logic needed
63
+ return None
64
+
65
+ # 2.1 Check if the trait data is available
66
+ is_trait_available = (trait_row is not None)
67
+
68
+ # 3. Save metadata with initial filtering
69
+ validate_and_save_cohort_info(
70
+ is_final=False,
71
+ cohort=cohort,
72
+ info_path=json_path,
73
+ is_gene_available=is_gene_available,
74
+ is_trait_available=is_trait_available
75
+ )
76
+
77
+ # 4. If trait data is available (trait_row != None), extract clinical features
78
+ if trait_row is not None:
79
+ selected_clinical = geo_select_clinical_features(
80
+ clinical_data,
81
+ trait=trait,
82
+ trait_row=trait_row,
83
+ convert_trait=convert_trait,
84
+ age_row=age_row,
85
+ convert_age=convert_age,
86
+ gender_row=gender_row,
87
+ convert_gender=convert_gender
88
+ )
89
+ # Preview the extracted clinical features
90
+ print(preview_df(selected_clinical, n=5))
91
+ # Save to CSV
92
+ selected_clinical.to_csv(out_clinical_data_file, index=False)
93
+ # STEP3
94
+ import gzip
95
+ import pandas as pd
96
+
97
+ try:
98
+ # 1. Attempt to extract gene expression data using the library function
99
+ gene_data = get_genetic_data(matrix_file)
100
+ except KeyError:
101
+ # Fallback: the expected "ID_REF" column may be absent, so manually parse the file
102
+ # and rename the first column to "ID".
103
+ marker = "!series_matrix_table_begin"
104
+ skip_rows = None
105
+
106
+ # Determine how many rows to skip before the matrix data begins
107
+ with gzip.open(matrix_file, 'rt') as f:
108
+ for i, line in enumerate(f):
109
+ if marker in line:
110
+ skip_rows = i + 1
111
+ break
112
+ else:
113
+ raise ValueError(f"Marker '{marker}' not found in the file.")
114
+
115
+ # Read the data from the determined position
116
+ gene_data = pd.read_csv(
117
+ matrix_file,
118
+ compression='gzip',
119
+ skiprows=skip_rows,
120
+ comment='!',
121
+ delimiter='\t',
122
+ on_bad_lines='skip'
123
+ )
124
+
125
+ # If a different column name is used instead of 'ID_REF', rename appropriately
126
+ if 'ID_REF' in gene_data.columns:
127
+ gene_data.rename(columns={'ID_REF': 'ID'}, inplace=True)
128
+ else:
129
+ first_col = gene_data.columns[0]
130
+ gene_data.rename(columns={first_col: 'ID'}, inplace=True)
131
+
132
+ gene_data['ID'] = gene_data['ID'].astype(str)
133
+ gene_data.set_index('ID', inplace=True)
134
+
135
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
136
+ print(gene_data.index[:20])
137
+ # Based on the provided gene expression data index (e.g., 'TC0100006437.hg.1'),
138
+ # these appear to be probe or platform-specific identifiers rather than standard human gene symbols.
139
+ # Therefore, we conclude that these IDs must be mapped to standard gene symbols for proper analysis.
140
+
141
+ print("requires_gene_mapping = True")
142
+ # STEP5
143
+ # 1 & 2. Only extract and preview gene annotation data if the SOFT file exists, otherwise skip.
144
+ if soft_file is None:
145
+ print("No SOFT file found. Skipping gene annotation extraction.")
146
+ gene_annotation = pd.DataFrame()
147
+ else:
148
+ try:
149
+ # Attempt to extract gene annotation with the default method
150
+ gene_annotation = get_gene_annotation(soft_file)
151
+ except UnicodeDecodeError:
152
+ # Fallback if UTF-8 decoding fails: read with a more lenient encoding and pass the content as a string
153
+ import gzip
154
+ with gzip.open(soft_file, 'rt', encoding='latin-1', errors='replace') as f:
155
+ content = f.read()
156
+ gene_annotation = filter_content_by_prefix(
157
+ content,
158
+ prefixes_a=['^','!','#'],
159
+ unselect=True,
160
+ source_type='string',
161
+ return_df_a=True
162
+ )[0]
163
+
164
+ print("Gene annotation preview:")
165
+ print(preview_df(gene_annotation))
166
+ # STEP: Gene Identifier Mapping
167
+
168
+ # 1. Identify which annotation columns store the gene IDs and gene symbol references.
169
+ # From the preview, it appears the column "ID" matches the row index of our gene expression data,
170
+ # and the column "SPOT_ID.1" contains gene symbol references.
171
+ probe_id_col = "ID"
172
+ gene_symbol_col = "SPOT_ID.1"
173
+
174
+ # 2. Get a gene mapping dataframe from the annotation dataframe.
175
+ mapping_df = get_gene_mapping(
176
+ annotation=gene_annotation,
177
+ prob_col=probe_id_col,
178
+ gene_col=gene_symbol_col
179
+ )
180
+
181
+ # 3. Convert probe-level measurements into gene-level expression.
182
+ gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)
183
+
184
+ # Print a small preview to confirm the result
185
+ print("Mapped gene expression data preview:")
186
+ print(gene_data.head())
187
+ import os
188
+ import pandas as pd
189
+
190
+ # STEP 7: Data Normalization and Linking
191
+
192
+ # First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
193
+ if not os.path.exists(out_clinical_data_file):
194
+ # No trait data file => dataset is not usable for trait analysis
195
+ df_null = pd.DataFrame()
196
+ is_biased = True # Arbitrary boolean to satisfy function requirement
197
+ validate_and_save_cohort_info(
198
+ is_final=True,
199
+ cohort=cohort,
200
+ info_path=json_path,
201
+ is_gene_available=True,
202
+ is_trait_available=False,
203
+ is_biased=is_biased,
204
+ df=df_null,
205
+ note="No trait data file found; dataset not usable for trait analysis."
206
+ )
207
+
208
+ else:
209
+ # 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
210
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
211
+ normalized_gene_data.to_csv(out_gene_data_file)
212
+
213
+ # 2. Load the previously extracted clinical CSV.
214
+ selected_clinical_df = pd.read_csv(out_clinical_data_file)
215
+ # If we had a single-row trait, rename row 0 to the trait name (example usage).
216
+ selected_clinical_df = selected_clinical_df.rename(index={0: trait})
217
+
218
+ # Combine these as our final clinical data; in this dataset, we only have trait info (if any).
219
+ combined_clinical_df = selected_clinical_df
220
+
221
+ # Link the clinical and genetic data by matching sample IDs in columns.
222
+ linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
223
+
224
+ # 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
225
+ processed_data = handle_missing_values(linked_data, trait)
226
+
227
+ # 4. Check trait bias and remove any biased demographic features (if any).
228
+ trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
229
+
230
+ # 5. Final validation and metadata saving.
231
+ is_usable = validate_and_save_cohort_info(
232
+ is_final=True,
233
+ cohort=cohort,
234
+ info_path=json_path,
235
+ is_gene_available=True,
236
+ is_trait_available=True,
237
+ is_biased=trait_biased,
238
+ df=processed_data,
239
+ note="Completed trait-based preprocessing."
240
+ )
241
+
242
+ # 6. If final dataset is usable, save. Otherwise, skip.
243
+ if is_usable:
244
+ processed_data.to_csv(out_data_file)
p1/preprocess/Schizophrenia/GSE120340.csv ADDED
The diff for this file is too large to render. See raw diff
 
p1/preprocess/Schizophrenia/GSE120342.csv ADDED
The diff for this file is too large to render. See raw diff
 
p1/preprocess/Schizophrenia/clinical_data/GSE120340.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ GSM3398477,GSM3398478,GSM3398479,GSM3398480,GSM3398481,GSM3398482,GSM3398483,GSM3398484,GSM3398485,GSM3398486,GSM3398487,GSM3398488,GSM3398489,GSM3398490,GSM3398491,GSM3398492,GSM3398493,GSM3398494,GSM3398495,GSM3398496,GSM3398497,GSM3398498,GSM3398499,GSM3398500,GSM3398501,GSM3398502,GSM3398503,GSM3398504,GSM3398505,GSM3398506
2
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
p1/preprocess/Schizophrenia/clinical_data/GSE120342.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ GSM3398507,GSM3398508,GSM3398509,GSM3398510,GSM3398511,GSM3398512,GSM3398513,GSM3398514,GSM3398515,GSM3398516,GSM3398517
2
+ 0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0
p1/preprocess/Schizophrenia/clinical_data/GSE145554.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ GSM4321410,GSM4321411,GSM4321412,GSM4321413,GSM4321414,GSM4321415,GSM4321416,GSM4321417,GSM4321418,GSM4321419,GSM4321420,GSM4321421,GSM4321422,GSM4321423,GSM4321424,GSM4321425,GSM4321426,GSM4321427,GSM4321428,GSM4321429,GSM4321430,GSM4321431,GSM4321432,GSM4321433,GSM4321434,GSM4321435,GSM4321436,GSM4321437,GSM4321438,GSM4321439,GSM4321440,GSM4321441,GSM4321442,GSM4321443,GSM4321444,GSM4321445,GSM4321446,GSM4321447,GSM4321448,GSM4321449,GSM4321450,GSM4321451,GSM4321452
2
+ 1.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0
3
+ 63.0,90.0,83.0,69.0,73.0,84.0,66.0,78.0,65.0,89.0,69.0,74.0,66.0,86.0,79.0,77.0,68.0,59.0,58.0,90.0,72.0,80.0,58.0,57.0,63.0,90.0,83.0,69.0,84.0,66.0,78.0,65.0,89.0,69.0,74.0,66.0,79.0,77.0,68.0,59.0,58.0,90.0,72.0
4
+ 1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p1/preprocess/Schizophrenia/code/GSE119288.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Schizophrenia"
6
+ cohort = "GSE119288"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Schizophrenia"
10
+ in_cohort_dir = "../DATA/GEO/Schizophrenia/GSE119288"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Schizophrenia/GSE119288.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Schizophrenia/gene_data/GSE119288.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Schizophrenia/clinical_data/GSE119288.csv"
16
+ json_path = "./output/preprocess/1/Schizophrenia/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1) Determine if gene expression data is available
37
+ is_gene_available = True # Based on "expression-based" transcriptomic study
38
+ # 2) Identify rows for trait, age, and gender in the sample characteristics dictionary
39
+ # None indicates the data is not available or is constant (useless for association).
40
+ trait_row = None
41
+ age_row = None
42
+ gender_row = None
43
+
44
+ # 2.2) Define data conversion functions (though they won't be used here since data is missing).
45
+ def convert_trait(value: str) -> Optional[int]:
46
+ # Placeholder for a binary trait conversion (not used due to missing data).
47
+ return None
48
+
49
+ def convert_age(value: str) -> Optional[float]:
50
+ # Placeholder for a continuous age conversion (not used due to missing data).
51
+ return None
52
+
53
+ def convert_gender(value: str) -> Optional[int]:
54
+ # Placeholder for a binary gender conversion (not used due to missing data).
55
+ return None
56
+
57
+ # 3) Conduct initial filtering and save metadata about dataset usability
58
+ is_trait_available = trait_row is not None
59
+ validate_and_save_cohort_info(
60
+ is_final=False,
61
+ cohort=cohort,
62
+ info_path=json_path,
63
+ is_gene_available=is_gene_available,
64
+ is_trait_available=is_trait_available
65
+ )
66
+
67
+ # 4) Since trait_row is None, we skip clinical feature extraction.
68
+ # STEP3
69
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
70
+ gene_data = get_genetic_data(matrix_file)
71
+
72
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
73
+ print(gene_data.index[:20])
74
+ # These probe set IDs (e.g., '1007_s_at') are not human gene symbols but Affymetrix identifiers.
75
+ requires_gene_mapping = True
76
+ # STEP5
77
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
78
+ gene_annotation = get_gene_annotation(soft_file)
79
+
80
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
81
+ print("Gene annotation preview:")
82
+ print(preview_df(gene_annotation))
83
+ # STEP: Gene Identifier Mapping
84
+
85
+ # 1. Identify the columns matching the probe IDs and the gene symbols.
86
+ # From the annotation preview, "ID" matches the probe set IDs in the expression data,
87
+ # and we will assume "SPOT_ID" contains gene identifiers or symbols (though here they appear identical
88
+ # to "ID" in the preview, other rows might differ or contain additional mappings).
89
+
90
+ prob_col = 'ID'
91
+ gene_col = 'SPOT_ID'
92
+
93
+ # 2. Create a gene mapping dataframe using the identified columns.
94
+ gene_mapping_df = get_gene_mapping(gene_annotation, prob_col=prob_col, gene_col=gene_col)
95
+
96
+ # 3. Convert the probe-level expression data into gene-level expression data using the mapping.
97
+ gene_data = apply_gene_mapping(gene_data, gene_mapping_df)
98
+
99
+ # Optionally, display a small portion of the resulting DataFrame to verify.
100
+ print(gene_data.head())
101
+ # STEP7
102
+
103
+ # 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.
104
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
105
+ normalized_gene_data.to_csv(out_gene_data_file)
106
+
107
+ # Since trait_row is None (no trait data available), we cannot link to clinical data or perform
108
+ # downstream steps requiring a trait variable. Therefore, we skip steps 2, 3, and 4.
109
+
110
+ # 5. We perform partial validation (is_final=False) to record the dataset has gene data but no trait.
111
+ # That way, we are not required to provide a df or is_biased argument.
112
+ validate_and_save_cohort_info(
113
+ is_final=False,
114
+ cohort=cohort,
115
+ info_path=json_path,
116
+ is_gene_available=True,
117
+ is_trait_available=False
118
+ )
119
+
120
+ # 6. Since trait data is unavailable, we do NOT save a linked dataset.
p1/preprocess/Schizophrenia/code/GSE119289.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Schizophrenia"
6
+ cohort = "GSE119289"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Schizophrenia"
10
+ in_cohort_dir = "../DATA/GEO/Schizophrenia/GSE119289"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Schizophrenia/GSE119289.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Schizophrenia/gene_data/GSE119289.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Schizophrenia/clinical_data/GSE119289.csv"
16
+ json_path = "./output/preprocess/1/Schizophrenia/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # Step 1: Determine if gene expression data is available
37
+ is_gene_available = True # Based on "transcriptomic drug screening," it appears to be gene expression data
38
+
39
+ # Step 2: Identify rows and define data conversion functions for trait, age, and gender
40
+ trait_row = None # No Schizophrenia-related info found
41
+ age_row = None # No age-related info found
42
+ gender_row = None # No gender-related info found
43
+
44
+ # Since we have no actual data, the conversion functions simply return None
45
+ def convert_trait(value: str):
46
+ return None
47
+
48
+ def convert_age(value: str):
49
+ return None
50
+
51
+ def convert_gender(value: str):
52
+ return None
53
+
54
+ # Step 3: Initial filtering and saving cohort info
55
+ is_trait_available = (trait_row is not None)
56
+ is_usable = validate_and_save_cohort_info(
57
+ is_final=False,
58
+ cohort=cohort,
59
+ info_path=json_path,
60
+ is_gene_available=is_gene_available,
61
+ is_trait_available=is_trait_available
62
+ )
63
+
64
+ # Step 4: Clinical feature extraction is skipped because trait_row is None
65
+ # STEP3
66
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
67
+ gene_data = get_genetic_data(matrix_file)
68
+
69
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
70
+ print(gene_data.index[:20])
71
+ # The identifiers appear to be Affymetrix probe IDs, not standard human gene symbols.
72
+ # Therefore, they likely require mapping to gene symbols.
73
+ requires_gene_mapping = True
74
+ # STEP5
75
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
76
+ gene_annotation = get_gene_annotation(soft_file)
77
+
78
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
79
+ print("Gene annotation preview:")
80
+ print(preview_df(gene_annotation))
81
+ # STEP - Gene Identifier Mapping
82
+
83
+ # 1. Determine which columns in the annotation represent the probe identifiers and the gene symbols.
84
+ # Based on the prior preview, "ID" appears to match our expression data's index (probe IDs),
85
+ # but we do not see a separate column containing actual gene symbols. For demonstration, we'll
86
+ # assume "SPOT_ID" is intended as the gene symbol column, although it is the same as "ID" in the preview.
87
+
88
+ mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="SPOT_ID")
89
+
90
+ # 2. Convert probe-level measurements into gene expression data using the mapping.
91
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
92
+
93
+ # 3. Print a small preview of the resulting gene expression data.
94
+ print("Converted gene expression data shape:", gene_data.shape)
95
+ print("Gene expression data preview:")
96
+ print(preview_df(gene_data))
97
+ # STEP7
98
+ # Since there is no trait data (trait_row is None), we cannot link clinical data or perform trait-based analysis.
99
+ # Nonetheless, we must do a final validation to record that the dataset is unusable for trait-related analysis.
100
+
101
+ import pandas as pd
102
+
103
+ # 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.
104
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
105
+ normalized_gene_data.to_csv(out_gene_data_file)
106
+
107
+ # 2. Prepare a dummy DataFrame for final validation,
108
+ # and set is_biased to False (arbitrary choice) to meet function requirements.
109
+ dummy_df = pd.DataFrame()
110
+
111
+ # 3. Perform final quality validation, marking trait as unavailable,
112
+ # which leads to the dataset being recorded as unusable (is_usable=False).
113
+ is_usable = validate_and_save_cohort_info(
114
+ is_final=True,
115
+ cohort=cohort,
116
+ info_path=json_path,
117
+ is_gene_available=True,
118
+ is_trait_available=False,
119
+ is_biased=False,
120
+ df=dummy_df,
121
+ note="Trait data not available; only gene expression is present."
122
+ )
123
+
124
+ # 4. Since the dataset is unusable for trait analysis, do not produce any final linked output.
p1/preprocess/Schizophrenia/code/GSE120340.py ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Schizophrenia"
6
+ cohort = "GSE120340"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Schizophrenia"
10
+ in_cohort_dir = "../DATA/GEO/Schizophrenia/GSE120340"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Schizophrenia/GSE120340.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Schizophrenia/gene_data/GSE120340.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Schizophrenia/clinical_data/GSE120340.csv"
16
+ json_path = "./output/preprocess/1/Schizophrenia/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Gene Expression Data Availability
37
+ is_gene_available = True # Affymetrix whole-genome expression microarray indicates gene expression data
38
+
39
+ # 2.1 Variable Availability
40
+ trait_row = 0 # Row with multiple disease states, including SCZ
41
+ age_row = None # No age data in the dictionary
42
+ gender_row = None # No gender data in the dictionary
43
+
44
+ # 2.2 Data Type Conversion
45
+ def convert_trait(value: str):
46
+ parts = value.split(':', 1)
47
+ if len(parts) == 2:
48
+ v = parts[1].strip().lower()
49
+ # Mark SCZ as 1, others as 0
50
+ return 1 if v == 'scz' else 0
51
+ return None
52
+
53
+ def convert_age(value: str):
54
+ # No age data is available
55
+ return None
56
+
57
+ def convert_gender(value: str):
58
+ # No gender data is available
59
+ return None
60
+
61
+ # 3. Save Metadata (initial filtering)
62
+ is_trait_available = (trait_row is not None)
63
+ is_usable = validate_and_save_cohort_info(
64
+ is_final=False,
65
+ cohort=cohort,
66
+ info_path=json_path,
67
+ is_gene_available=is_gene_available,
68
+ is_trait_available=is_trait_available
69
+ )
70
+
71
+ # 4. Clinical Feature Extraction (only if trait data is available)
72
+ if trait_row is not None:
73
+ selected_clinical_df = geo_select_clinical_features(
74
+ clinical_data,
75
+ trait=trait,
76
+ trait_row=trait_row,
77
+ convert_trait=convert_trait,
78
+ age_row=age_row,
79
+ convert_age=convert_age,
80
+ gender_row=gender_row,
81
+ convert_gender=convert_gender
82
+ )
83
+ # Observe output
84
+ print(preview_df(selected_clinical_df))
85
+ # Save extracted clinical features
86
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
87
+ # STEP3
88
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
89
+ gene_data = get_genetic_data(matrix_file)
90
+
91
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
92
+ print(gene_data.index[:20])
93
+ # Based on the observed identifiers (e.g., 10002_at), these are Affymetrix probe set IDs, not standard human gene symbols.
94
+ # Therefore, a mapping step to human gene symbols is needed.
95
+ print("requires_gene_mapping = True")
96
+ # STEP5
97
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
98
+ gene_annotation = get_gene_annotation(soft_file)
99
+
100
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
101
+ print("Gene annotation preview:")
102
+ print(preview_df(gene_annotation))
103
+ # STEP: Gene Identifier Mapping
104
+
105
+ # 1. Identify the columns in gene_annotation that match the probe IDs and the gene symbols.
106
+ # From the preview, "ID" matches the probe ID used in gene_data, and "Description" appears
107
+ # to contain the gene's name/symbol information (albeit in a descriptive form).
108
+
109
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Description')
110
+
111
+ # 2. Convert probe-level measurements to gene-level measurements by applying the mapping.
112
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
113
+
114
+ # For confirmation, let's see the shape of the resulting gene_data
115
+ print("Mapped gene_data shape:", gene_data.shape)
116
+ # STEP7
117
+ # 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.
118
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
119
+ normalized_gene_data.to_csv(out_gene_data_file)
120
+
121
+ # 2. Link the clinical and genetic data with the 'geo_link_clinical_genetic_data' function from the library.
122
+ # Fixing the variable name from 'selected_clinical_data' to 'selected_clinical_df'
123
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
124
+
125
+ # 3. Handle missing values in the linked data
126
+ linked_data = handle_missing_values(linked_data, trait)
127
+
128
+ # 4. Determine whether the trait and some demographic features are severely biased, and remove biased features.
129
+ is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)
130
+
131
+ # 5. Conduct quality check and save the cohort information.
132
+ is_usable = validate_and_save_cohort_info(
133
+ is_final=True,
134
+ cohort=cohort,
135
+ info_path=json_path,
136
+ is_gene_available=True,
137
+ is_trait_available=True,
138
+ is_biased=is_trait_biased,
139
+ df=linked_data
140
+ )
141
+
142
+ # 6. If the linked data is usable, save it as a CSV file to 'out_data_file'.
143
+ if is_usable:
144
+ unbiased_linked_data.to_csv(out_data_file)