Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +25 -0
- p1/preprocess/Melanoma/gene_data/TCGA.csv +3 -0
- p1/preprocess/Osteoarthritis/gene_data/GSE236924.csv +3 -0
- p1/preprocess/Osteoporosis/gene_data/GSE20881.csv +3 -0
- p1/preprocess/Osteoporosis/gene_data/GSE56814.csv +3 -0
- p1/preprocess/Ovarian_Cancer/gene_data/GSE103737.csv +3 -0
- p1/preprocess/Ovarian_Cancer/gene_data/GSE126308.csv +3 -0
- p1/preprocess/Ovarian_Cancer/gene_data/GSE130402.csv +0 -0
- p1/preprocess/Ovarian_Cancer/gene_data/GSE132342.csv +3 -0
- p1/preprocess/Ovarian_Cancer/gene_data/GSE135820.csv +3 -0
- p1/preprocess/Ovarian_Cancer/gene_data/GSE146553.csv +3 -0
- p1/preprocess/Ovarian_Cancer/gene_data/GSE146964.csv +3 -0
- p1/preprocess/Pancreatic_Cancer/GSE131027.csv +3 -0
- p1/preprocess/Pancreatic_Cancer/code/GSE157494.py +139 -0
- p1/preprocess/Pancreatic_Cancer/code/GSE183795.py +166 -0
- p1/preprocess/Pancreatic_Cancer/code/GSE222788.py +145 -0
- p1/preprocess/Pancreatic_Cancer/code/GSE223409.py +199 -0
- p1/preprocess/Pancreatic_Cancer/code/TCGA.py +118 -0
- p1/preprocess/Pancreatic_Cancer/gene_data/GSE120127.csv +660 -0
- p1/preprocess/Pancreatic_Cancer/gene_data/GSE125158.csv +0 -0
- p1/preprocess/Pancreatic_Cancer/gene_data/GSE130563.csv +1 -0
- p1/preprocess/Pancreatic_Cancer/gene_data/GSE131027.csv +3 -0
- p1/preprocess/Pancreatic_Cancer/gene_data/GSE157494.csv +0 -0
- p1/preprocess/Pancreatic_Cancer/gene_data/GSE222788.csv +1 -0
- p1/preprocess/Pancreatic_Cancer/gene_data/GSE223409.csv +33 -0
- p1/preprocess/Pancreatic_Cancer/gene_data/GSE236951.csv +0 -0
- p1/preprocess/Parkinsons_Disease/GSE103099.csv +3 -0
- p1/preprocess/Parkinsons_Disease/GSE202665.csv +3 -0
- p1/preprocess/Parkinsons_Disease/GSE202667.csv +3 -0
- p1/preprocess/Parkinsons_Disease/GSE49126.csv +0 -0
- p1/preprocess/Parkinsons_Disease/GSE57475.csv +3 -0
- p1/preprocess/Parkinsons_Disease/GSE72267.csv +0 -0
- p1/preprocess/Parkinsons_Disease/clinical_data/GSE101534.csv +2 -0
- p1/preprocess/Parkinsons_Disease/clinical_data/GSE103099.csv +2 -0
- p1/preprocess/Parkinsons_Disease/clinical_data/GSE202665.csv +3 -0
- p1/preprocess/Parkinsons_Disease/clinical_data/GSE202667.csv +3 -0
- p1/preprocess/Parkinsons_Disease/clinical_data/GSE49126.csv +2 -0
- p1/preprocess/Parkinsons_Disease/clinical_data/GSE57475.csv +4 -0
- p1/preprocess/Parkinsons_Disease/clinical_data/GSE72267.csv +2 -0
- p1/preprocess/Parkinsons_Disease/code/GSE101534.py +264 -0
- p1/preprocess/Parkinsons_Disease/code/GSE103099.py +234 -0
- p1/preprocess/Parkinsons_Disease/code/GSE202665.py +253 -0
- p1/preprocess/Parkinsons_Disease/code/GSE202667.py +227 -0
- p1/preprocess/Parkinsons_Disease/code/GSE30335.py +71 -0
- p1/preprocess/Parkinsons_Disease/code/GSE49126.py +220 -0
- p1/preprocess/Parkinsons_Disease/code/GSE57475.py +244 -0
- p1/preprocess/Parkinsons_Disease/code/GSE71220.py +237 -0
- p1/preprocess/Parkinsons_Disease/code/GSE72267.py +239 -0
- p1/preprocess/Parkinsons_Disease/code/GSE80599.py +208 -0
- p1/preprocess/Parkinsons_Disease/code/TCGA.py +73 -0
.gitattributes
CHANGED
@@ -1313,3 +1313,28 @@ p1/preprocess/Lower_Grade_Glioma/gene_data/TCGA.csv filter=lfs diff=lfs merge=lf
|
|
1313 |
p1/preprocess/Osteoarthritis/GSE236924.csv filter=lfs diff=lfs merge=lfs -text
|
1314 |
p1/preprocess/Osteoporosis/GSE20881.csv filter=lfs diff=lfs merge=lfs -text
|
1315 |
p1/preprocess/Ovarian_Cancer/GSE146553.csv filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1313 |
p1/preprocess/Osteoarthritis/GSE236924.csv filter=lfs diff=lfs merge=lfs -text
|
1314 |
p1/preprocess/Osteoporosis/GSE20881.csv filter=lfs diff=lfs merge=lfs -text
|
1315 |
p1/preprocess/Ovarian_Cancer/GSE146553.csv filter=lfs diff=lfs merge=lfs -text
|
1316 |
+
p1/preprocess/Osteoporosis/gene_data/GSE56814.csv filter=lfs diff=lfs merge=lfs -text
|
1317 |
+
p1/preprocess/Osteoporosis/gene_data/GSE20881.csv filter=lfs diff=lfs merge=lfs -text
|
1318 |
+
p1/preprocess/Osteoarthritis/gene_data/GSE236924.csv filter=lfs diff=lfs merge=lfs -text
|
1319 |
+
p1/preprocess/Ovarian_Cancer/gene_data/GSE103737.csv filter=lfs diff=lfs merge=lfs -text
|
1320 |
+
p1/preprocess/Ovarian_Cancer/gene_data/GSE126308.csv filter=lfs diff=lfs merge=lfs -text
|
1321 |
+
p1/preprocess/Melanoma/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1322 |
+
p1/preprocess/Ovarian_Cancer/gene_data/GSE146964.csv filter=lfs diff=lfs merge=lfs -text
|
1323 |
+
p1/preprocess/Ovarian_Cancer/gene_data/GSE146553.csv filter=lfs diff=lfs merge=lfs -text
|
1324 |
+
p1/preprocess/Ovarian_Cancer/gene_data/GSE132342.csv filter=lfs diff=lfs merge=lfs -text
|
1325 |
+
p1/preprocess/Pancreatic_Cancer/GSE131027.csv filter=lfs diff=lfs merge=lfs -text
|
1326 |
+
p1/preprocess/Parkinsons_Disease/GSE103099.csv filter=lfs diff=lfs merge=lfs -text
|
1327 |
+
p1/preprocess/Ovarian_Cancer/gene_data/GSE135820.csv filter=lfs diff=lfs merge=lfs -text
|
1328 |
+
p1/preprocess/Parkinsons_Disease/GSE202665.csv filter=lfs diff=lfs merge=lfs -text
|
1329 |
+
p1/preprocess/Pancreatic_Cancer/gene_data/GSE131027.csv filter=lfs diff=lfs merge=lfs -text
|
1330 |
+
p1/preprocess/Parkinsons_Disease/GSE202667.csv filter=lfs diff=lfs merge=lfs -text
|
1331 |
+
p1/preprocess/Parkinsons_Disease/GSE57475.csv filter=lfs diff=lfs merge=lfs -text
|
1332 |
+
p1/preprocess/Parkinsons_Disease/gene_data/GSE103099.csv filter=lfs diff=lfs merge=lfs -text
|
1333 |
+
p3/preprocess/Stomach_Cancer/GSE98708.csv filter=lfs diff=lfs merge=lfs -text
|
1334 |
+
p1/preprocess/Parkinsons_Disease/gene_data/GSE202667.csv filter=lfs diff=lfs merge=lfs -text
|
1335 |
+
p3/preprocess/Stomach_Cancer/GSE161533.csv filter=lfs diff=lfs merge=lfs -text
|
1336 |
+
p1/preprocess/Parkinsons_Disease/gene_data/GSE202665.csv filter=lfs diff=lfs merge=lfs -text
|
1337 |
+
p1/preprocess/Parkinsons_Disease/gene_data/GSE57475.csv filter=lfs diff=lfs merge=lfs -text
|
1338 |
+
p3/preprocess/Stomach_Cancer/GSE183136.csv filter=lfs diff=lfs merge=lfs -text
|
1339 |
+
p3/preprocess/Stomach_Cancer/gene_data/GSE147163.csv filter=lfs diff=lfs merge=lfs -text
|
1340 |
+
p3/preprocess/Stomach_Cancer/gene_data/GSE128459.csv filter=lfs diff=lfs merge=lfs -text
|
p1/preprocess/Melanoma/gene_data/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:22620244dbfd59244c237c2dfb9c119762e3e449f2bed3331e712d3667d1c829
|
3 |
+
size 142299049
|
p1/preprocess/Osteoarthritis/gene_data/GSE236924.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c0889c2bc648b2b6bc1acfce5a519a7c835ddb2679c77ba3da20898108bfd49e
|
3 |
+
size 35074636
|
p1/preprocess/Osteoporosis/gene_data/GSE20881.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f67547930b83b768f3e08c11d0c0140e8d904ee5e01ba141c0749fb5d1a8ff08
|
3 |
+
size 25998146
|
p1/preprocess/Osteoporosis/gene_data/GSE56814.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43687c980c6db81762f1cf03f5268d4989596a03919647bde0e49b4aaee05951
|
3 |
+
size 19578664
|
p1/preprocess/Ovarian_Cancer/gene_data/GSE103737.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e6e538048f5fd1d03e8ad03e39ed51c4ca55b79a3eeb73c3bf86b1617f9a8c2
|
3 |
+
size 17809179
|
p1/preprocess/Ovarian_Cancer/gene_data/GSE126308.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4cf6cfef225dac77ee4d3d43dc15938ff56ec7e5522768f8e21984cc855d7a4f
|
3 |
+
size 14296333
|
p1/preprocess/Ovarian_Cancer/gene_data/GSE130402.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p1/preprocess/Ovarian_Cancer/gene_data/GSE132342.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f9881ac8cd6c2102f744a668716127ba6ca01021f0018b9b3e842997ad15e568
|
3 |
+
size 24699591
|
p1/preprocess/Ovarian_Cancer/gene_data/GSE135820.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5591a4769d8635984111410b811452ce976f2130b559c8462d9ec80d91c65704
|
3 |
+
size 26717571
|
p1/preprocess/Ovarian_Cancer/gene_data/GSE146553.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:30b7cbbb8d3a31017943800fa0f6d17577cdbd210a45f7aa6e7bca131d04fde5
|
3 |
+
size 16011855
|
p1/preprocess/Ovarian_Cancer/gene_data/GSE146964.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eea9a89b3ff8cf5671211324e388b7580ee1e1895191b5b5d6564a0548d72e7f
|
3 |
+
size 15053927
|
p1/preprocess/Pancreatic_Cancer/GSE131027.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d5ab692ea51f69d8385adb7393e47bb330a8196ba31924f2cfa336a641a16f1
|
3 |
+
size 24380321
|
p1/preprocess/Pancreatic_Cancer/code/GSE157494.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Pancreatic_Cancer"
|
6 |
+
cohort = "GSE157494"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Pancreatic_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Pancreatic_Cancer/GSE157494"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Pancreatic_Cancer/GSE157494.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Pancreatic_Cancer/gene_data/GSE157494.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Pancreatic_Cancer/clinical_data/GSE157494.csv"
|
16 |
+
json_path = "./output/preprocess/1/Pancreatic_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
|
21 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
22 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
23 |
+
|
24 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
25 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
26 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
27 |
+
background_info, clinical_data = get_background_and_clinical_data(
|
28 |
+
matrix_file,
|
29 |
+
background_prefixes,
|
30 |
+
clinical_prefixes
|
31 |
+
)
|
32 |
+
|
33 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
34 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
35 |
+
|
36 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
37 |
+
print("Background Information:")
|
38 |
+
print(background_info)
|
39 |
+
print("Sample Characteristics Dictionary:")
|
40 |
+
print(sample_characteristics_dict)
|
41 |
+
# 1) Check gene expression data availability
|
42 |
+
# Based on the series summary, it appears gene expression profiling was performed on this dataset.
|
43 |
+
is_gene_available = True
|
44 |
+
|
45 |
+
# 2) Variable Availability and Data Type Conversion
|
46 |
+
|
47 |
+
# After reviewing the sample characteristics dictionary:
|
48 |
+
# {0: ['sample type: xenografted tumor', 'sample type: Cell line']}
|
49 |
+
# we see no key indicating the "Pancreatic_Cancer" trait variation, age, or gender.
|
50 |
+
# Hence, all are considered not available because the entire dataset is already from pancreatic cancer
|
51 |
+
# (no variation), and no age/gender info is provided.
|
52 |
+
|
53 |
+
trait_row = None
|
54 |
+
age_row = None
|
55 |
+
gender_row = None
|
56 |
+
|
57 |
+
# Define conversion functions as placeholders
|
58 |
+
def convert_trait(value: str):
|
59 |
+
return None
|
60 |
+
|
61 |
+
def convert_age(value: str):
|
62 |
+
return None
|
63 |
+
|
64 |
+
def convert_gender(value: str):
|
65 |
+
return None
|
66 |
+
|
67 |
+
# 3) Perform initial filtering and save metadata
|
68 |
+
is_trait_available = (trait_row is not None)
|
69 |
+
is_usable = validate_and_save_cohort_info(
|
70 |
+
is_final=False,
|
71 |
+
cohort=cohort,
|
72 |
+
info_path=json_path,
|
73 |
+
is_gene_available=is_gene_available,
|
74 |
+
is_trait_available=is_trait_available
|
75 |
+
)
|
76 |
+
|
77 |
+
# 4) Since trait_row is None, clinical data extraction step is skipped.
|
78 |
+
# STEP3
|
79 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
80 |
+
gene_data = get_genetic_data(matrix_file)
|
81 |
+
|
82 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
83 |
+
print(gene_data.index[:20])
|
84 |
+
print("requires_gene_mapping = True")
|
85 |
+
# STEP5
|
86 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
87 |
+
gene_annotation = get_gene_annotation(soft_file)
|
88 |
+
|
89 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
90 |
+
print("Gene annotation preview:")
|
91 |
+
print(preview_df(gene_annotation))
|
92 |
+
# STEP: Gene Identifier Mapping
|
93 |
+
|
94 |
+
# 1. From the annotation preview, the 'ID' column matches the probe IDs in the expression data,
|
95 |
+
# and the 'Gene Symbol' column contains the corresponding gene symbols.
|
96 |
+
probe_col = 'ID'
|
97 |
+
symbol_col = 'Gene Symbol'
|
98 |
+
|
99 |
+
# 2. Get a gene mapping dataframe by extracting the two columns from the annotation dataframe
|
100 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=symbol_col)
|
101 |
+
|
102 |
+
# 3. Convert probe-level measurements to gene-level expression data
|
103 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
104 |
+
|
105 |
+
# (Optional) Print some basic info about the resulting gene_data
|
106 |
+
print("New gene_data shape:", gene_data.shape)
|
107 |
+
print("First 20 mapped gene symbols:", gene_data.index[:20].tolist())
|
108 |
+
# STEP 7
|
109 |
+
# In this dataset, the trait information is not available (trait_row is None). Therefore, we skip clinical linking
|
110 |
+
# and final data assembly. We only normalize and save the gene expression data, then mark the dataset as not usable
|
111 |
+
# for trait-based analyses.
|
112 |
+
|
113 |
+
# 1) Normalize gene symbols in the gene expression data
|
114 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
115 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
116 |
+
|
117 |
+
# 2) Since trait data is not available, we do not link clinical data or do missing-value handling on trait/covariates.
|
118 |
+
# Proceed to final validation to record dataset metadata.
|
119 |
+
|
120 |
+
# Use an empty dataframe for final validation to meet the function's parameter requirements.
|
121 |
+
empty_df = pd.DataFrame()
|
122 |
+
|
123 |
+
# 3) Conduct final validation and save cohort info
|
124 |
+
# This dataset has gene data, but no trait data => it is not usable for trait-based analysis.
|
125 |
+
is_usable = validate_and_save_cohort_info(
|
126 |
+
is_final=True,
|
127 |
+
cohort=cohort,
|
128 |
+
info_path=json_path,
|
129 |
+
is_gene_available=True,
|
130 |
+
is_trait_available=False,
|
131 |
+
is_biased=False, # not actually tested since trait is absent
|
132 |
+
df=empty_df,
|
133 |
+
note="Trait data not available. Only gene data is provided. This dataset is not usable for trait-based analysis."
|
134 |
+
)
|
135 |
+
|
136 |
+
# 4) If the dataset were usable, we would save the final linked data. Here it will not be usable because the trait is missing.
|
137 |
+
if is_usable:
|
138 |
+
# No final data to save, since no trait is available
|
139 |
+
pass
|
p1/preprocess/Pancreatic_Cancer/code/GSE183795.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Pancreatic_Cancer"
|
6 |
+
cohort = "GSE183795"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Pancreatic_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Pancreatic_Cancer/GSE183795"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Pancreatic_Cancer/GSE183795.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Pancreatic_Cancer/gene_data/GSE183795.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Pancreatic_Cancer/clinical_data/GSE183795.csv"
|
16 |
+
json_path = "./output/preprocess/1/Pancreatic_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
|
21 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
22 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
23 |
+
|
24 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
25 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
26 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
27 |
+
background_info, clinical_data = get_background_and_clinical_data(
|
28 |
+
matrix_file,
|
29 |
+
background_prefixes,
|
30 |
+
clinical_prefixes
|
31 |
+
)
|
32 |
+
|
33 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
34 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
35 |
+
|
36 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
37 |
+
print("Background Information:")
|
38 |
+
print(background_info)
|
39 |
+
print("Sample Characteristics Dictionary:")
|
40 |
+
print(sample_characteristics_dict)
|
41 |
+
# 1) Gene Expression Data Availability
|
42 |
+
is_gene_available = True # From the background info, it is a microarray gene-expression dataset.
|
43 |
+
|
44 |
+
# 2) Variable Availability and Data Type Conversion
|
45 |
+
# Based on the sample characteristics, row 0 indicates whether a sample is tumor or not.
|
46 |
+
trait_row = 0
|
47 |
+
age_row = None # No age information found
|
48 |
+
gender_row = None # No gender information found
|
49 |
+
|
50 |
+
# Data type for trait is binary: tumor (1) vs. normal/adjacent tissue (0).
|
51 |
+
def convert_trait(value: str):
|
52 |
+
# Typically "tissue: tumor", "tissue: adjacent non-tumor", "tissue: Normal pancreas"
|
53 |
+
# We take the substring after the colon, then map.
|
54 |
+
parts = value.split(':')
|
55 |
+
if len(parts) < 2:
|
56 |
+
return None
|
57 |
+
val = parts[1].strip().lower()
|
58 |
+
if 'tumor' in val and 'non' not in val: # covers "tumor" but not "non-tumor"
|
59 |
+
return 1
|
60 |
+
elif 'tumor' in val or 'normal' in val:
|
61 |
+
return 0
|
62 |
+
return None
|
63 |
+
|
64 |
+
# Age and gender are not available, but we must define the functions for completeness
|
65 |
+
def convert_age(value: str):
|
66 |
+
return None
|
67 |
+
|
68 |
+
def convert_gender(value: str):
|
69 |
+
return None
|
70 |
+
|
71 |
+
# 3) Save Metadata (Initial filtering)
|
72 |
+
is_trait_available = (trait_row is not None)
|
73 |
+
is_usable = validate_and_save_cohort_info(
|
74 |
+
is_final=False,
|
75 |
+
cohort=cohort,
|
76 |
+
info_path=json_path,
|
77 |
+
is_gene_available=is_gene_available,
|
78 |
+
is_trait_available=is_trait_available
|
79 |
+
)
|
80 |
+
|
81 |
+
# 4) Clinical Feature Extraction (only if trait data is available)
|
82 |
+
if trait_row is not None:
|
83 |
+
clinical_features_df = geo_select_clinical_features(
|
84 |
+
clinical_data,
|
85 |
+
trait=trait,
|
86 |
+
trait_row=trait_row,
|
87 |
+
convert_trait=convert_trait,
|
88 |
+
age_row=age_row,
|
89 |
+
convert_age=convert_age,
|
90 |
+
gender_row=gender_row,
|
91 |
+
convert_gender=convert_gender
|
92 |
+
)
|
93 |
+
|
94 |
+
# Preview the extracted clinical features
|
95 |
+
preview = preview_df(clinical_features_df)
|
96 |
+
print("Preview of selected clinical features:", preview)
|
97 |
+
|
98 |
+
# Save the clinical features to CSV
|
99 |
+
clinical_features_df.to_csv(out_clinical_data_file, index=False)
|
100 |
+
# STEP3
|
101 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
102 |
+
gene_data = get_genetic_data(matrix_file)
|
103 |
+
|
104 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
105 |
+
print(gene_data.index[:20])
|
106 |
+
# The given identifiers (numeric strings like '7896748') are not standard human gene symbols.
|
107 |
+
# Therefore, they require mapping to known human gene symbols.
|
108 |
+
print("requires_gene_mapping = True")
|
109 |
+
# STEP5
|
110 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
111 |
+
gene_annotation = get_gene_annotation(soft_file)
|
112 |
+
|
113 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
114 |
+
print("Gene annotation preview:")
|
115 |
+
print(preview_df(gene_annotation))
|
116 |
+
# STEP: Gene Identifier Mapping
|
117 |
+
|
118 |
+
# 1) Identify the columns that store the probe ID and the gene symbol
|
119 |
+
# - The probe ID is in 'ID' and the gene symbol information is in 'gene_assignment'.
|
120 |
+
probe_col = 'ID'
|
121 |
+
symbol_col = 'gene_assignment'
|
122 |
+
|
123 |
+
# 2) Build the mapping dataframe
|
124 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=symbol_col)
|
125 |
+
|
126 |
+
# 3) Convert probe-level data to gene-level data
|
127 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
128 |
+
|
129 |
+
# For quick inspection, let's print out the shape and a small preview of the mapped gene data
|
130 |
+
print("Mapped gene expression data shape:", gene_data.shape)
|
131 |
+
print(gene_data.head())
|
132 |
+
# STEP 7
|
133 |
+
import pandas as pd
|
134 |
+
|
135 |
+
# 1) Load the clinical dataframe from the CSV saved in Step 2, ensuring the single row "Pancreatic_Cancer" becomes our index
|
136 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file)
|
137 |
+
selected_clinical_df.index = [trait] # Make "Pancreatic_Cancer" the row index
|
138 |
+
|
139 |
+
# 2) Normalize gene symbols and save
|
140 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
141 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
142 |
+
|
143 |
+
# 3) Link the clinical and genetic data on sample IDs
|
144 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
|
145 |
+
|
146 |
+
# 4) Handle missing values in the linked data
|
147 |
+
linked_data = handle_missing_values(linked_data, trait)
|
148 |
+
|
149 |
+
# 5) Determine whether the trait and demographic features are biased
|
150 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
151 |
+
|
152 |
+
# 6) Conduct final validation and save cohort info
|
153 |
+
is_usable = validate_and_save_cohort_info(
|
154 |
+
is_final=True,
|
155 |
+
cohort=cohort,
|
156 |
+
info_path=json_path,
|
157 |
+
is_gene_available=True,
|
158 |
+
is_trait_available=True,
|
159 |
+
is_biased=trait_biased,
|
160 |
+
df=linked_data,
|
161 |
+
note="Trait is available. Completed linking and QC steps."
|
162 |
+
)
|
163 |
+
|
164 |
+
# 7) If the dataset is usable, save the final linked data
|
165 |
+
if is_usable:
|
166 |
+
linked_data.to_csv(out_data_file)
|
p1/preprocess/Pancreatic_Cancer/code/GSE222788.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Pancreatic_Cancer"
|
6 |
+
cohort = "GSE222788"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Pancreatic_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Pancreatic_Cancer/GSE222788"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Pancreatic_Cancer/GSE222788.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Pancreatic_Cancer/gene_data/GSE222788.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Pancreatic_Cancer/clinical_data/GSE222788.csv"
|
16 |
+
json_path = "./output/preprocess/1/Pancreatic_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
|
21 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
22 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
23 |
+
|
24 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
25 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
26 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
27 |
+
background_info, clinical_data = get_background_and_clinical_data(
|
28 |
+
matrix_file,
|
29 |
+
background_prefixes,
|
30 |
+
clinical_prefixes
|
31 |
+
)
|
32 |
+
|
33 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
34 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
35 |
+
|
36 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
37 |
+
print("Background Information:")
|
38 |
+
print(background_info)
|
39 |
+
print("Sample Characteristics Dictionary:")
|
40 |
+
print(sample_characteristics_dict)
|
41 |
+
# 1. Decide whether this dataset contains gene expression data
|
42 |
+
is_gene_available = True # From the background, it uses a gene expression profiling panel
|
43 |
+
|
44 |
+
# 2. Determine variable availability
|
45 |
+
trait_row = None # No row indicating variation of "Pancreatic_Cancer"; the entire cohort has this trait
|
46 |
+
age_row = None # No age information found
|
47 |
+
gender_row = None # No gender information found
|
48 |
+
|
49 |
+
# 2.2 Define data type conversion functions
|
50 |
+
def convert_trait(value: str) -> int:
|
51 |
+
# No actual data is available; return None for all
|
52 |
+
return None
|
53 |
+
|
54 |
+
def convert_age(value: str) -> float:
|
55 |
+
# No age data is available; return None for all
|
56 |
+
return None
|
57 |
+
|
58 |
+
def convert_gender(value: str) -> int:
|
59 |
+
# No gender data is available; return None for all
|
60 |
+
return None
|
61 |
+
|
62 |
+
# 3. Save Metadata (initial filtering)
|
63 |
+
is_trait_available = (trait_row is not None)
|
64 |
+
validate_and_save_cohort_info(
|
65 |
+
is_final=False,
|
66 |
+
cohort=cohort,
|
67 |
+
info_path=json_path,
|
68 |
+
is_gene_available=is_gene_available,
|
69 |
+
is_trait_available=is_trait_available
|
70 |
+
)
|
71 |
+
|
72 |
+
# 4. Clinical Feature Extraction (skip if trait data is not available)
|
73 |
+
if trait_row is not None:
|
74 |
+
selected_clinical_df = geo_select_clinical_features(
|
75 |
+
clinical_data,
|
76 |
+
trait=trait,
|
77 |
+
trait_row=trait_row,
|
78 |
+
convert_trait=convert_trait,
|
79 |
+
age_row=age_row,
|
80 |
+
convert_age=convert_age,
|
81 |
+
gender_row=gender_row,
|
82 |
+
convert_gender=convert_gender
|
83 |
+
)
|
84 |
+
print(preview_df(selected_clinical_df))
|
85 |
+
selected_clinical_df.to_csv(out_clinical_data_file)
|
86 |
+
# STEP3
|
87 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
88 |
+
gene_data = get_genetic_data(matrix_file)
|
89 |
+
|
90 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
91 |
+
print(gene_data.index[:20])
|
92 |
+
# Based on the identifiers (e.g., "A2M-mRNA", "ABCB1-mRNA"), they are recognized human gene symbols
|
93 |
+
# with an appended "-mRNA" suffix. No additional mapping is required beyond removing the suffix.
|
94 |
+
print("They are recognized human gene symbols with an added '-mRNA' suffix.\nrequires_gene_mapping = False")
|
95 |
+
import pandas as pd
|
96 |
+
import os
|
97 |
+
|
98 |
+
# STEP 5
|
99 |
+
# This code finalizes preprocessing by normalizing gene symbols, linking clinical data (if any),
|
100 |
+
# performing quality control, and saving the results if the dataset is usable for trait analysis.
|
101 |
+
|
102 |
+
# 1. Normalize gene symbols in the gene expression data and save
|
103 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
104 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
105 |
+
|
106 |
+
# 2. Check trait data availability by verifying whether the clinical CSV file exists
|
107 |
+
if not os.path.exists(out_clinical_data_file):
|
108 |
+
# No trait data => finalize with is_final=True but supply a dummy dataframe and a biased flag
|
109 |
+
# so that validate_and_save_cohort_info won't raise an error
|
110 |
+
validate_and_save_cohort_info(
|
111 |
+
is_final=True,
|
112 |
+
cohort=cohort,
|
113 |
+
info_path=json_path,
|
114 |
+
is_gene_available=True,
|
115 |
+
is_trait_available=False,
|
116 |
+
is_biased=True, # Marking it as biased to ensure is_usable=False
|
117 |
+
df=pd.DataFrame(), # Empty DataFrame
|
118 |
+
note="No trait data => dataset not suitable for trait association."
|
119 |
+
)
|
120 |
+
else:
|
121 |
+
# 3. If trait data is available, read it and link with the genetic data
|
122 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
123 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
|
124 |
+
|
125 |
+
# 4. Handle missing values
|
126 |
+
linked_data = handle_missing_values(linked_data, trait)
|
127 |
+
|
128 |
+
# 5. Check for any bias in trait or demographics
|
129 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
130 |
+
|
131 |
+
# 6. Final quality validation
|
132 |
+
is_usable = validate_and_save_cohort_info(
|
133 |
+
is_final=True,
|
134 |
+
cohort=cohort,
|
135 |
+
info_path=json_path,
|
136 |
+
is_gene_available=True,
|
137 |
+
is_trait_available=True,
|
138 |
+
is_biased=trait_biased,
|
139 |
+
df=linked_data,
|
140 |
+
note="Trait is available. Completed linking and QC steps."
|
141 |
+
)
|
142 |
+
|
143 |
+
# 7. Save the final linked data if usable
|
144 |
+
if is_usable:
|
145 |
+
linked_data.to_csv(out_data_file)
|
p1/preprocess/Pancreatic_Cancer/code/GSE223409.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Pancreatic_Cancer"
|
6 |
+
cohort = "GSE223409"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Pancreatic_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Pancreatic_Cancer/GSE223409"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Pancreatic_Cancer/GSE223409.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Pancreatic_Cancer/gene_data/GSE223409.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Pancreatic_Cancer/clinical_data/GSE223409.csv"
|
16 |
+
json_path = "./output/preprocess/1/Pancreatic_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
|
21 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
22 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
23 |
+
|
24 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
25 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
26 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
27 |
+
background_info, clinical_data = get_background_and_clinical_data(
|
28 |
+
matrix_file,
|
29 |
+
background_prefixes,
|
30 |
+
clinical_prefixes
|
31 |
+
)
|
32 |
+
|
33 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
34 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
35 |
+
|
36 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
37 |
+
print("Background Information:")
|
38 |
+
print(background_info)
|
39 |
+
print("Sample Characteristics Dictionary:")
|
40 |
+
print(sample_characteristics_dict)
|
41 |
+
# 1) Decide if the dataset is likely to contain gene expression data
|
42 |
+
is_gene_available = True # Based on the references to oncogenic genes in the series
|
43 |
+
|
44 |
+
# 2) Determine availability for trait, age, and gender from the sample characteristics
|
45 |
+
# After inspecting the dictionary, none of these variables are explicitly provided or vary.
|
46 |
+
|
47 |
+
trait_row = None # No row indicates "Pancreatic_Cancer" (it's presumably the same for all)
|
48 |
+
age_row = None # No mention or variability for age
|
49 |
+
gender_row = None # No mention or variability for gender
|
50 |
+
|
51 |
+
# 2.2) Define data type conversion functions
|
52 |
+
def convert_trait(value: str) -> Optional[float]:
|
53 |
+
"""
|
54 |
+
Convert trait data to a binary (0,1). Unknown values go to None.
|
55 |
+
Since trait_row is None, this function won't be used, but we define it for completeness.
|
56 |
+
"""
|
57 |
+
if not value or pd.isna(value):
|
58 |
+
return None
|
59 |
+
# Typically, parse after ":", if any
|
60 |
+
parts = value.split(':', 1)
|
61 |
+
val_str = parts[-1].strip() if len(parts) > 1 else value.strip()
|
62 |
+
# If we had actual detection logic, we'd do it here. Returning None by default.
|
63 |
+
return None
|
64 |
+
|
65 |
+
def convert_age(value: str) -> Optional[float]:
|
66 |
+
"""
|
67 |
+
Convert age to continuous. Unknown values go to None.
|
68 |
+
Since age_row is None, this function won't be used, but defined for completeness.
|
69 |
+
"""
|
70 |
+
if not value or pd.isna(value):
|
71 |
+
return None
|
72 |
+
parts = value.split(':', 1)
|
73 |
+
val_str = parts[-1].strip() if len(parts) > 1 else value.strip()
|
74 |
+
# Try to parse to float
|
75 |
+
try:
|
76 |
+
return float(val_str)
|
77 |
+
except ValueError:
|
78 |
+
return None
|
79 |
+
|
80 |
+
def convert_gender(value: str) -> Optional[int]:
|
81 |
+
"""
|
82 |
+
Convert gender to binary: female -> 0, male -> 1, unknown -> None.
|
83 |
+
Since gender_row is None, this function won't be used, but defined for completeness.
|
84 |
+
"""
|
85 |
+
if not value or pd.isna(value):
|
86 |
+
return None
|
87 |
+
parts = value.split(':', 1)
|
88 |
+
val_str = parts[-1].strip().lower() if len(parts) > 1 else value.strip().lower()
|
89 |
+
if val_str.startswith('f'):
|
90 |
+
return 0
|
91 |
+
elif val_str.startswith('m'):
|
92 |
+
return 1
|
93 |
+
return None
|
94 |
+
|
95 |
+
# 3) Conduct initial filtering on dataset usability and save metadata
|
96 |
+
# Trait data availability is based on whether trait_row is None.
|
97 |
+
is_trait_available = (trait_row is not None)
|
98 |
+
|
99 |
+
passed_filtering = validate_and_save_cohort_info(
|
100 |
+
is_final=False,
|
101 |
+
cohort=cohort,
|
102 |
+
info_path=json_path,
|
103 |
+
is_gene_available=is_gene_available,
|
104 |
+
is_trait_available=is_trait_available
|
105 |
+
)
|
106 |
+
|
107 |
+
# 4) Only if trait_row is not None would we extract clinical features.
|
108 |
+
if trait_row is not None:
|
109 |
+
selected_clinical_df = geo_select_clinical_features(
|
110 |
+
clinical_df=clinical_data,
|
111 |
+
trait="Pancreatic_Cancer", # or simply trait
|
112 |
+
trait_row=trait_row,
|
113 |
+
convert_trait=convert_trait,
|
114 |
+
age_row=age_row,
|
115 |
+
convert_age=convert_age,
|
116 |
+
gender_row=gender_row,
|
117 |
+
convert_gender=convert_gender
|
118 |
+
)
|
119 |
+
# Preview and save
|
120 |
+
print("Selected clinical features preview:", preview_df(selected_clinical_df))
|
121 |
+
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
|
122 |
+
# STEP3
|
123 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
124 |
+
gene_data = get_genetic_data(matrix_file)
|
125 |
+
|
126 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
127 |
+
print(gene_data.index[:20])
|
128 |
+
print(
|
129 |
+
"The gene identifiers in the dataset are numeric and do not appear to be standard human gene symbols.\n"
|
130 |
+
"requires_gene_mapping = True"
|
131 |
+
)
|
132 |
+
# STEP5
|
133 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
134 |
+
gene_annotation = get_gene_annotation(soft_file)
|
135 |
+
|
136 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
137 |
+
print("Gene annotation preview:")
|
138 |
+
print(preview_df(gene_annotation))
|
139 |
+
# STEP: Gene Identifier Mapping
|
140 |
+
|
141 |
+
# 1) From inspection, 'ID' in gene_annotation aligns with the numeric row identifiers in gene_data,
|
142 |
+
# and 'GENE_SYMBOL' stores the gene symbols.
|
143 |
+
prob_col = 'ID'
|
144 |
+
gene_col = 'GENE_SYMBOL'
|
145 |
+
|
146 |
+
# 2) Get the gene mapping dataframe
|
147 |
+
gene_mapping_df = get_gene_mapping(gene_annotation, prob_col=prob_col, gene_col=gene_col)
|
148 |
+
|
149 |
+
# 3) Convert probe-level measurements to gene-level expression
|
150 |
+
gene_data = apply_gene_mapping(gene_data, gene_mapping_df)
|
151 |
+
import os
|
152 |
+
import pandas as pd
|
153 |
+
|
154 |
+
# STEP 7
|
155 |
+
|
156 |
+
# 1) Normalize gene symbols using the loaded gene_data from previous steps, then save the result.
|
157 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
158 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
159 |
+
|
160 |
+
# 2) Check if clinical data file exists. If missing, finalize by marking that trait data is not available
|
161 |
+
# but do NOT do a final validation because we don't have df/is_biased.
|
162 |
+
if not os.path.exists(out_clinical_data_file):
|
163 |
+
print("No clinical data file found. This dataset cannot be used for trait-based analysis.")
|
164 |
+
# Record metadata but with is_final=False, indicating it fails trait requirement
|
165 |
+
validate_and_save_cohort_info(
|
166 |
+
is_final=False,
|
167 |
+
cohort=cohort,
|
168 |
+
info_path=json_path,
|
169 |
+
is_gene_available=True,
|
170 |
+
is_trait_available=False
|
171 |
+
)
|
172 |
+
else:
|
173 |
+
# If clinical data is available, proceed with linking and QC steps
|
174 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
175 |
+
|
176 |
+
# 2) Link the clinical and genetic data on sample IDs
|
177 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
|
178 |
+
|
179 |
+
# 3) Handle missing values
|
180 |
+
linked_data = handle_missing_values(linked_data, trait)
|
181 |
+
|
182 |
+
# 4) Determine if the trait/demographics are biased
|
183 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
184 |
+
|
185 |
+
# 5) Conduct final validation and save cohort info
|
186 |
+
is_usable = validate_and_save_cohort_info(
|
187 |
+
is_final=True,
|
188 |
+
cohort=cohort,
|
189 |
+
info_path=json_path,
|
190 |
+
is_gene_available=True,
|
191 |
+
is_trait_available=True,
|
192 |
+
is_biased=trait_biased,
|
193 |
+
df=linked_data,
|
194 |
+
note="Trait is available. Completed linking and QC steps."
|
195 |
+
)
|
196 |
+
|
197 |
+
# 6) If the dataset is usable, save the final linked data
|
198 |
+
if is_usable:
|
199 |
+
linked_data.to_csv(out_data_file)
|
p1/preprocess/Pancreatic_Cancer/code/TCGA.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Pancreatic_Cancer"
|
6 |
+
|
7 |
+
# Input paths
|
8 |
+
tcga_root_dir = "../DATA/TCGA"
|
9 |
+
|
10 |
+
# Output paths
|
11 |
+
out_data_file = "./output/preprocess/1/Pancreatic_Cancer/TCGA.csv"
|
12 |
+
out_gene_data_file = "./output/preprocess/1/Pancreatic_Cancer/gene_data/TCGA.csv"
|
13 |
+
out_clinical_data_file = "./output/preprocess/1/Pancreatic_Cancer/clinical_data/TCGA.csv"
|
14 |
+
json_path = "./output/preprocess/1/Pancreatic_Cancer/cohort_info.json"
|
15 |
+
|
16 |
+
import os
|
17 |
+
import pandas as pd
|
18 |
+
|
19 |
+
# 1. Identify the relevant subdirectory for "Pancreatic_Cancer" or "PAAD"
|
20 |
+
subdirectories = [
|
21 |
+
'CrawlData.ipynb', '.DS_Store', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)',
|
22 |
+
'TCGA_Uterine_Carcinosarcoma_(UCS)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Thymoma_(THYM)',
|
23 |
+
'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Sarcoma_(SARC)',
|
24 |
+
'TCGA_Rectal_Cancer_(READ)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)',
|
25 |
+
'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Ocular_melanomas_(UVM)',
|
26 |
+
'TCGA_Mesothelioma_(MESO)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)',
|
27 |
+
'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lower_Grade_Glioma_(LGG)',
|
28 |
+
'TCGA_Liver_Cancer_(LIHC)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)',
|
29 |
+
'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Head_and_Neck_Cancer_(HNSC)',
|
30 |
+
'TCGA_Glioblastoma_(GBM)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Endometrioid_Cancer_(UCEC)',
|
31 |
+
'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Cervical_Cancer_(CESC)',
|
32 |
+
'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Bile_Duct_Cancer_(CHOL)',
|
33 |
+
'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Acute_Myeloid_Leukemia_(LAML)'
|
34 |
+
]
|
35 |
+
|
36 |
+
trait_keyword = "Pancreatic_Cancer"
|
37 |
+
trait_abbreviation = "PAAD"
|
38 |
+
|
39 |
+
target_subdir = None
|
40 |
+
for sd in subdirectories:
|
41 |
+
if trait_keyword in sd or trait_abbreviation in sd:
|
42 |
+
target_subdir = sd
|
43 |
+
break
|
44 |
+
|
45 |
+
if target_subdir is None:
|
46 |
+
# No suitable data found for this trait; mark as completed
|
47 |
+
print("No TCGA subdirectory found for the trait. Skipping.")
|
48 |
+
else:
|
49 |
+
cohort_dir = os.path.join(tcga_root_dir, target_subdir)
|
50 |
+
# 2. Locate clinical and genetic data files
|
51 |
+
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
|
52 |
+
|
53 |
+
# 3. Load the data
|
54 |
+
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
|
55 |
+
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
|
56 |
+
|
57 |
+
# 4. Print column names of clinical data
|
58 |
+
print(clinical_df.columns)
|
59 |
+
candidate_age_cols = ["age_at_initial_pathologic_diagnosis"]
|
60 |
+
candidate_gender_cols = []
|
61 |
+
|
62 |
+
print("candidate_age_cols =", candidate_age_cols)
|
63 |
+
print("candidate_gender_cols =", candidate_gender_cols)
|
64 |
+
|
65 |
+
extracted_cols = candidate_age_cols + candidate_gender_cols
|
66 |
+
|
67 |
+
if extracted_cols:
|
68 |
+
extracted_df = clinical_df[extracted_cols]
|
69 |
+
print("Extracted Columns:", extracted_df.columns.tolist())
|
70 |
+
print("Preview (first 5 rows):", preview_df(extracted_df))
|
71 |
+
else:
|
72 |
+
print("No candidate columns found.")
|
73 |
+
age_col = "age_at_initial_pathologic_diagnosis"
|
74 |
+
gender_col = None
|
75 |
+
|
76 |
+
print("Chosen age_col:", age_col)
|
77 |
+
print("Chosen gender_col:", gender_col)
|
78 |
+
# 1. Extract and standardize the clinical features
|
79 |
+
selected_clinical_df = tcga_select_clinical_features(
|
80 |
+
clinical_df=clinical_df,
|
81 |
+
trait=trait,
|
82 |
+
age_col=age_col,
|
83 |
+
gender_col=gender_col
|
84 |
+
)
|
85 |
+
|
86 |
+
# (Optional) Save the selected clinical data
|
87 |
+
selected_clinical_df.to_csv(out_clinical_data_file)
|
88 |
+
|
89 |
+
# 2. Normalize gene symbols in the genetic data
|
90 |
+
normalized_gene_df = normalize_gene_symbols_in_index(genetic_df)
|
91 |
+
normalized_gene_df.to_csv(out_gene_data_file)
|
92 |
+
|
93 |
+
# 3. Link the clinical and genetic data on sample IDs
|
94 |
+
linked_data = selected_clinical_df.join(normalized_gene_df.T, how="inner")
|
95 |
+
|
96 |
+
# 4. Handle missing values
|
97 |
+
cleaned_df = handle_missing_values(linked_data, trait)
|
98 |
+
|
99 |
+
# 5. Determine if the trait or demographic features are biased
|
100 |
+
is_biased, final_df = judge_and_remove_biased_features(cleaned_df, trait)
|
101 |
+
|
102 |
+
# 6. Final quality validation
|
103 |
+
is_gene_available = not normalized_gene_df.empty
|
104 |
+
is_trait_available = trait in final_df.columns
|
105 |
+
is_usable = validate_and_save_cohort_info(
|
106 |
+
is_final=True,
|
107 |
+
cohort="TCGA",
|
108 |
+
info_path=json_path,
|
109 |
+
is_gene_available=is_gene_available,
|
110 |
+
is_trait_available=is_trait_available,
|
111 |
+
is_biased=is_biased,
|
112 |
+
df=final_df,
|
113 |
+
note=""
|
114 |
+
)
|
115 |
+
|
116 |
+
# 7. If the dataset is usable, save the final dataframe
|
117 |
+
if is_usable:
|
118 |
+
final_df.to_csv(out_data_file)
|
p1/preprocess/Pancreatic_Cancer/gene_data/GSE120127.csv
ADDED
@@ -0,0 +1,660 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Gene,GSM3392954,GSM3392955,GSM3392956,GSM3392957,GSM3392958,GSM3392959
|
2 |
+
A4GALT,1.858015,1.829465,1.866155,1.841555,1.97635,1.94954
|
3 |
+
AAA1,32.96087573559773,32.93049541050616,32.78390685403485,33.017610704073704,32.220965923798424,31.856791225968475
|
4 |
+
AAR2,2.1873766666666667,1.9369133333333333,2.02495,2.151266666666667,2.08594,2.0652133333333333
|
5 |
+
ABCB6,93.21420499999999,91.77114183333333,93.14125083333333,87.10652583333334,86.07933033333333,84.1504535
|
6 |
+
ABCC11,75.94112482539683,75.37269024603175,76.03080293650794,75.50593324603174,73.66062432539682,74.93303888888889
|
7 |
+
ABCE1,3.3151675,3.336621,3.3466375,3.4654475,3.4416145,3.4044485
|
8 |
+
ADAR,3.0311719999999998,2.9770013333333334,2.748972,2.6553406666666666,2.6307313333333333,2.715101333333333
|
9 |
+
ADI1,1.197772,1.257368,1.26149,1.338692,1.504716,1.471714
|
10 |
+
AFF1,8.25282,7.932556666666667,7.89387,7.941686666666667,7.68355,7.9150833333333335
|
11 |
+
AICDA,16.849775,16.831625000000003,17.206805000000003,18.23356,18.18986,18.156455
|
12 |
+
AIG1,18.27905225,18.11132725,17.87997575,17.93795975,18.679066249999998,19.0344225
|
13 |
+
AIR,5.070455166666667,5.061105166666667,4.936610666666667,5.118323666666667,4.909303166666667,4.807835
|
14 |
+
AKAP8,6.366576666666667,6.431273333333333,6.35048,6.637446666666667,6.043456666666667,6.0522366666666665
|
15 |
+
ALB,2.804737676767677,2.7542586868686865,2.7811612626262625,2.64201202020202,2.5958716666666666,2.6413053535353535
|
16 |
+
ALG10,3.669945,3.788215,3.64354,3.951235,3.82961,3.87257
|
17 |
+
ALG3,4.313725,4.31389,4.24333,4.67354,4.518875,4.424105
|
18 |
+
ALG6,4.272443333333333,4.19639,4.143996666666666,4.724783333333333,4.444026666666667,4.285713333333334
|
19 |
+
ALG8,4.272443333333333,4.19639,4.143996666666666,4.724783333333333,4.444026666666667,4.285713333333334
|
20 |
+
ALK,1.467825,1.4249525,1.3810875,1.4177325,1.390135,1.33883
|
21 |
+
AMMECR1,9.273465,9.021765,9.08984,9.422235,9.268455,8.423755
|
22 |
+
ANKS1B,2.8399312500000002,2.76401,2.7753437499999998,2.837853125,2.7426793750000003,2.6383831250000003
|
23 |
+
ANKS4B,0.8171833333333334,0.8516116666666668,0.8264983333333333,0.7995,0.7514216666666668,0.7986333333333334
|
24 |
+
AQP1,1.883837777777778,2.0704322222222222,2.05195,1.92886,1.8826244444444442,2.0642766666666668
|
25 |
+
ARID1B,16.247368825757576,15.93978606060606,16.183315151515153,15.354027954545455,15.196054886363637,15.702561477272727
|
26 |
+
ARL6IP4,2.5551933333333334,2.51465,2.473196666666667,2.4274633333333333,2.47729,2.4238833333333334
|
27 |
+
ARTN,3.5708475,3.59851,3.707115,3.6964575,3.7704874999999998,3.97459
|
28 |
+
ASAP1,19.214238833333333,19.440867333333333,19.431995,19.372904666666667,19.020010833333334,19.246647333333335
|
29 |
+
ASD1,4.3573525,4.305159166666666,4.258743333333333,4.317975833333334,4.23467,4.229591666666667
|
30 |
+
ASPH,15.363189563492064,15.055301626984127,15.327442142857143,15.136833253968254,15.150764523809524,15.175809206349207
|
31 |
+
ASPSCR1,1.3520379999999999,1.312856,1.356902,1.3701539999999999,1.324446,1.429602
|
32 |
+
ATIC,2.77073,2.81184,2.8019433333333335,2.861136666666667,2.7277966666666664,2.6164133333333335
|
33 |
+
ATP23,1.5048466666666667,1.4522933333333334,1.44586,1.59644,1.5391033333333333,1.3708233333333333
|
34 |
+
ATP5PF,1.5905166666666668,1.6341,1.6926133333333333,1.7034566666666666,1.79917,1.6402566666666667
|
35 |
+
ATP6V0A4,9.405251666666667,9.582821666666666,9.458853333333334,9.443328333333334,10.663851666666666,9.841425000000001
|
36 |
+
ATP8A2,18.476918166666668,18.609134666666666,18.2111185,19.159514833333333,18.424330833333332,18.033152833333332
|
37 |
+
ATPAF1,2.78021,2.88655,2.91766,2.91846,2.673905,2.567705
|
38 |
+
ATPAF2,1.9648666666666665,1.9730333333333334,1.9223,2.0277833333333333,2.04934,2.03042
|
39 |
+
ATXN3,5.468451666666667,5.5477083333333335,5.55468,5.56985,5.410998333333334,5.333613333333333
|
40 |
+
ATXN7,13.13048,12.30814,12.2786775,12.6208075,11.951135,12.412625
|
41 |
+
AVL9,7.6523699999999995,7.698615833333333,7.746739166666667,7.895964166666667,7.801588333333333,7.726695833333333
|
42 |
+
B9D1,7.457364999999999,7.18594,7.159745,6.83439,7.017015,6.437315
|
43 |
+
BAAT,6.3332093333333335,6.674867619047619,6.3517217142857145,6.290031857142857,6.589650333333333,6.590907238095238
|
44 |
+
BAD,4.88501,4.72331,4.84898,5.099345,4.81975,4.642135
|
45 |
+
BANF1,5.557435,5.608755,5.477774999999999,5.70607,5.552595,5.419985
|
46 |
+
BAZ1B,2.550986571428571,2.4936411428571432,2.474361142857143,2.4626840000000003,2.366090285714286,2.4149279999999997
|
47 |
+
BBS9,5.30143,5.2662700000000005,5.1715,5.493645,6.12606,5.73926
|
48 |
+
BBX,1.4322300000000001,1.4707599999999998,1.467508,1.34355,1.31396,1.300032
|
49 |
+
BCL7A,8.803075,8.914945,8.734765,9.086120000000001,8.962955000000001,9.275770000000001
|
50 |
+
BFAR,23.97784807142857,24.043008547619046,23.62765738095238,24.457878452380953,23.59144757142857,23.56400845238095
|
51 |
+
BLOC1S6,21.1253865,21.31072066666667,21.219315,21.6080255,21.895462,21.28044
|
52 |
+
BLTP2,1.2887042857142856,1.266652857142857,1.2886757142857144,1.2279414285714285,1.2553142857142858,1.2834514285714285
|
53 |
+
BMS1,2.35942125,2.34054625,2.3192025,2.39044,2.3380825,2.2392149999999997
|
54 |
+
BNIP3,7.257999999999999,7.266775,7.23554,7.226445,7.835750000000001,8.129105
|
55 |
+
BOP1,1.465388,1.39751,1.4244080000000001,1.48965,1.37874,1.328982
|
56 |
+
BORCS5,2.438125,2.644715,2.580015,2.58899,2.590135,2.589815
|
57 |
+
BPIFA2,3.3870732142857145,3.391365357142857,3.3029717857142855,3.384435,3.2669217857142856,3.3264539285714285
|
58 |
+
BRAP,5.035093333333334,4.866355416666667,5.04730125,5.09986625,4.9837275,4.9884458333333335
|
59 |
+
BRCA1,3.449985,3.53098,3.448135,3.533145,3.49738,3.432545
|
60 |
+
BRCA2,0.8474833333333334,0.8051666666666667,0.73832,0.7578266666666668,0.783995,0.7132766666666667
|
61 |
+
BRD2,3.4650966666666667,3.552990952380952,3.4126457142857145,3.364497857142857,3.549335,3.413685238095238
|
62 |
+
BRD4,44.247375380952384,42.23878166666667,42.23768992857143,42.723851333333336,43.53150564285714,41.40638907142857
|
63 |
+
BRI3,5.654155,5.746415,5.974185,5.72871,5.765985,5.781965
|
64 |
+
BUB1,3.6387533333333337,3.5938808333333334,3.3672041666666663,3.5965566666666664,3.5151891666666666,3.1915291666666663
|
65 |
+
C1D,6.6063725,6.646380000000001,6.4836875,6.91017,7.0189825,6.4523875
|
66 |
+
C1QL1,4.11877,4.33293,4.305295,4.21562,4.33453,4.4355649999999995
|
67 |
+
C1orf43,7.97095,7.949725,8.30463,8.619250000000001,8.111509999999999,8.348435
|
68 |
+
C2,209.8815207738095,209.886480505772,211.10279506204907,209.4044530223665,209.81673346717173,212.57742509199133
|
69 |
+
C21orf91,2.78762,2.956165,2.931135,2.680975,2.697405,2.634945
|
70 |
+
C4B,45.2719446545399,44.523341765567764,44.06059901140526,43.49356256993007,42.602762896298145,43.388690817765564
|
71 |
+
CARM1,0.744969,0.754089,0.756114,0.784347,0.69917,0.757592
|
72 |
+
CARTPT,1.838085,1.87365,2.004325,1.89471,1.859455,2.15969
|
73 |
+
CAVIN2,76.7830839614552,77.79266876090576,77.3174887942058,76.84989723418248,78.09309468464869,76.84558967707292
|
74 |
+
CCL4L1,25.971856523809524,26.079037916666667,26.03957332142857,26.561225047619047,26.67057026190476,26.125902904761904
|
75 |
+
CD34,9.9078,9.188125,9.506855,9.78491,9.9962,10.54277
|
76 |
+
CD36,8.61719,9.157135,8.859085,8.68001,8.695395,8.29874
|
77 |
+
CD38,4.600483333333333,4.638663333333334,5.067896666666667,4.79854,4.787093333333333,4.828386666666667
|
78 |
+
CD4,0.28258222222222223,0.3020922222222222,0.3005933333333333,0.32356444444444443,0.30271000000000003,0.29799333333333333
|
79 |
+
CD46,1.142695,1.0167375,1.0621975,1.12023,1.04216,0.9718075
|
80 |
+
CD47,4.014895,4.060256666666667,3.8726583333333333,3.67452,3.9634583333333335,3.74012
|
81 |
+
CD59,74.71160766666667,78.889349,76.117541,76.58593483333334,79.39519233333333,80.757357
|
82 |
+
CD99,3.692635,3.69676,3.64845,3.916545,3.760385,3.836065
|
83 |
+
CDC123,3.949705,3.877735,4.01465,4.131835,4.266,4.01711
|
84 |
+
CDC26,3.563785,3.50411,3.524085,3.64615,3.65119,3.354855
|
85 |
+
CDC45,2.877345,2.70942,2.66619,2.898095,3.09369,2.69328
|
86 |
+
CDC6,1.7108486666666667,1.6514757777777778,1.5190406666666667,1.7280466666666667,1.680203111111111,1.64411
|
87 |
+
CDCA7L,6.49796,6.04083,6.17006,6.538775,6.258884999999999,5.715574999999999
|
88 |
+
CDIP1,30.490373345238094,30.81079666269841,30.689849337301588,30.712669753968253,30.253747924603175,30.139749468253967
|
89 |
+
CDK5RAP2,19.31417,19.21337,19.65844333333333,19.834303333333335,19.127376666666667,19.44601
|
90 |
+
CDKN2A,164.20789062617936,162.97124192704518,163.64807976409702,165.8377998654401,163.81420587978687,163.11264691000665
|
91 |
+
CDKN3,1.4230775,1.3959775,1.2925575,1.48607,1.530475,1.2724075
|
92 |
+
CDT1,3.43376,3.47802,3.25174,3.48045,3.168705,3.233665
|
93 |
+
CEBPZ,80.42350690476191,80.634406,78.70643885714286,86.2682793095238,87.02991888095238,83.94461716666667
|
94 |
+
CENPS-CORT,2.58127,2.60005,2.513905,2.82924,2.78841,2.75518
|
95 |
+
CEP55,2.9979175,2.94408,2.77732,2.7838925000000003,2.7362175,2.632175
|
96 |
+
CFAP97,0.749402,0.732536,0.622688,0.728606,0.9094900000000001,0.820552
|
97 |
+
CFI,1.78733858974359,1.747391923076923,1.7768926923076922,1.7645816666666665,1.6346485897435896,1.6811021794871794
|
98 |
+
CHRD,1.14617,1.0827033333333334,1.1115,1.0319800000000001,1.2210266666666667,1.2277266666666666
|
99 |
+
CHRM3,1.68827,1.6043666666666667,1.5802433333333334,1.6739300000000001,1.54667,1.57423
|
100 |
+
CHTOP,3.273315,3.1502074999999996,3.1684725,3.35323,3.256855,3.1818775
|
101 |
+
CHURC1,24.72577,24.42198,24.736625,24.79708,24.59111,23.53421
|
102 |
+
CIMAP2,3.3152541666666666,3.2202158333333335,3.2556575,3.2862783333333336,3.1341091666666667,3.252396666666667
|
103 |
+
CISH,36.15428141666666,36.35329875,36.49348258333333,36.2934975,36.04608275,37.553074083333335
|
104 |
+
CLASRP,5.811468666666666,5.855383333333333,5.789422666666667,5.596246,5.599786,5.7276826666666665
|
105 |
+
CLIC4,16.811858273809523,16.79572755952381,16.949986904761904,18.28842267857143,18.206285833333332,18.316207976190476
|
106 |
+
CLIP2,0.814095,0.7672599999999999,0.6215666666666667,0.7711783333333333,0.75779,0.7194600000000001
|
107 |
+
CLN8,23.909393666666666,24.050097916666665,23.96634475,24.563349333333335,24.658858833333333,24.127564333333332
|
108 |
+
CNOT2,3.083088214285714,3.067714642857143,3.0309385714285715,3.0403707142857144,2.9918428571428572,3.0478360714285717
|
109 |
+
CNOT3,3.083088214285714,3.067714642857143,3.0309385714285715,3.0403707142857144,2.9918428571428572,3.0478360714285717
|
110 |
+
CNOT7,10.171936666666667,10.282446666666667,9.898511666666668,10.608953333333334,10.239196666666667,10.2376
|
111 |
+
CNTF,6.13915,5.933955,5.848907499999999,6.0305775,5.6940124999999995,5.740215
|
112 |
+
COA5,3.95653,4.00693,3.89074,4.090195,3.888425,3.954855
|
113 |
+
COG2,0.85459,0.8485071428571428,0.8536157142857144,0.9222628571428572,0.8616485714285714,0.8554700000000001
|
114 |
+
COPS5,20.62311875,20.732979583333332,20.778225694444444,20.96664375,20.719297083333334,20.339385416666666
|
115 |
+
COPS8,8.320762333333333,8.146341666666666,8.216191666666667,8.388005666666666,8.153418333333333,8.132211666666667
|
116 |
+
COQ5,15.450862483516485,15.811756486263736,15.458722095238095,16.00397539010989,15.649636217948718,15.731993838827838
|
117 |
+
COQ9,2.807925,2.854575,2.743005,2.83173,2.63562,2.6921
|
118 |
+
COX20,3.259555,3.12298,3.359545,4.00297,4.0788,3.92747
|
119 |
+
COX8A,1.460785,1.445635,1.358285,1.51429,1.460845,1.29828
|
120 |
+
CPAT1,1.4730699999999999,1.5330342857142858,1.5811542857142857,1.4831514285714285,1.6238185714285716,1.5399528571428571
|
121 |
+
CPE,2.30521125,2.2651275,2.3059133333333333,1.9446091666666665,1.7495720833333333,1.8861720833333333
|
122 |
+
CR1,16.65595666666667,16.778526666666668,16.508103333333334,16.80471,16.131643333333333,16.605466666666665
|
123 |
+
CRIPT,2.8825366666666667,2.8570533333333334,2.8923799999999997,3.0202033333333334,3.0716666666666668,2.9196233333333335
|
124 |
+
CROT,14.366881904761906,14.171832380952381,14.449089523809523,14.283882380952381,14.030689523809524,13.288690476190476
|
125 |
+
CRTAC1,0.52579,0.5156633333333334,0.5697283333333333,0.5264683333333333,0.5412666666666667,0.5424833333333333
|
126 |
+
CRTAP,1.2624600000000001,1.2160283333333333,1.3049666666666666,1.2254083333333334,1.1600916666666665,1.15608
|
127 |
+
CRYGD,38.77260015620491,39.457901576479074,38.33066438419913,37.69171614862915,38.76519490909091,38.301762072510826
|
128 |
+
CRYGEP,6.026883505050505,5.812711414141414,5.613513181818182,5.887827464646465,5.924549858585859,5.649538333333333
|
129 |
+
CS,38.61195869047619,37.848528333333334,38.401210654761904,38.53283773809524,37.50655023809524,36.86378630952381
|
130 |
+
CST12P,130.9695953095238,132.38207046825397,132.74466694444445,134.38662263492063,131.52538923809524,132.76071296031745
|
131 |
+
CTD,2.736554,2.753072,2.776996,2.691354,2.5225619999999997,2.7209779999999997
|
132 |
+
CTDSP1,4.946528333333333,4.768361666666666,4.9323516666666665,5.15735,5.047263333333333,4.79039
|
133 |
+
CTNNB1,4.909935,4.8403075,4.863175,4.6923425,4.8279175,4.8128425
|
134 |
+
CTNNBIP1,7.02806,7.214575,6.8779900000000005,7.017445,6.63631,6.212455
|
135 |
+
CTNNBL1,35.142615,34.86517,35.45634,35.01661,33.92627,33.50658
|
136 |
+
CYGB,1.634566217948718,1.5893775641025643,1.5724332692307692,1.5377075641025642,1.535991794871795,1.5868565384615385
|
137 |
+
CYP2B6,157.05743142857142,159.29645714285715,157.425035,158.1367407142857,164.6534142857143,162.10027642857142
|
138 |
+
CYRIB,19.482788333333332,20.61996333333333,20.107588333333332,19.095965,19.074938333333332,18.185164999999998
|
139 |
+
CYTH1,7.697578,7.7094673333333334,7.811185333333333,7.268223333333333,7.28393,7.159521333333334
|
140 |
+
DAP,5.149066,4.999232,4.964752,5.044156,5.0666139999999995,5.005308
|
141 |
+
DBI,20.55776,20.434163333333334,20.737013333333334,20.884791666666665,20.495226666666667,20.105596666666667
|
142 |
+
DDT,4.760911238095238,4.656085142857143,4.720086809523809,4.4706209999999995,4.361744285714286,4.443583333333334
|
143 |
+
DECR1,0.46598428571428574,0.4582,0.54642,0.5105271428571428,0.5258885714285715,0.5032128571428571
|
144 |
+
DEK,7.226119166666667,7.004300000000001,7.01314,7.13235,6.813056666666666,6.905681666666667
|
145 |
+
DHCR7-DT,49.989135857142855,48.865964142857145,49.406974142857145,50.215321357142855,49.45340142857143,48.20681021428572
|
146 |
+
DHDDS,14.366881904761906,14.171832380952381,14.449089523809523,14.283882380952381,14.030689523809524,13.288690476190476
|
147 |
+
DHX40,4.793518333333333,4.67888,4.706098333333333,4.786296666666667,5.169143333333333,5.252555
|
148 |
+
DIABLO,3.110785,2.956125,2.943685,3.062475,2.94453,2.9375
|
149 |
+
DISC1,1.7411033333333332,1.6726133333333333,1.7186766666666669,1.6618899999999999,1.6218866666666667,1.5658966666666665
|
150 |
+
DKK1,4.39187,4.6047424999999995,4.34375,4.236585,4.3342325,4.586075
|
151 |
+
DMPK,5.983329166666667,6.317270166666667,6.256375833333333,6.406073833333334,6.5432435,6.599687
|
152 |
+
DNAJC7,62.27380760353535,61.71458593908869,61.69341285353535,61.96213949236874,60.726319452630705,60.83201521131646
|
153 |
+
DOT1L,4.934385,4.899378333333333,4.9103216666666665,4.774016666666666,4.651508333333333,4.612016666666666
|
154 |
+
DPH1,3.0693900000000003,2.9061866666666667,2.875636666666667,2.991085,2.804185,2.798103333333333
|
155 |
+
DPH2,3.0693900000000003,2.9061866666666667,2.875636666666667,2.991085,2.804185,2.798103333333333
|
156 |
+
DRAM1,19.084875,19.147175,18.7505675,18.820610000000002,19.3923925,18.9639675
|
157 |
+
DSCAM-AS1,5.854526571428572,5.827554857142857,5.813090214285714,5.875121142857143,5.741921928571429,5.789790928571428
|
158 |
+
DSCC1,1.30929,1.38217,1.479255,1.367285,1.295095,1.30958
|
159 |
+
DSN1,2.270725,2.324095,2.49022,2.356795,2.15901,1.959945
|
160 |
+
DUSP5,9.659116666666666,9.481178333333334,9.415068333333332,9.654065833333334,9.1449175,9.472900833333334
|
161 |
+
DVL1P1,1.8830175,1.86341,1.8963812500000001,1.8489875,1.7801312500000002,1.79720625
|
162 |
+
DYM,23.292412,23.340785,22.968865666666666,22.9514015,22.7784495,22.189973833333333
|
163 |
+
DYRK3,1.4116600000000001,1.4081733333333333,1.3755266666666666,1.4163983333333334,1.3921083333333335,1.3621400000000001
|
164 |
+
ECD,3.76754,3.7843,3.7348,3.87226,3.62394,3.64007
|
165 |
+
ECSIT,2.396665,2.59429,2.53287,2.663545,2.406485,2.31709
|
166 |
+
EEF1A2,22.54176898043623,21.834998155760907,22.115463233433232,22.26923016774892,22.238976312687313,22.324619194638696
|
167 |
+
EEF1B2,43.767040373376624,43.842672377705625,43.58674965909091,43.78815217424243,43.004557471861474,43.17342231493507
|
168 |
+
EEF2,11.330843795454545,11.444758946969698,11.47920046969697,11.652137227272728,11.481921234848485,11.774690848484848
|
169 |
+
EEIG1,3.720605,3.5912875,3.622425,3.6707574999999997,3.6105025,3.71056
|
170 |
+
EGF,51.92661286874237,52.126659437118434,51.577851423992676,50.09503646489622,50.65496493376068,49.471416304334554
|
171 |
+
EGFR,3.6146495833333336,3.637440416666667,3.6269358333333335,3.61147625,3.5218687500000003,3.738817916666667
|
172 |
+
EHBP1,3.720605,3.5912875,3.622425,3.6707574999999997,3.6105025,3.71056
|
173 |
+
EIF1,21.961105,21.861805,22.29355,22.45029,23.050240000000002,21.507955000000003
|
174 |
+
EIF5B,1.792688,1.78114,1.771686,1.8479379999999999,1.752468,1.7840699999999998
|
175 |
+
ELL,9.2725425,9.260028166666666,9.322511,9.357046833333333,9.316835,8.7736245
|
176 |
+
ELOA,1.269275,1.2390999999999999,1.2670299999999999,1.2757783333333335,1.1885466666666666,1.240835
|
177 |
+
ELP1,5.410299999999999,5.3836675,5.3674375,5.4990125,5.3056925,5.1784975
|
178 |
+
EMC4,2.3734533333333334,2.40328,2.38508,2.5790666666666664,2.46168,2.42158
|
179 |
+
EMG1,2.24339,2.2446366666666666,2.2400533333333335,2.3285633333333333,2.3030433333333336,2.08876
|
180 |
+
EMILIN1,11.886714226190476,12.223447023809523,12.081236261904762,12.01729611904762,12.439099428571428,12.371068869047619
|
181 |
+
EMSY,2.61483,2.5325966666666666,2.516626666666667,2.55858,2.3737333333333335,2.3341266666666667
|
182 |
+
ENOPH1,14.516516785714286,15.03433884920635,14.824368253968254,14.575763134920635,14.615666785714286,14.590135634920635
|
183 |
+
ENTPD1,21.38715,21.284683333333334,21.35023,19.459826666666665,19.362616666666668,19.42564
|
184 |
+
EOGT,6.664054999999999,6.43647,6.59056,6.43079,6.029345,6.12214
|
185 |
+
ERCC4,9.17042,8.662498,8.805173,9.653347,9.068441,8.991351
|
186 |
+
ERCC5,5.613246,5.404484,5.155512,5.751994,5.61813,5.192498
|
187 |
+
ESCO1,5.437451666666667,5.332321666666667,5.330116666666667,5.282558333333333,5.147683333333333,5.052875
|
188 |
+
ESS2,3.35052,3.42944,3.290785,3.50323,3.475465,3.511895
|
189 |
+
EVA1C,1.9628766666666666,1.9883966666666666,2.0974533333333336,2.1281266666666667,2.23851,2.04994
|
190 |
+
EXOSC1,4.1025,4.247415,4.01375,4.35618,4.204175,3.88678
|
191 |
+
EXTL2,9.0757875,8.921168333333332,8.868499166666666,8.3568625,8.1245625,8.420964166666666
|
192 |
+
EZH2,3.103928,3.1310160000000002,3.16097,3.121402,3.123424,3.15665
|
193 |
+
F2,0.45133875,0.49353625,0.4140025,0.39945625,0.41848,0.4326125
|
194 |
+
FAM50A,4.54147,4.61154,4.620335,4.7804199999999994,4.933235,4.7416149999999995
|
195 |
+
FAS,5.073272333333334,4.996454333333333,5.059911333333334,4.882932333333334,5.0331426666666665,5.163020666666666
|
196 |
+
FAS-AS1,3.127135,3.1129825,2.99558,3.0146575,3.00701,2.9870025
|
197 |
+
FAT1,9.144320496392496,8.84614557828283,9.013294377344877,8.739055615079366,8.278316555194806,8.493514835858585
|
198 |
+
FATE1,3.83129,3.87665,3.859955,4.00934,3.83841,3.82427
|
199 |
+
FAU,9.54863,9.44709,9.56662,9.5594,9.733856666666666,9.13576
|
200 |
+
FBXO3,8.068479166666666,7.933604166666666,8.064575833333333,7.33848,7.2841175,7.277321666666667
|
201 |
+
FEN1,5.613246,5.404484,5.155512,5.751994,5.61813,5.192498
|
202 |
+
FGF9,8.645136666666666,8.768143333333333,8.524586666666666,8.79651,8.969046666666667,8.774723333333334
|
203 |
+
FGFR1,3.273315,3.1502074999999996,3.1684725,3.35323,3.256855,3.1818775
|
204 |
+
FGGY,8.769498,8.877591333333333,8.695127333333334,8.720436,8.356986666666668,8.411802
|
205 |
+
FIG4,8.668708333333333,8.495451666666666,8.722021666666667,8.365635000000001,7.930725000000001,8.078861666666667
|
206 |
+
FLVCR2,5.654138333333333,5.690611666666666,5.666996666666666,5.606616666666667,5.612993333333334,5.7236183333333335
|
207 |
+
FMN1,2.5742225000000003,2.70959,2.4675374999999997,2.40644,2.4983825,2.2187075
|
208 |
+
FOXD3-AS1,6.935148666666667,6.9786850000000005,6.883486333333333,6.962807333333333,6.791309333333333,6.441482333333333
|
209 |
+
FRAXE,8.25282,7.932556666666667,7.89387,7.941686666666667,7.68355,7.9150833333333335
|
210 |
+
FXN,7.466140833333333,7.464559444444444,7.38779,7.351653333333333,7.283716666666667,7.392863611111111
|
211 |
+
GAD1,1.0423666666666667,1.0623583333333333,1.0245283333333333,1.07284,0.9704766666666668,1.047175
|
212 |
+
GAL,0.97775,1.0075533333333333,0.99397,1.02289,1.0594433333333333,0.9287566666666667
|
213 |
+
GAP43,0.360125,0.3059825,0.32612375,0.30831875,0.33996125,0.29327125
|
214 |
+
GAPT,1.334625,1.45733,1.375135,1.376395,1.42631,1.34083
|
215 |
+
GAS1,9.03326,8.978523333333333,8.910066666666667,9.415123333333334,9.611550000000001,9.7951
|
216 |
+
GATA4,5.8256625,5.644996666666667,5.585885833333333,5.832560833333334,5.6296425,5.583364166666667
|
217 |
+
GATM,2.474556666666667,2.643403333333333,2.52617,2.77711,2.6194866666666665,2.9555866666666666
|
218 |
+
GBA2,1.530575,1.433665,1.483435,1.372145,1.23021,1.2357775
|
219 |
+
GDNF,9.03326,8.978523333333333,8.910066666666667,9.415123333333334,9.611550000000001,9.7951
|
220 |
+
GFM1,4.520488128787878,4.506303446969697,4.499345803030303,4.641043560606061,4.381365734848485,4.478934848484848
|
221 |
+
GIP,7.4589566666666665,7.0103800000000005,7.00216,7.239356666666667,7.25547,7.412176666666666
|
222 |
+
GLA,22.387836492063492,22.911072222222224,22.88217892063492,25.16849438095238,24.55230412698413,25.825423158730157
|
223 |
+
GLUL,4.34558625,4.31089125,4.3033975,4.2460825,4.210215,4.34975375
|
224 |
+
GLYAT,13.202738499999999,13.0750105,12.867886,13.337822000000001,12.909607,13.050721
|
225 |
+
GLYATL1,62.06262228571428,62.630909238095235,62.39440907142857,61.082274857142856,60.99579569047619,60.38761504761905
|
226 |
+
GORAB,33.233088333333335,36.671925,36.753618333333335,37.550093333333336,32.493338333333334,33.29363333333333
|
227 |
+
GORASP2,4.672553333333333,4.653006666666667,4.632826666666666,4.766836666666666,4.5039766666666665,4.6538466666666665
|
228 |
+
GPHA2,19.683639166666666,20.515496666666667,20.317350833333332,19.886240833333332,21.091375,21.958975
|
229 |
+
GPI,33.81867510714286,33.58946264285714,33.54512928571429,32.75778170238095,32.94219197619048,31.91524939285714
|
230 |
+
GPR166P,1627.9537178733767,1651.344651141414,1628.9464768210678,1638.6763441356422,1710.4711202871572,1724.5425854051227
|
231 |
+
GRIK4,7.164490785714285,7.149552357142857,7.047931428571428,7.257597714285715,7.207346357142857,7.345159642857143
|
232 |
+
GRIP1,12.809795,12.613825,12.64948,12.55991,12.178515,12.56085
|
233 |
+
GTF2B,2.358065,2.258185,2.3102549999999997,2.3618550000000003,2.2780933333333335,2.2650116666666666
|
234 |
+
GTF2H5,4.5139543333333325,4.501428333333333,4.384156249999999,4.63101775,4.62703575,4.521142333333334
|
235 |
+
GTF2IRD1,19.332899,19.157139,18.915709,18.824224,18.750397,19.488128
|
236 |
+
GTF3C1,5.834976666666667,5.704978333333333,5.708633333333333,5.880095,5.582498333333334,5.675488333333334
|
237 |
+
GYPC,5.7988875,5.835235,5.715925833333333,5.665094166666667,5.542399166666667,5.405631666666666
|
238 |
+
H3P44,0.61136,0.6004128571428572,0.6103542857142857,0.6423728571428572,0.6221057142857143,0.6237371428571429
|
239 |
+
H3P7,1.2900566666666666,1.4382433333333333,1.3406200000000001,1.3030066666666666,1.3596033333333333,1.4056833333333334
|
240 |
+
HACD1,10.0542275,9.7862925,10.288147500000001,10.3358,10.32794,9.92172
|
241 |
+
HADH,9.645847603174603,9.953835761904761,9.950381587301587,9.870726142857142,10.085136746031745,9.866318238095237
|
242 |
+
HAP1,5.707661666666667,5.516181666666666,5.509225833333334,5.3628175,4.994918333333333,5.30271
|
243 |
+
HAT1,3.864673333333333,3.7336566666666666,3.7516833333333333,3.7831599999999996,3.93309,3.83723
|
244 |
+
HAVCR1,6.9261525,7.296687500000001,7.431587,7.020112,6.979807,6.665656
|
245 |
+
HBP1,6.0397108333333325,6.051645833333334,6.012875,5.973278333333333,5.886945833333334,6.141965833333334
|
246 |
+
HCST,1.78904,1.93773,1.85319,1.902655,2.116915,1.874915
|
247 |
+
HEBP2,5.0679,5.0413499999999996,5.30798,4.86428,4.5022400000000005,4.25089
|
248 |
+
HEPH,3.79311,3.71359,3.76652,3.77862,3.640965,3.515305
|
249 |
+
HEXIM2,8.631780000000001,8.56701,8.853255,8.69664,9.154555,8.741525
|
250 |
+
HIRA,1.0738483333333333,1.0540866666666666,1.058745,1.0410066666666666,0.9875183333333334,1.0154116666666666
|
251 |
+
HJURP,1.1948983333333334,1.1696883333333334,1.19088,1.2206683333333335,1.18821,1.2246249999999999
|
252 |
+
HLA-C,39.3533225,39.19389698412699,38.83099861111111,37.05332305555555,38.40573496031746,38.08780063492063
|
253 |
+
HLTF,0.728494,0.719372,0.735759,0.726059,0.714213,0.688763
|
254 |
+
HMGA2,13.39758,13.03886,13.108835000000001,14.310495,13.167965,13.161710000000001
|
255 |
+
HRH4,2.969745,2.93248,2.92578,2.952075,2.888215,2.7128
|
256 |
+
HTT,7.457085,7.530855,7.554007499999999,7.5603425,7.6147225,6.9417349999999995
|
257 |
+
HUWE1,1.2043325,1.168575,1.1662,1.2785175,1.2480875,1.002905
|
258 |
+
IFI30,3.81398,3.77863,3.77931,3.62262,3.7318,3.198555
|
259 |
+
IGKJ1,4.892053333333333,4.839713333333333,4.899523333333333,4.896973333333333,4.865966666666667,4.951656666666667
|
260 |
+
IGKV1-12,4.31552,4.1598939999999995,4.163409,4.300008,4.172273000000001,4.116943
|
261 |
+
IGKV1-13,2.2671733333333335,2.12177,2.184136666666667,2.3514466666666665,2.40483,2.1622866666666667
|
262 |
+
IGKV1-5,14.522488708333334,14.243060125,14.155815541666666,14.707277333333334,14.586934875,14.40037575
|
263 |
+
IGKV1-8,2.08588,2.09912,2.0895233333333336,2.0528033333333333,2.0459533333333333,2.0935366666666666
|
264 |
+
IGKV1D-17,4.789495,4.820655,4.809975,4.93681,4.88956,4.750415
|
265 |
+
IGKV1D-42,15.916203333333334,16.34795666666667,16.380543333333332,16.119226666666666,16.270613333333333,15.796869999999998
|
266 |
+
IGKV1D-43,24.040334666666666,24.626690666666665,25.373318666666666,26.008790666666666,25.456144,25.112891333333334
|
267 |
+
IGKV2D-10,2.864895,2.90913,2.85208,2.93236,2.99471,2.73486
|
268 |
+
IGKV2D-14,19.388743333333334,19.944946666666667,20.028958333333332,20.07217166666667,20.154668333333333,19.723695
|
269 |
+
IGKV2D-26,5.280675,5.359095,5.408885,5.36949,5.215115,5.204105
|
270 |
+
IGKV2D-29,2.8587341666666664,2.6769625,2.8571408333333332,2.9057108333333335,2.6879741666666668,3.372558333333333
|
271 |
+
IGKV2D-30,43.46226291666667,43.42422125,43.13488541666667,43.3376475,45.012422916666665,44.0818925
|
272 |
+
IGKV3-7,9.577023333333333,9.572698333333333,9.819663333333335,10.02455,9.7984225,9.671356666666666
|
273 |
+
IGKV3D-11,2.64948,2.458295,2.773415,2.90553,2.803475,2.47578
|
274 |
+
IGKV3D-15,11.596264999999999,11.645230000000002,11.69458,12.027280000000001,12.30232,11.66807
|
275 |
+
IGKV3D-7,24.040334666666666,24.626690666666665,25.373318666666666,26.008790666666666,25.456144,25.112891333333334
|
276 |
+
IGKV4-1,3.1954465,3.240804,3.2127265,3.145728,3.0920115,3.0774915
|
277 |
+
IKBKE,8.097175,8.058415,7.93192,8.261095000000001,7.94742,8.101595
|
278 |
+
IKBKG,5.7408165,5.76657,5.615023166666667,5.921173,5.5186505,5.602330833333333
|
279 |
+
IL6,6.559555,6.681494166666667,6.633868333333334,6.8519008333333336,6.682841666666667,6.559343333333333
|
280 |
+
INCENP,1.0902516666666666,1.0523216666666666,1.0200066666666667,1.0206883333333334,1.055485,0.9602133333333334
|
281 |
+
INMT,2.2281050000000002,2.1737675000000003,2.2412625,2.2060875,2.25312,2.15974
|
282 |
+
IRAG1,4.243875,4.23175,4.601095,4.04029,4.440265,4.1623149999999995
|
283 |
+
ITGB3BP,1.56039,1.534275,1.629145,1.533985,1.71769,1.319765
|
284 |
+
ITGBL1,3.41922,3.318673333333333,3.3192199999999996,3.5107066666666666,3.60538,3.4384966666666665
|
285 |
+
ITPR3,4.507681666666667,4.438657976190476,4.527731309523809,4.270274880952381,4.090081071428571,4.400652738095238
|
286 |
+
ITSN2,11.2163915,11.124747166666666,11.047173,11.174959666666666,10.9492785,11.092737333333334
|
287 |
+
JPT2,27.025072972222222,27.288567706349205,27.013927702380954,27.242074190476192,27.130958805555554,26.450459837301587
|
288 |
+
KAT2B,2.4053666666666667,2.318675,2.3974116666666667,2.2697933333333333,2.126733333333333,2.1800966666666666
|
289 |
+
KAT6A,9.137174916666666,9.11115425,9.208116333333333,9.237034583333333,8.9326075,8.857035333333332
|
290 |
+
KCNH6,3.236705,3.25512,3.21416,3.342545,3.21395,3.08117
|
291 |
+
KCNMB2,0.7549675,0.788715,0.785635,0.7915625,0.8507475,0.939755
|
292 |
+
KNCN,21.583458333333333,22.43543,21.757481666666664,22.904556666666664,22.833925,22.070096666666664
|
293 |
+
KNG1,10.7291775,11.160409166666668,11.2894425,10.848825,11.617148333333333,11.848855833333333
|
294 |
+
KNTC1,1.2002000000000002,1.176682,1.097168,1.161316,1.162102,1.037536
|
295 |
+
KRAS,0.897205,0.90643,0.7822399999999999,1.048705,1.0272566666666667,0.9778116666666666
|
296 |
+
KRR1,2.63791,2.624595,2.735965,2.6929,2.706535,2.63628
|
297 |
+
KRTCAP2,4.123695,4.18796,4.186195,4.22498,4.21912,4.13304
|
298 |
+
KTI12,13.955872,14.086789,13.93528375,14.197978749999999,14.05553125,14.08293325
|
299 |
+
LDB1,25.238325333333332,25.479873333333334,24.853024333333334,25.510576,25.205041333333334,25.344688333333334
|
300 |
+
LDLR,15.88989846825397,15.84164246825397,15.872050476190477,15.089349174603175,15.038251865079365,16.039949928571428
|
301 |
+
LEMD3,4.029343333333333,4.171973333333334,4.11503,3.91887,3.702186666666667,4.060723333333334
|
302 |
+
LHX2,17.52040778594771,17.227427357843137,17.289056068627453,17.432174130718955,17.26191272385621,17.126615565359476
|
303 |
+
LIAS,4.7547075,4.7032375,4.72403,4.8163,4.796535,4.8704425
|
304 |
+
LILRB4,3.1954465,3.240804,3.2127265,3.145728,3.0920115,3.0774915
|
305 |
+
LIN9,5.545900714285715,5.569348333333334,5.476408571428571,5.761308809523809,5.605822619047619,5.49412619047619
|
306 |
+
LMNA,2.63819,2.685225,2.65344,2.57651,2.579005,2.43256
|
307 |
+
LOC107228318,2.59185,2.628825,2.58665,2.639725,2.62745,2.566775
|
308 |
+
LOC107228383,4.269455,4.50639,4.41134,4.7763,4.708575,4.52283
|
309 |
+
LOC108281177,2.94734,2.727485,2.919765,2.946265,2.95398,2.77487
|
310 |
+
LOC124904439,5.492723333333334,5.74474,5.456706666666666,5.740963333333333,5.808596666666666,5.719593333333333
|
311 |
+
LOC124908102,17.77068166666667,17.80758833333333,18.034945,18.545371666666668,18.218761666666666,18.331015
|
312 |
+
LRPAP1,8.620001166666666,8.7343575,8.611241333333332,8.714819833333333,8.420456833333333,8.132842333333333
|
313 |
+
LSR,11.474605,10.737200000000001,11.022525,11.378449999999999,11.50716,11.31571
|
314 |
+
LUC7L3,3.3182582857142857,3.190127714285714,3.236122285714286,3.248931142857143,3.170064857142857,3.2475
|
315 |
+
MADD,20.91421411111111,20.407199916666666,21.023329027777777,19.485408111111113,19.156394527777778,19.692931277777777
|
316 |
+
MAEA,55.0808705,55.9257025,55.41259266666667,56.3236085,58.387684666666665,57.57074016666667
|
317 |
+
MAP1B,4.29254,4.24126,4.35412,4.09688,4.19817,3.75951
|
318 |
+
MAP2,0.9747166666666667,1.0003516666666668,0.9844216666666666,0.9934383333333333,0.9758733333333334,0.9638049999999999
|
319 |
+
MAP6,2.5999166666666667,2.5706166666666665,2.7429499999999996,2.95998,2.84839,2.6506499999999997
|
320 |
+
MAP7,9.23961,9.264115,9.236515,9.169585,8.675285,9.124985
|
321 |
+
MAPK8,8.37753,8.239763,8.4394805,8.032651166666666,7.716260166666666,7.691131
|
322 |
+
MARCHF8,14.18013755952381,13.96751244047619,14.237857976190476,14.13865505952381,13.9676375,13.528090178571428
|
323 |
+
MARCKS,4.458453333333333,4.415836666666666,4.4847399999999995,4.681896666666667,4.519196666666667,4.91076
|
324 |
+
MARCKSL1,2.841863333333333,2.8052266666666665,2.78735,2.68919,2.6350666666666664,2.6729299999999996
|
325 |
+
MARVELD2,5.050599999999999,4.850795,4.919425,4.93579,4.647475,4.3323599999999995
|
326 |
+
MAS1L,15.32399,15.57602,15.275545,15.935025,15.520715,15.616295000000001
|
327 |
+
MATN1,12.987074166666666,13.073565833333333,12.783923333333334,12.550867499999999,12.649482500000001,12.5987975
|
328 |
+
MCM3AP,8.668708333333333,8.495451666666666,8.722021666666667,8.365635000000001,7.930725000000001,8.078861666666667
|
329 |
+
MDM2,11.44912,11.231658333333334,11.166628333333334,11.165523333333333,10.838511666666667,10.869730833333334
|
330 |
+
MED10,30.08075,30.139931,30.851049,30.068896000000002,30.272442,28.151932000000002
|
331 |
+
MEF2A,3.37585,3.372815,3.20161,3.26189,3.08493,3.1637
|
332 |
+
METTL9,2.43799,2.52869,2.579375,2.566875,2.565125,2.5522125
|
333 |
+
MFAP1,15.002600000000001,14.990841666666668,15.08477,15.779268333333333,14.960963333333332,15.314226666666666
|
334 |
+
MICOS10-NBL1,13.2882075,14.20289,13.300875833333333,12.8610875,13.3450325,13.50622
|
335 |
+
MKI67,1.8752775,1.8253525,1.880955,1.9300325,1.96139,1.813915
|
336 |
+
MMEL1,6.1424825,6.0763025,6.087865,5.9872125,5.9022025000000005,5.684085
|
337 |
+
MMS19,3.6358673333333336,3.533676,3.5586026666666664,3.6305826666666667,3.3126759999999997,3.589622
|
338 |
+
MOBP,4.59911,4.96386,4.6230400000000005,5.35713,5.960745,7.2540249999999995
|
339 |
+
MPG,1.7405433333333333,1.7880333333333331,1.7330833333333333,1.93061,1.8620566666666667,1.8769633333333333
|
340 |
+
MRGBP,2.672265,2.69328,2.786915,3.06692,2.835185,2.76556
|
341 |
+
MRLN,18.573435,18.314051666666668,18.6218,17.900258333333333,17.734291666666667,17.988925
|
342 |
+
MSC-AS1,3.14149,3.12385,3.01986,3.04161,2.898535,2.88231
|
343 |
+
MTCP1,7.202313333333333,6.922503333333333,7.370866666666666,6.854655833333334,7.549553333333333,7.2701641666666665
|
344 |
+
MTG1,58.911272613553116,59.168592161172164,58.98433543040293,59.04269446428572,57.8917105540293,59.16501439377289
|
345 |
+
MTSS1,8.236482714285714,8.168719142857142,8.113486,8.463108761904762,8.552150857142857,8.825751428571428
|
346 |
+
MXD1,16.287926666666667,16.262971166666667,16.225467666666667,16.298256333333335,15.847063833333333,16.027201
|
347 |
+
MYCBP2,5.6378683333333335,5.697533333333333,5.614464999999999,5.672183333333333,5.49569,5.502943333333333
|
348 |
+
MYRF,3.0577633333333334,2.9253733333333334,2.7705366666666666,3.24191,3.4842866666666668,2.860636666666667
|
349 |
+
NAPSA,4.111587803030303,3.896986893939394,4.144580227272727,4.170365075757576,4.032096439393939,4.161862651515151
|
350 |
+
NBEAL2,19.564217127578303,19.2446499714795,19.33175027858416,18.52026525445633,18.6985937610135,19.270498716513877
|
351 |
+
NDE1,4.810456666666667,4.85379,4.944533333333333,4.820416666666667,4.65413,4.587843333333334
|
352 |
+
NDOR1,0.8482255555555556,0.8692566666666666,0.8471466666666667,0.9089377777777777,0.9647266666666667,1.15207
|
353 |
+
NDUFA13,3.656065,3.63295,3.74953,3.907105,4.026635,3.70395
|
354 |
+
NDUFA6,2.27142,2.3818966666666666,2.36895,2.4120333333333335,2.2952233333333334,2.3527299999999998
|
355 |
+
NDUFB11,3.3632233333333335,3.4070633333333333,3.0516133333333335,3.20991,3.2457433333333334,3.4034966666666664
|
356 |
+
NDUFB5,1.4381425,1.4904175,1.499995,1.522525,1.57401,1.5002425
|
357 |
+
NDUFB8,1.7523433333333334,1.6693833333333332,1.8649333333333333,1.8802199999999998,1.81006,1.6921566666666665
|
358 |
+
NEDD4,4.896323333333333,4.851356666666666,4.998086666666667,5.065033333333334,5.08542,4.951323333333333
|
359 |
+
NELFCD,3.07988,3.083405,3.048635,3.172185,3.138275,3.113075
|
360 |
+
NEO1,1.415055,1.4037300000000001,1.4044616666666665,1.388755,1.2516216666666666,1.37599
|
361 |
+
NGFR,28.499653333333335,28.312735833333335,28.78851166666667,29.203465833333333,28.991295833333332,30.042790833333335
|
362 |
+
NHEJ1,2.063855,2.19837,1.76153,2.05345,1.84933,1.87268
|
363 |
+
NHERF1,2.951008,2.9057880000000003,2.893758,3.013578,2.967982,2.88159
|
364 |
+
NLE1,2.968525,2.8316575,2.960925,2.9966675,2.82634,2.7058850000000003
|
365 |
+
NLRP1,12.80871,12.689795,12.924380000000001,12.82027,12.82876,12.753060000000001
|
366 |
+
NMD3,4.813915,4.90968,5.04955,4.8353850000000005,4.968995,4.6819299999999995
|
367 |
+
NNMT,2.2281050000000002,2.1737675000000003,2.2412625,2.2060875,2.25312,2.15974
|
368 |
+
NOB1,3.574455,3.62367,3.556795,3.670315,3.60377,3.437745
|
369 |
+
NOG,0.899764,0.9099809999999999,0.8981709999999999,0.885266,0.8446149999999999,0.84329
|
370 |
+
NOLC1,2.458276666666667,2.4569366666666665,2.4327633333333334,2.4907966666666668,2.4059633333333332,2.3903133333333333
|
371 |
+
NOP58,2.96326,2.9104333333333336,2.8361650000000003,3.0891666666666664,2.9822316666666664,2.9541983333333333
|
372 |
+
NPB,2.5793575,2.5828025,2.5373,2.6760525,2.61759,2.454705
|
373 |
+
NPLOC4,2.391105,2.364035,2.36617,2.3955175,2.3562175,2.3471175
|
374 |
+
NR1I2,164.20789062617936,162.97124192704518,163.64807976409702,165.8377998654401,163.81420587978687,163.11264691000665
|
375 |
+
NSA2,13.315415,14.06198,14.01707,14.15863,13.91002,13.61492
|
376 |
+
NSUN5,16.378608,16.428922,16.1989405,17.089664,16.199856,15.867829
|
377 |
+
NT5C2,17.748542261904763,17.86553941017316,17.811037873376623,18.307123944805195,17.850830357142858,17.801260313852815
|
378 |
+
NTPCR,2.24061,2.31421,2.36571,2.3258,2.41856,2.286585
|
379 |
+
NUMB,2.910875,3.0779225,2.9740650000000004,3.0752125,2.720685,2.9697649999999998
|
380 |
+
OA3,16.729233333333333,17.51571,16.958576666666666,17.104626666666668,18.304706666666668,18.388286666666666
|
381 |
+
OSR1,5.654138333333333,5.690611666666666,5.666996666666666,5.606616666666667,5.612993333333334,5.7236183333333335
|
382 |
+
OXA1L,5.283623333333333,5.412166666666667,5.381873333333333,5.5061333333333335,5.51875,5.359616666666668
|
383 |
+
P4HB,2.820284,2.7539816666666663,2.74891,2.7718499999999997,2.6009453333333337,2.765357
|
384 |
+
PCBP4,5.811044833333334,5.7275715,5.7347323333333335,5.765602666666666,5.7901295,5.8290500000000005
|
385 |
+
PCNA,1.2544342857142858,1.2382528571428573,1.2415942857142857,1.286132857142857,1.311977142857143,1.2389057142857143
|
386 |
+
PCNT,3.014445,3.0854753333333336,3.0538835,2.8478951666666665,2.9472495,2.9543045
|
387 |
+
PCSK9,9.452560035714285,9.480050357142858,9.468317214285713,9.411018464285714,9.37929267857143,9.513635142857142
|
388 |
+
PDCD6IP,2.9979175,2.94408,2.77732,2.7838925000000003,2.7362175,2.632175
|
389 |
+
PDGFB,3.0625825,3.0697875,2.9109075,2.7097625,2.8738775,2.7238425
|
390 |
+
PDSS1,29.887604999999997,30.25614,30.52775,29.826729999999998,31.14312,31.70706
|
391 |
+
PDXP,6.6715599999999995,6.59052,6.62806,5.786105,5.654065,5.800975
|
392 |
+
PEBP1,11.530975,11.482895,11.063435,12.874514999999999,12.435315,12.800045
|
393 |
+
PGPEP1,9.87578,10.09679,9.908795,10.164845,10.476379999999999,10.724355
|
394 |
+
PHACTR1,15.106467,14.682768000000001,14.972615000000001,13.556518,14.593281000000001,14.473481
|
395 |
+
PHF5A,3.641805,3.63625,3.513765,3.707255,3.683765,3.14256
|
396 |
+
PHGDH,0.9395416666666666,0.93079,0.906075,0.9577183333333333,0.9291466666666667,0.9355950000000001
|
397 |
+
PIEZO1,18.383265,18.37348,18.059305,18.800145,18.8959,17.847355
|
398 |
+
PIF1,1.057005,1.0699575,1.00974,1.10035,1.0760375,1.0757475
|
399 |
+
PIGA,1.03449,1.0844475,1.0293325,0.900185,1.02779,1.04479
|
400 |
+
PIGP,2.88098,2.848875,2.858105,2.941135,2.942735,2.709995
|
401 |
+
PIGU,2.5098533333333335,2.5025333333333335,2.562656666666667,2.7045366666666664,2.73458,2.603006666666667
|
402 |
+
PIGW,2.27924,2.336185,2.44167,2.165485,2.501395,2.604625
|
403 |
+
PIGX,1.6155933333333332,1.5542966666666667,1.5520333333333334,1.6402400000000001,1.6229933333333333,1.5233466666666666
|
404 |
+
PIK3CG,5.358940357142857,5.184888321428572,5.266673309523809,5.215530880952381,5.283484476190476,5.270672642857143
|
405 |
+
PKD1,25.68656290499533,26.169060095938374,26.113221271008403,25.917830035480858,26.449167092903828,26.209801553454714
|
406 |
+
PKD2,25.68656290499533,26.169060095938374,26.113221271008403,25.917830035480858,26.449167092903828,26.209801553454714
|
407 |
+
PLAA,1.0690328571428571,1.0257757142857142,1.0418785714285714,1.0707771428571429,1.0348428571428572,1.0262514285714286
|
408 |
+
PLAC8,5.095065,5.339475,5.2198,4.900295,4.88218,5.2206
|
409 |
+
PLP1,9.479513333333333,9.704198333333334,9.610306666666666,9.163681666666667,8.994416666666666,9.27338
|
410 |
+
PLVAP,1.570005,1.55828,1.420195,1.593345,1.502365,1.647885
|
411 |
+
PMP22,11.23025,10.9892675,10.878455,10.5898275,10.6349675,10.207809999999998
|
412 |
+
PNMA3,27.30953166666667,27.462866666666667,26.880203333333334,27.21339,26.065964166666667,25.899116666666664
|
413 |
+
PNMT,2.2281050000000002,2.1737675000000003,2.2412625,2.2060875,2.25312,2.15974
|
414 |
+
POLR1G,1.9342499999999998,1.9279533333333332,1.7469000000000001,1.8744033333333334,1.8300966666666667,1.6257833333333334
|
415 |
+
POLR2F,3.900575,3.828115,3.90424,4.24093,4.09974,4.158795
|
416 |
+
POLR3K,1.4624739999999998,1.472974,1.40638,1.442446,1.431368,1.3897220000000001
|
417 |
+
POMC,0.612752,0.53478,0.548844,0.582334,0.608108,0.69889
|
418 |
+
POMP,3.609605,3.489515,3.700985,3.70691,3.782475,3.56165
|
419 |
+
POP1,1.178682,1.120762,0.952208,1.285294,1.15202,1.16472
|
420 |
+
POT1,3.141185,3.209405,3.09374,3.39908,3.133725,3.2506
|
421 |
+
POTEM,2.124035,2.157175,2.2303425,2.2238175,2.3558725,2.304635
|
422 |
+
PPP1R2,4.924555,5.269845,5.31963,5.032265000000001,5.17451,6.192285
|
423 |
+
PPY,2.5969885714285716,2.71671,2.6509314285714285,2.8495042857142856,2.7785642857142854,2.6972914285714285
|
424 |
+
PRB4,0.7485820000000001,0.75646,0.722584,0.73802,0.809938,0.76359
|
425 |
+
PRC1,3.4213299999999998,3.427776666666667,3.2959699999999996,3.351,3.537436666666667,3.288943333333333
|
426 |
+
PRCC,2.2872333333333335,2.314626666666667,2.2985266666666666,2.24361,2.2754333333333334,2.41939
|
427 |
+
PRELID1,6.0151055555555555,6.025668888888889,5.971708888888889,5.922997777777777,6.307235555555556,6.2038866666666665
|
428 |
+
PRKD1,12.46553320261438,12.327700274509805,12.944475235294117,12.531144130718953,12.930090640522875,12.931099732026144
|
429 |
+
PRM2,2.715865,2.803865,2.875175,2.762875,3.112235,2.921835
|
430 |
+
PRMT5,7.310456376984127,7.269327087301587,7.184312869047619,7.466445333333334,7.098264138888889,7.014346623015873
|
431 |
+
PRNT,2.161605,2.16616,2.066885,2.23247,2.15819,2.157885
|
432 |
+
PRPF4,3.6928608333333335,3.8788591666666665,3.6453691666666663,3.974244166666667,3.635506666666666,3.8064391666666664
|
433 |
+
PRPF8,0.5254949999999999,0.5219383333333334,0.5250194444444445,0.49715000000000004,0.4808983333333333,0.4910916666666667
|
434 |
+
PRRC2A,10.429093333333334,10.284236666666667,10.307063333333334,9.722986666666666,9.429293333333334,9.617763333333334
|
435 |
+
PRSS27,20.62311875,20.732979583333332,20.778225694444444,20.96664375,20.719297083333334,20.339385416666666
|
436 |
+
PSEN1,85.60995184280996,86.17645445752858,85.95209669853757,85.3390799197053,85.0896400231019,84.87700551913365
|
437 |
+
PSIP1,3.571085,3.5626875,3.5353450000000004,3.5471975000000002,3.4392075,3.2398249999999997
|
438 |
+
PSMD1,162.8940444025974,166.70694777453102,163.4745359491342,165.48155056168832,169.72999429329005,168.15098952705628
|
439 |
+
PSMD6,21.388021666666667,21.611296250000002,21.528678333333332,21.98209,21.570672916666666,21.04688541666667
|
440 |
+
PSME3IP1,2.1069325,2.0515775,2.1027375,2.0614225,2.06576,2.0124525
|
441 |
+
PSMF1,3.7864924999999996,3.7087108333333334,3.7119541666666667,3.8207758333333333,3.6782483333333333,3.6856333333333335
|
442 |
+
PTBP1,28.385073000000002,28.383469,28.713037333333332,27.954769333333335,27.724154666666667,28.365571
|
443 |
+
PTH2,4.041475,3.88292,3.916475,4.19562,3.80223,3.82581
|
444 |
+
PTK6,3.9347851767676767,3.8867602344877343,3.9291651911976913,3.7888307106782104,3.6249536904761905,3.739141782106782
|
445 |
+
PTPA,3.335465,3.23849,3.1987,3.441945,3.29845,3.354885
|
446 |
+
PTPRN,3.9513299999999996,4.24453,4.10093,3.47966,3.24891,3.5099166666666664
|
447 |
+
PXMP4,18.320845000000002,18.466775000000002,18.39606,18.769405,18.960175,17.98496
|
448 |
+
PYCARD,20.754321666666666,20.523854999999998,20.812356666666666,20.410025,20.120964166666667,20.110299166666664
|
449 |
+
QRFP,1.3917766666666667,1.4161033333333333,1.4171366666666667,1.4483466666666667,1.2772066666666666,1.6054933333333334
|
450 |
+
RABAC1,11.72965,11.840219999999999,11.862314999999999,12.0046,12.15621,11.77733
|
451 |
+
RASGRF1,30.44095275,30.374312166666666,29.993140662698412,30.07444521031746,29.70048915079365,30.267813988095238
|
452 |
+
RBBP4,6.916812,6.951058,6.8720445,6.9506995,6.955666,6.946842999999999
|
453 |
+
RCC1,32.94467922619047,32.57634307142857,31.98285807142857,32.39492675,31.272811023809524,30.492219083333335
|
454 |
+
REEP5,11.4945375,11.4397,11.4087575,11.1162,11.102535,11.1645725
|
455 |
+
REG1A,7.416367619047619,7.469547142857143,7.2612628571428575,7.338691428571429,7.4128066666666665,7.551481904761904
|
456 |
+
RELT,4.214416666666667,4.3816412499999995,4.283195,4.172845,4.068920833333333,3.838492083333333
|
457 |
+
RFC1,1.0220242857142856,0.9873571428571429,0.9518942857142857,0.9775128571428572,0.9350371428571428,0.9079342857142858
|
458 |
+
RFT1,2.78518,2.92077,2.88544,3.013085,2.989405,2.95766
|
459 |
+
RFX1,3.009432,3.0100659999999997,2.937954,3.0777460000000003,2.94544,2.89568
|
460 |
+
RGS6,20.1295415,19.730882166666667,19.818423833333334,19.3372475,18.846939666666668,18.820300666666668
|
461 |
+
RHO,6.739491666666667,6.581625833333334,6.684891666666667,6.736684166666667,7.064386666666667,6.9695599999999995
|
462 |
+
RIDA,3.933135,3.969925,3.50049,3.28385,3.332675,3.13838
|
463 |
+
RIGI,1.8582944444444442,1.824368,1.7755165555555554,1.477748,1.4468072222222224,1.434166888888889
|
464 |
+
RINT1,1.9158566666666665,1.9158,1.9287666666666665,2.08576,1.7894033333333335,1.9479866666666668
|
465 |
+
RIOK2,1.2230842857142858,1.2551314285714286,1.2421257142857143,1.3162857142857143,1.2854242857142857,1.2001314285714284
|
466 |
+
RLN2,4.252048,4.1527519999999996,4.082792,4.151716,4.249262,3.751519
|
467 |
+
RMND5A,3.3182582857142857,3.190127714285714,3.236122285714286,3.248931142857143,3.170064857142857,3.2475
|
468 |
+
RNF135,10.271048333333333,10.274658333333335,10.465776666666667,10.499673333333334,10.739345,9.940665000000001
|
469 |
+
RNF20,1.5149266666666668,1.5271233333333332,1.3823266666666667,1.5321300000000002,1.6476033333333333,1.5176066666666665
|
470 |
+
RNU1-1,2.236995,2.177335,2.19811,2.1594725,2.05101,2.0786825
|
471 |
+
RPL27,11.672808313131313,11.604639138888889,11.60859338888889,12.01566262121212,12.266354474747475,11.830405424242425
|
472 |
+
RPL28,4.788493333333333,4.897725,4.741405,4.772438333333334,5.035548333333333,4.8974899999999995
|
473 |
+
RPL29,12.061875,12.286415,13.31207,13.484705000000002,13.512975,12.62318
|
474 |
+
RPL34,3.576965,3.482525,3.475805,3.69501,3.588195,3.474295
|
475 |
+
RPL35,3.355015,3.43808,3.44858,3.542655,3.667175,3.28286
|
476 |
+
RPL35A,2.61962,2.74184,3.091635,2.759255,3.2071,3.02956
|
477 |
+
RPL36,4.07898,4.12575,4.25001,4.397905,4.075575,4.376025
|
478 |
+
RPL37,7.673585,7.680475,7.900313333333333,7.923363333333334,7.975161666666667,7.312188333333333
|
479 |
+
RPL41,35.48903833333333,35.746335,35.53919166666667,36.92210166666666,37.046685,36.00539166666667
|
480 |
+
RPLP0,9.577023333333333,9.572698333333333,9.819663333333335,10.02455,9.7984225,9.671356666666666
|
481 |
+
RPS11,7.0410200000000005,6.9117999999999995,7.199315,7.154515,7.1040399999999995,7.340695
|
482 |
+
RPS12,8.128820000000001,8.262573333333334,7.940796666666666,8.131446666666665,8.21401,8.132476666666667
|
483 |
+
RPS13,12.555459,13.225608000000001,14.265481000000001,12.793495,13.057403,12.475532000000001
|
484 |
+
RPS15,7.825260666666667,8.296303,8.695832666666666,8.009216666666665,8.615151333333333,7.656188666666667
|
485 |
+
RPS16,11.509076794871795,11.4159497008547,11.635525085470086,11.228621196581196,11.376772307692308,10.547807222222222
|
486 |
+
RPS17,8.53239,8.69276,8.491615,9.06174,8.85473,9.303995
|
487 |
+
RPS18,10.564185,10.164825,10.47439,10.251505,10.39041,9.760515
|
488 |
+
RPS19,2.4796666666666667,2.4296699999999998,2.5637666666666665,2.6492566666666666,3.0836033333333335,2.6588366666666667
|
489 |
+
RPS2,8.17094,8.25578,8.132375,8.48764,8.12727,8.230855
|
490 |
+
RPS21,2.826065,2.898675,2.906455,3.041435,3.19751,2.974225
|
491 |
+
RPS23,12.34248,12.508846666666667,12.288923333333333,12.47229,12.454556666666667,12.398313333333334
|
492 |
+
RPS24,7.184338333333333,7.430350833333334,7.337754166666667,7.108646666666667,7.454815,6.966503333333334
|
493 |
+
RPS25,5.829881666666667,6.0111799999999995,6.276565,6.071728333333334,6.484778333333334,5.960428333333334
|
494 |
+
RPS26,1.013895,1.0313533333333333,1.0469883333333334,1.0446133333333334,1.0433816666666667,0.9015399999999999
|
495 |
+
RPS27,10.171093333333333,9.913658333333334,9.7574,10.665071666666666,10.181026666666668,9.826255
|
496 |
+
RPS28,8.554325833333333,8.4393825,8.676866666666667,8.52579,8.497568333333334,7.7436825
|
497 |
+
RPS29,2.0688333333333335,2.052093333333333,2.1159066666666666,2.09268,1.9823133333333331,2.0066433333333333
|
498 |
+
RPS4Y1,7.770788333333334,7.653033333333333,7.972909166666667,8.149324166666666,7.768588333333334,7.727849583333334
|
499 |
+
RPS5,16.906572,17.039122,17.1922,17.75927,17.670856,17.233006
|
500 |
+
RPS6,140.08400295021644,143.86510984595958,140.88714113961038,141.7364170378788,146.45418062662338,145.6949384556277
|
501 |
+
RPS7,12.58965,12.78568,12.709925,12.761470000000001,12.667901666666667,12.507051666666666
|
502 |
+
RPS8,19.1541415,18.271775833333333,18.429327833333332,18.3498885,17.314497833333334,17.684769333333335
|
503 |
+
RPS9,41.207433,41.24197708333333,40.96879391666667,42.58235466666667,41.78503741666667,40.30691158333333
|
504 |
+
RRM2,4.002785,4.007755,3.98906,4.344465,4.10775,4.26552
|
505 |
+
RRN3,4.02188,4.012385,4.032425,4.08146,4.0849,3.949205
|
506 |
+
RSAD2,15.836018333333334,15.597880833333333,15.445697666666666,15.520874,14.756187,15.8188895
|
507 |
+
RSL24D1,8.7924325,9.261865,9.56136,9.5709975,9.59615,9.1518575
|
508 |
+
RTEL1,12.640311380952381,12.728314523809525,12.636050174603174,12.87646819047619,12.628165047619047,12.833922000000001
|
509 |
+
RUVBL1,4.342662619047619,4.35804261904762,4.296090952380952,4.493615952380953,4.319688571428571,4.265996666666666
|
510 |
+
S100A9,3.487766666666667,3.504106,3.5726579999999997,3.698004,3.8024953333333333,3.372603333333333
|
511 |
+
S100B,48.8343075,49.7423,50.761375,51.37636,53.31913,51.533625
|
512 |
+
SARAF,3.7445266666666663,3.7996533333333335,4.062883333333334,3.6193600000000004,3.5596,3.6547799999999997
|
513 |
+
SBDS,1.544918,1.55729,1.5676539999999999,1.5935380000000001,1.613972,1.55161
|
514 |
+
SCAMP1,19.842802499999998,20.1051275,19.83419,20.2969975,19.885092500000003,19.8148625
|
515 |
+
SCGB1D4,11.648759666666667,11.718760571428572,11.71721780952381,11.72262280952381,11.614275809523809,11.306170999999999
|
516 |
+
SCO1,2.528242380952381,2.440134761904762,2.5012038095238096,2.5797395238095238,2.5308914285714286,2.6077709523809522
|
517 |
+
SCP2,7.528149285714286,7.697582142857143,7.85885,7.283837857142857,8.032666428571428,7.7726307142857145
|
518 |
+
SCYL1,5.795315,5.821035,5.742195,6.259455,6.092585,6.166215
|
519 |
+
SDAD1,1.403618,1.393956,1.359154,1.345488,1.2707000000000002,1.23803
|
520 |
+
SEA,17.770712190836942,17.841207634559883,17.888258080808082,17.372981190836942,18.0816610508658,18.609331795815297
|
521 |
+
SEC14L2,2.114035714285714,2.0973757142857146,2.0821014285714283,2.148705714285714,2.176577142857143,2.2211185714285713
|
522 |
+
SEM1,2.74471,2.83268,2.8747566666666664,2.9555900000000004,3.009183333333333,2.844246666666667
|
523 |
+
SEMA4D,43.016244666666665,42.45800144047619,42.39249480952381,40.407398095238094,40.411316880952384,41.01194838095238
|
524 |
+
SEPTIN4,15.317665773809523,15.309940059523809,15.472316904761906,16.802262678571427,16.729950833333334,16.876750476190477
|
525 |
+
SEPTIN9,6.0151055555555555,6.025668888888889,5.971708888888889,5.922997777777777,6.307235555555556,6.2038866666666665
|
526 |
+
SERPINA5,52.07867066666667,51.925715833333335,51.6747425,52.82645983333333,51.853724166666666,50.39689583333333
|
527 |
+
SESN1,10.46956,9.90015,10.117455,10.14095,9.688075000000001,9.16325
|
528 |
+
SET,63.221860834776336,62.909268704184704,62.48546655988456,61.86977865151515,60.31270036363637,61.077330344877346
|
529 |
+
SETD2,2.0133328571428573,1.9625957142857144,1.9498757142857142,1.8768500000000001,1.7989614285714286,1.9017357142857143
|
530 |
+
SGCG,14.756329833333332,14.73463830952381,14.763557869047618,14.577044107142857,14.718595738095237,14.70478486904762
|
531 |
+
SGF29,5.37716,5.431570000000001,5.2472900000000005,5.481475,5.359959999999999,5.0375700000000005
|
532 |
+
SGSM3,6.404686666666667,6.579656666666667,6.434686666666667,6.490963333333333,6.612078333333333,6.64329
|
533 |
+
SH2D1A,35.19873871428572,34.21108191269841,34.24141831349206,35.187573972222225,33.81007436904762,34.223576400793654
|
534 |
+
SH3BP5,2.578570833333333,2.5003866666666665,2.4790183333333333,2.4895975000000004,2.4571275,2.4906658333333334
|
535 |
+
SHD,2.820284,2.7539816666666663,2.74891,2.7718499999999997,2.6009453333333337,2.765357
|
536 |
+
SHQ1,2.6319,2.757165,2.66196,2.774015,2.59324,2.167975
|
537 |
+
SINHCAF,11.6032,11.844235,11.751190000000001,12.219289999999999,12.124105,11.634609999999999
|
538 |
+
SKI,3.48262625,3.4871670833333335,3.4558035416666666,3.5258456249999997,3.4293552083333334,3.420334791666667
|
539 |
+
SKP1,4.2515825,4.228725833333334,4.4973125,4.601751666666667,4.643860833333333,4.283986666666667
|
540 |
+
SLC25A1,2.5110133333333335,2.51554,2.506675,2.4114233333333335,2.2681233333333335,2.24795
|
541 |
+
SLC25A5,8.771889999999999,8.645855,8.85315,8.774735,8.7577,7.812045
|
542 |
+
SLC2A1,1.2874057142857143,1.2939528571428571,1.2782714285714287,1.3304742857142855,1.2982214285714286,1.30597
|
543 |
+
SLC2A4,1.3520379999999999,1.312856,1.356902,1.3701539999999999,1.324446,1.429602
|
544 |
+
SLC36A1,3.686703333333333,3.6106933333333338,3.7091899999999995,3.5735433333333333,3.5610633333333332,3.793476666666667
|
545 |
+
SLC4A1,6.879584666666667,6.931601833333334,6.939045,6.993113666666667,6.918675666666667,6.963713333333333
|
546 |
+
SLCO1A2,16.796414166666665,16.395720833333332,16.269856666666666,15.636038333333333,15.695324166666666,16.046060833333332
|
547 |
+
SLCO1B1,1.323165,1.147595,1.17446,1.223305,1.367135,1.164435
|
548 |
+
SMARCA5,0.6230226666666667,0.6306926666666667,0.6090926666666667,0.615054,0.5936686666666666,0.5981793333333334
|
549 |
+
SMARCB1,1.9378874999999998,1.94937,1.9189875,1.9877200000000002,1.9149125,1.96429
|
550 |
+
SMPD1,0.72803,0.72491375,0.72641125,0.69008125,0.6459725,0.6750125
|
551 |
+
SNAP25,4.40758,4.65477,4.3111825,4.460515,4.5704674999999995,4.3541525
|
552 |
+
SNAPC1,2.7978,2.51786,2.89323,3.03421,2.689125,3.10119
|
553 |
+
SNF8,4.738569999999999,4.636935,4.6220175,5.0913775,5.0539375,4.8671225
|
554 |
+
SNHG32,6.581754,6.739975857142857,6.413034714285714,6.333468714285714,6.281345571428571,6.535708714285715
|
555 |
+
SNORA73A,4.5382425,4.701383333333334,4.699371666666666,4.645035833333333,4.5535375,4.5707125
|
556 |
+
SNORD12C,16.184930595238097,16.070532023809523,16.203426904761905,16.073475535714287,15.850699523809524,15.458408452380953
|
557 |
+
SNORD3F,4.472888333333334,4.45717,4.409083333333333,4.498943333333333,4.422663333333333,4.215793333333333
|
558 |
+
SNRPN,2.98439,2.885915,2.950735,3.005065,2.861515,2.91558
|
559 |
+
SOAT1,5.940810793650794,5.938316031746032,5.873953031746032,5.637714984126984,5.380174142857143,5.692538126984127
|
560 |
+
SPAG11A,1.1286966666666667,1.0460666666666667,1.1278166666666667,1.0719266666666667,1.1121266666666667,1.0404066666666667
|
561 |
+
SPARC,14.741834404761905,15.010482261904762,14.935683214285714,14.076252738095238,14.823584880952382,14.772292023809523
|
562 |
+
SPHKAP,1.940875,1.9211025,1.912175,1.95425,1.837145,1.8611125
|
563 |
+
SPRR1B,8.71451,8.47837,8.2690075,8.789982499999999,9.12124,8.647300000000001
|
564 |
+
SPTY2D1,3.41156,3.411465,3.379675,3.436005,3.358885,3.34913
|
565 |
+
SPX,1.2348866666666667,1.2418633333333333,1.2537266666666667,1.2212966666666667,1.1751566666666666,1.1553666666666667
|
566 |
+
SRFBP1,3.05495,3.134605,3.07944,3.339045,3.174245,3.052615
|
567 |
+
SRI,1.0687614285714286,1.0683914285714287,1.04562,0.9966042857142857,0.9515428571428571,1.0222442857142857
|
568 |
+
SRP14,3.364235,3.35982,3.41252,3.46492,3.59976,3.23826
|
569 |
+
SRP19,2.850935,2.99968,3.047625,2.972715,2.961015,2.9174
|
570 |
+
SRP54,8.139055714285714,8.13033857142857,8.247697142857144,8.38621,7.880532857142857,8.178757142857142
|
571 |
+
SRP72,3.2568099999999998,3.282826666666667,3.2288933333333336,3.365766666666667,3.281053333333333,3.2788566666666665
|
572 |
+
SRP9,2.702815,2.61087,2.78105,2.9459,2.982235,2.91978
|
573 |
+
SRPRA,2.580096666666667,2.546518333333333,2.55864,2.5722883333333333,2.5167716666666666,2.432516666666667
|
574 |
+
SS18,9.19728,9.327605,9.268075,9.560565,9.461005,8.728305
|
575 |
+
SSBP3,6.196203333333333,6.148493333333334,6.29145,6.288743333333334,6.07198,6.034800000000001
|
576 |
+
SSRP1,1.5130458333333334,1.505395,1.4669273333333335,1.5171918333333334,1.458608,1.4840713333333333
|
577 |
+
ST6GALNAC4,36.09623749417249,36.08859851107226,35.711407753885005,34.10941357342657,33.909733824592074,33.755058483100235
|
578 |
+
ST7,4.89143,4.90142,4.959225,5.214510000000001,5.42207,4.917455
|
579 |
+
STAT5A,4.117476666666667,4.147943333333333,3.8375266666666668,4.05483,3.9385000000000003,4.6529300000000005
|
580 |
+
STN1,1.0636183333333333,1.0638666666666667,1.0672650000000001,1.1223083333333335,1.1217483333333333,1.1396066666666667
|
581 |
+
STT3A,20.36672,20.57565,20.467865,20.72236,20.85929,20.824465
|
582 |
+
SUPT20H,7.63702,8.011785,7.9603649999999995,7.364965,7.076585,7.43753
|
583 |
+
SYF2,3.558955,3.668665,3.526195,3.571425,3.65585,3.365285
|
584 |
+
TAF4,2.2342583333333335,2.190045,2.237293333333333,2.1086066666666667,2.004828333333333,2.0567183333333334
|
585 |
+
TAF7,4.8160799999999995,4.706315,4.843085,5.08444,5.174225,5.1987
|
586 |
+
TAF8,129.41201209072872,129.0741608169192,128.47352661778498,130.3688585196609,128.8963513612915,127.89500519751083
|
587 |
+
TAF9,1.9896191666666667,1.8392975,1.8824966666666667,2.0483741666666666,2.21615,2.0644441666666666
|
588 |
+
TAFA2,6.86348,7.616505,7.08034,7.587655,7.751785,7.56513
|
589 |
+
TAX1BP3,1.9158566666666665,1.9158,1.9287666666666665,2.08576,1.7894033333333335,1.9479866666666668
|
590 |
+
TBC1D1,89.14798621428571,87.58115585714286,88.39079830952382,87.34245666666666,83.91985261904762,85.38084471428571
|
591 |
+
TBCC,2.626175,2.70728,2.74551,2.93051,3.0027049999999997,2.952935
|
592 |
+
TBP,15.511703166666667,15.532419,15.698669833333334,15.800172,15.197137833333333,15.234765
|
593 |
+
TCL1A,7.202313333333333,6.922503333333333,7.370866666666666,6.854655833333334,7.549553333333333,7.2701641666666665
|
594 |
+
TEP1,0.8267014285714286,0.8186171428571428,0.821417142857143,0.8156714285714285,0.7552342857142857,0.7558842857142858
|
595 |
+
TEX11,2.5073125000000003,2.52695,2.581375,2.5326275000000003,2.5845525,2.38481
|
596 |
+
TFAP2A,5.48729,5.507393333333333,5.712973333333333,6.287610000000001,6.25856,6.866806666666667
|
597 |
+
THBD,4.2598416666666665,4.010945833333333,4.209084166666666,4.003144166666667,3.7549925,3.860819166666667
|
598 |
+
THOC1,1.7713975,1.79874,1.8054125,1.851585,1.794285,1.73114
|
599 |
+
TIMP1,15.51166756060606,15.633244575757576,15.43321356060606,14.733549393939395,15.746574348484849,15.151570575757576
|
600 |
+
TMED7-TICAM2,25.952505333333335,26.001819583333333,25.863608083333332,26.604989333333332,26.657323833333333,26.089304333333335
|
601 |
+
TMEM131,4.858166666666667,4.776526666666667,4.817253333333333,4.859686666666667,4.608966666666666,4.729253333333333
|
602 |
+
TMEM144,1.5447225,1.4220225,1.420665,1.36005,1.2667575,1.2912675
|
603 |
+
TMEM175,1.6572133333333332,1.7142066666666667,1.7500799999999999,2.0527866666666665,1.8696266666666668,1.9558866666666666
|
604 |
+
TMEM19,2.2084966666666666,2.18499,2.2211433333333335,2.5066466666666667,2.3329733333333333,2.4351566666666664
|
605 |
+
TMEM208,2.21128,2.2571766666666666,2.2536133333333335,2.259863333333333,2.2867933333333332,2.0630366666666666
|
606 |
+
TMEM214,2.76984,2.83154,2.7772733333333335,2.915366666666667,2.7731766666666666,2.8346
|
607 |
+
TMEM53,1.3928633333333333,1.46286,1.4918966666666666,1.5369266666666668,1.4785733333333333,1.5287233333333334
|
608 |
+
TMEM59,6.977650000000001,6.631275,6.923125,6.345314999999999,6.36144,6.421215
|
609 |
+
TMEM70,2.35894,2.30695,2.4181433333333335,2.5464966666666666,2.524973333333333,2.32713
|
610 |
+
TMEM9,5.9806799999999996,6.187329999999999,6.14667,6.7195149999999995,6.4327950000000005,6.388045
|
611 |
+
TMPRSS11D,6.2825575,6.202863333333333,6.337758333333333,6.405805833333333,6.423115833333333,6.354877500000001
|
612 |
+
TMX2-CTNND1,4.885379047619048,4.861329761904761,4.923499761904762,5.012005476190476,5.012710714285714,4.946782619047619
|
613 |
+
TNF,4.214416666666667,4.3816412499999995,4.283195,4.172845,4.068920833333333,3.838492083333333
|
614 |
+
TNFAIP1,10.63680875,10.483408333333333,10.543941666666667,10.531341666666666,10.349628333333333,10.27385375
|
615 |
+
TNFRSF13B,1.285345,1.523285,1.346275,1.325245,1.39195,1.50956
|
616 |
+
TNFRSF17,1.1196333333333335,1.0313266666666667,1.0681,1.04118,1.1712666666666667,0.9811899999999999
|
617 |
+
TNFSF13B,3.4231033333333336,3.3985516666666666,3.5774999999999997,3.488715,3.5825766666666663,3.556635
|
618 |
+
TPD52,10.753645,10.924735,10.68741,10.95645,10.74219,11.003834999999999
|
619 |
+
TPMT,3.4973566666666667,3.450301666666667,3.479791666666667,3.681973333333333,3.4565133333333335,3.441456666666667
|
620 |
+
TPR,3.15648,3.06641,2.82659,3.3568,3.15467,3.028005
|
621 |
+
TPRKB,2.67361,2.667305,2.728735,2.672205,2.64482,2.34062
|
622 |
+
TRADD,1.427935,1.45474,1.463675,1.5716475,1.47671,1.40225
|
623 |
+
TRAF3,1.7411033333333332,1.6726133333333333,1.7186766666666669,1.6618899999999999,1.6218866666666667,1.5658966666666665
|
624 |
+
TRIO,5.555918888888889,5.481902222222223,5.4137788888888885,5.594657777777778,5.534227222222222,5.4485
|
625 |
+
TRIP10,26.382330833333334,26.45637175,26.217182833333332,26.6261205,26.28195716666667,27.23802925
|
626 |
+
TRIT1,28.777251523809525,28.275372186507937,28.697162095238095,27.331821634920637,27.45530926984127,27.788246666666666
|
627 |
+
TRMT61A,2.81761,2.584145,2.8158,2.707155,2.609365,2.228935
|
628 |
+
TSG101,2.9979175,2.94408,2.77732,2.7838925000000003,2.7362175,2.632175
|
629 |
+
TSR1,2.35942125,2.34054625,2.3192025,2.39044,2.3380825,2.2392149999999997
|
630 |
+
TSR2,2.94428,2.6648,2.722825,2.839965,2.871025,2.618015
|
631 |
+
TTR,1.0636183333333333,1.0638666666666667,1.0672650000000001,1.1223083333333335,1.1217483333333333,1.1396066666666667
|
632 |
+
UBA52,2.1065733333333334,2.11194,2.0719600000000002,2.0902333333333334,2.2225733333333335,2.16858
|
633 |
+
UBE4B,11.246716666666668,11.0502,11.241436666666667,10.904833333333332,10.680323333333334,10.717106666666666
|
634 |
+
UBR5,1.013815,1.00301,1.0308775,0.96066125,0.9345475,0.9679175
|
635 |
+
UFD1,3.750455,3.712035,3.7191,4.10718,4.03069,4.142325
|
636 |
+
UPF1,1.8504775,1.784875,1.783305,1.7379275,1.5506325,1.67919
|
637 |
+
UPF3A,6.195069999999999,5.955439999999999,6.09753,6.118995,5.913,5.76837
|
638 |
+
UQCC2,5.47402,5.525755,5.66026,5.418855,5.78892,5.93452
|
639 |
+
USP8,1.38281,1.3383,1.36269,1.3736033333333333,1.3355249999999999,1.3182983333333333
|
640 |
+
VASP,5.4027449999999995,5.312675,5.329885,5.3104875,5.2290399999999995,5.2028
|
641 |
+
VCP,2.0370329807692307,1.9884766346153846,1.997474903846154,2.0093694230769232,1.9611808653846154,1.9663122115384615
|
642 |
+
VIM2P,0.96785,0.95557,0.970444,1.003026,0.98124,1.014662
|
643 |
+
VIP,7.4589566666666665,7.0103800000000005,7.00216,7.239356666666667,7.25547,7.412176666666666
|
644 |
+
VIT,8.829219166666666,9.015043833333333,9.090981166666667,8.750744833333334,8.987721916666667,9.067759666666666
|
645 |
+
VPS28,4.538275,4.62564,4.558625,4.648985,4.72923,4.63798
|
646 |
+
VPS72,3.637244166666667,3.7185249999999996,3.5947674999999997,3.734960833333333,3.6252825,3.641120833333334
|
647 |
+
WASHC3,2.1182833333333333,2.19564,2.2398866666666666,2.32986,2.3290266666666666,2.139063333333333
|
648 |
+
WDR46,1.780902,1.7995899999999998,1.7241399999999998,1.7971119999999998,1.7106940000000002,1.678126
|
649 |
+
WLS,12.025027,11.934632,11.746953,12.603399,12.46904,11.961045
|
650 |
+
XK,15.475155,14.790425,14.747645,14.963165,15.506,13.485495
|
651 |
+
XPA,1.4523,1.460225,1.35996,1.43229,1.30438,1.317125
|
652 |
+
XPNPEP1,1.8218865,1.757775,1.7308135,1.78368125,1.74514925,1.7763852500000001
|
653 |
+
XPO1,1.2963850000000001,1.2608916666666665,1.25522,1.3426716666666667,1.2794416666666668,1.297885
|
654 |
+
XRCC4,1.4858733333333334,1.5692866666666667,1.55418,1.6651366666666665,1.8248499999999999,1.7040333333333333
|
655 |
+
ZACN,4.004425,3.99081,3.9934225,4.011207499999999,4.11171,3.8743774999999996
|
656 |
+
ZBTB12,3.149925,3.126785,3.060105,3.350365,3.14989,3.07722
|
657 |
+
ZC3HC1,13.963148333333333,13.858705,13.895743333333334,14.584119999999999,14.398996666666665,14.250734999999999
|
658 |
+
ZNF330,6.742315,6.64903,6.664075,6.54749,6.579845000000001,6.401865
|
659 |
+
ZNF469,1.1423320000000001,1.203262,1.13107,1.222996,1.24674,1.0988580000000001
|
660 |
+
ZNF787,2.364754,2.334582,2.35386,2.18823,2.253952,2.256302
|
p1/preprocess/Pancreatic_Cancer/gene_data/GSE125158.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p1/preprocess/Pancreatic_Cancer/gene_data/GSE130563.csv
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Gene,GSM3743555,GSM3743556,GSM3743557,GSM3743558,GSM3743559,GSM3743560,GSM3743561,GSM3743562,GSM3743563,GSM3743564,GSM3743565,GSM3743566,GSM3743567,GSM3743568,GSM3743569,GSM3743570,GSM3743571,GSM3743572,GSM3743573,GSM3743574,GSM3743575,GSM3743576,GSM3743577,GSM3743578,GSM3743579,GSM3743580,GSM3743581,GSM3743582,GSM3743583,GSM3743584,GSM3743585,GSM3743586,GSM3743587,GSM3743588,GSM3743589,GSM3743590,GSM3743591,GSM3743592,GSM3743593,GSM3743594,GSM3743595,GSM3743596,GSM3743597,GSM3743598,GSM3743599,GSM3743600
|
p1/preprocess/Pancreatic_Cancer/gene_data/GSE131027.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a8582008fe6fc5b90879aea7d12ca4ea58cc0bbe03209acb333425d229be6e33
|
3 |
+
size 24379939
|
p1/preprocess/Pancreatic_Cancer/gene_data/GSE157494.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p1/preprocess/Pancreatic_Cancer/gene_data/GSE222788.csv
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ID,GSM6932288,GSM6932289,GSM6932290,GSM6932291,GSM6932292,GSM6932293,GSM6932294,GSM6932295,GSM6932296,GSM6932297,GSM6932298,GSM6932299,GSM6932300,GSM6932301,GSM6932302,GSM6932303,GSM6932304,GSM6932305,GSM6932306,GSM6932307,GSM6932308,GSM6932309,GSM6932310,GSM6932311,GSM6932312,GSM6932313,GSM6932314,GSM6932315,GSM6932316,GSM6932317,GSM6932318,GSM6932319,GSM6932320,GSM6932321,GSM6932322,GSM6932323,GSM6932324,GSM6932325,GSM6932326,GSM6932327,GSM6932328
|
p1/preprocess/Pancreatic_Cancer/gene_data/GSE223409.csv
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Gene,GSM6947318,GSM6947319,GSM6947320,GSM6947321,GSM6947322,GSM6947323,GSM6947324,GSM6947325,GSM6947326,GSM6947327,GSM6947328,GSM6947329,GSM6947330,GSM6947331,GSM6947332
|
2 |
+
ATP8,5.08333129,4.995270496,5.878991576,5.278847404,5.147282029,5.184992274,5.177250704,5.214208934,5.307577377,5.158350884,5.136567982,5.156021736,5.094846468,5.119166046,5.111951433
|
3 |
+
C2,6.932202533,7.00409574,6.685623747,6.253716152,7.043147902,6.717368469,6.601205721,5.302941209,7.560956746,7.404546689,7.508906662,6.849514186,7.457255328,7.140690127,7.301056262
|
4 |
+
C3,82.923412736,82.219319082,81.527160087,86.426853536,81.25175813,82.348485564,81.632498508,86.845028381,82.578840543,81.5797836,85.409731826,83.626756187,84.10001301,81.844826684,84.549439387
|
5 |
+
C6,6.031168316,6.560885551,6.153464952,7.023069695,6.147464217,6.263726183,5.500629565,6.615263085,5.87747682,6.20379668,5.707920914,5.674820508,5.652128196,5.671730173,5.627313075
|
6 |
+
C7,5.601838095,5.559570656,5.544928216,5.371170165,5.547193378,5.432397404,5.347669731,6.3040909,5.487236038,5.075915602,5.495723812,5.972728223,5.76539329,5.891930472,5.730168472
|
7 |
+
C9,6.680131928,6.730965658,5.691345534,6.139807563,6.719725737,5.801912666,6.04693282,6.847250277,6.000680776,9.555979423,6.028478347,5.277118052,5.899907228,5.302645308,5.578003173
|
8 |
+
COX1,5.562108978,5.549636625,5.502372264,5.554580339,5.357625451,5.507572015,5.570158573,5.770207038,5.732624149,6.742345648,5.307578543,5.645194313,5.772449608,5.570477736,5.444661734
|
9 |
+
COX2,5.762639717,6.345996031,6.017741248,7.225911561,6.061305877,5.96196413,5.529981716,6.826250215,5.657664012,5.419817831,5.528681569,5.188729645,5.837471901,5.36966004,5.509259252
|
10 |
+
COX3,6.086194268,6.12065171,5.734138715,5.899270671,6.242045949,6.129525356,5.54154792,5.671389549,5.220330587,8.167529947,7.616483989,5.442540922,5.278378212,5.839203637,7.49913252
|
11 |
+
CYTB,5.401357876,5.742728474,5.19578563,5.591287916,5.187813134,5.291329061,5.510669649,5.183075588,6.019342545,5.994250072,5.927814506,5.502392368,5.839377237,5.680161266,5.84986107
|
12 |
+
F10,17.111854633,16.985364665,17.350760646,16.425721852000002,16.827659713,18.053473554,17.557622607,16.371708167,17.895019102,17.095571828,17.306008194,17.508499662,17.657683956,17.506432629,17.93082486
|
13 |
+
F11,5.468122426,5.551077544,5.553018488,6.086124206,5.520766107,5.36509829,5.324559898,5.916682262,5.917235818,5.416901902,5.798794333,5.611854144,5.542868981,5.666141413,5.565842255
|
14 |
+
F12,10.65586448,10.58254259,10.41292603,15.11493114,10.54808899,10.39473845,10.47643671,15.02376154,15.94396266,12.50719116,15.96328882,13.35626484,15.43301502,15.02376154,15.4513498
|
15 |
+
F2,5.311172654,5.197134084,5.507652985,5.840615401,5.436878011,5.68872014,5.927551379,6.133342526,5.353788093,5.276904205,5.536602305,5.311931782,5.310654949,5.255664695,5.167316389
|
16 |
+
F3,11.579617638,11.56774099,12.232279113,11.777360425000001,11.596407202,11.781527079,11.688725613999999,11.343068685,11.232325082,10.582544691999999,11.185316751,11.408457426,11.181269417,11.391221232,10.87557293
|
17 |
+
F5,10.791303805,10.604677554,11.018081218999999,10.752904069,10.728748126,10.586417276999999,10.755403115,11.588942561,11.390751662,11.726789722,11.172797858,10.931854839,11.261369157,11.404024691,12.694728555
|
18 |
+
F7,14.134706249,14.625787255999999,16.250175114,14.622420058,14.036179668,16.073009177,15.596579005999999,15.142107181,16.136150473999997,12.701261912,15.876005334999999,15.227876796,15.761324726000002,15.548284236,15.731490938
|
19 |
+
F8,14.127142917,14.066583925,14.435968785,13.136497258999999,13.900700234,14.444526119999999,14.428458783,13.745339189,14.803982437,12.152041161,13.930640999,12.877813056,14.100119868,13.549834582999999,14.309518586
|
20 |
+
F9,5.962970565,5.851378981,6.0671641,6.931453123,5.465684504,5.702580587,5.841051572,5.770207038,5.451864282,6.28428403,5.502986192,5.522699113,5.697136051,5.669585097,5.698610841
|
21 |
+
H19,5.154323573,5.410132393,5.074579676,5.01591539,5.349375918,5.176949214,5.371043001,5.188180742,5.968634994,5.574577967,6.513141136,5.364104765,5.819560062,5.37932335,5.503875401
|
22 |
+
HM13,28.639699299,28.812237478,30.604053194,28.495419107,28.941505547,30.179968739000003,30.074829634,28.402087779,31.60442217,35.926576369,31.54562186,29.979588012,31.062201547999997,30.797706709,31.158067085
|
23 |
+
IGSF3,5.627926478,5.525529882,5.33755183,6.421190932,5.529218595,5.292264924,5.573250115,6.204559459,5.212106264,5.397609209,5.450943642,5.336189693,5.269452575,5.419899251,5.269649527
|
24 |
+
MOSMO,16.78803022,17.501790446,17.345795137,16.087720171,17.116659121,17.378878685,17.055269944,17.095573338,16.582872154,19.338209362,16.540366347,16.399815496000002,16.390161781,16.764737286,16.279824003999998
|
25 |
+
ND1,5.736143475,5.405916038,5.478359079,5.53467534,5.28578733,5.677028298,5.826396812,5.219998835,5.306763348,6.00018122,5.294361126,5.536632546,5.385865805,5.555023539,5.696553148
|
26 |
+
ND2,9.669692089,9.664250811,9.091069011,9.539529947,9.636597144,9.104223857,9.117317179,9.515878561,9.827453754,6.331441517,9.802525197,10.78890376,9.908519881,10.5059265,9.964232457
|
27 |
+
ND3,5.586571951,5.650260054,5.578399654,6.497748976,5.824029687,5.789249386,5.756455847,6.540513264,5.498498509,5.385102689,8.328243341,5.352080514,7.672773419,7.40781331,7.897730955
|
28 |
+
ND4,5.477472953,5.479880309,5.844807917,6.390381986,5.408138133,5.430653238,5.948226078,6.582326866,5.120347682,5.312807776,5.321364985,5.757332854,5.367511845,5.279365083,5.336835744
|
29 |
+
ND4L,6.363882149,5.790265625,5.309574819,5.232456872,5.209448583,5.449838266,5.15775119,5.1230963,6.306985108,5.355195532,5.921364283,5.43146745,5.341171429,5.465351774,5.096586459
|
30 |
+
ND5,5.16240183,5.265258849,5.185675019,5.255153815,5.175460289,5.345099805,5.041990818,5.541220588,5.37173107,6.112116488,5.932141949,5.269967116,5.108733026,5.360135059,5.643807493
|
31 |
+
SLC25A5,5.349596602,5.256994446,5.499266759,5.527136432,5.465417157,5.682002567,5.338636905,5.020689019,5.636168928,6.398387222,5.384862637,5.690842252,5.514930006,5.265042224,5.480202488
|
32 |
+
SUGCT,11.671516145,11.566628575,11.669612755,12.026656006,11.740035038999999,11.3975522,11.595854446,12.181105044,11.12424569,10.624329102,11.215030698,10.903320299,11.210866201,11.254982177999999,11.298469204
|
33 |
+
TRGV9,6.033018689,6.098020654,5.875969085,6.10947575,6.116552796,6.104734367,6.048524147,5.555091477,9.081140382,8.422075051,9.164142599,7.575444748,8.691853051,7.957181224,8.542367628
|
p1/preprocess/Pancreatic_Cancer/gene_data/GSE236951.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p1/preprocess/Parkinsons_Disease/GSE103099.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f38e052202820dfe20473732d190862071a10329a3d0451829e9ca65df1c9a73
|
3 |
+
size 12965283
|
p1/preprocess/Parkinsons_Disease/GSE202665.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:46f9672f37d52e2560fa5fa0e4291af55a1f4cc41e1672ff8b415057a0b9b147
|
3 |
+
size 21295030
|
p1/preprocess/Parkinsons_Disease/GSE202667.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd5b6ed959bff07239f47079211fd1ad923f1e554a507f4b06b65ce7adadc40d
|
3 |
+
size 19381245
|
p1/preprocess/Parkinsons_Disease/GSE49126.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p1/preprocess/Parkinsons_Disease/GSE57475.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:60c7b09cc1548f415895b7a7e49ffb9dd1c3cc6ed3f827b1d0b6de459c7cfc9a
|
3 |
+
size 25885275
|
p1/preprocess/Parkinsons_Disease/GSE72267.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p1/preprocess/Parkinsons_Disease/clinical_data/GSE101534.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
GSM2705776,GSM2705777,GSM2705778,GSM2705779,GSM2705780,GSM2705781,GSM2705782,GSM2705783,GSM2705784,GSM2705785,GSM2705786,GSM2705787,GSM2705788,GSM2705789,GSM2705790,GSM2705791,GSM2705792,GSM2705793,GSM2705794,GSM2705795,GSM2705796,GSM2705797,GSM2705798,GSM2705799,GSM2705800,GSM2705801,GSM2705802,GSM2705803,GSM2705804,GSM2705805,GSM2705806,GSM2705807,GSM2705808,GSM2705809,GSM2705810,GSM2705811,GSM2705812,GSM2705813,GSM2705814,GSM2705815,GSM2705816,GSM2705817,GSM2705818,GSM2705819,GSM2705820,GSM2705821,GSM2705822,GSM2705823,GSM2705824,GSM2705825,GSM2705826
|
2 |
+
0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0
|
p1/preprocess/Parkinsons_Disease/clinical_data/GSE103099.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
GSM2742123,GSM2742124,GSM2742125,GSM2742126,GSM2742127,GSM2742128,GSM2742129,GSM2742130,GSM2742131,GSM2742132,GSM2742133,GSM2742134,GSM2742135,GSM2742136,GSM2742137,GSM2742138,GSM2742139,GSM2742140,GSM2742141,GSM2742142,GSM2743405,GSM2743406,GSM2743407,GSM2743408,GSM2743409,GSM2743410,GSM2743411,GSM2743412,GSM2743413,GSM2743414,GSM2743415,GSM2743416,GSM2743417,GSM2743418,GSM2743419,GSM2743420,GSM2743421,GSM2743422,GSM2743423,GSM2743424,GSM2743425,GSM2743426,GSM2743427,GSM2743428,GSM2743429,GSM2743430,GSM2743431,GSM2743432,GSM2743433,GSM2743434,GSM2743435,GSM2743436,GSM2743437,GSM2743438,GSM2743439,GSM2743440,GSM2743441,GSM2743442,GSM2743443
|
2 |
+
0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
p1/preprocess/Parkinsons_Disease/clinical_data/GSE202665.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
GSM6128044,GSM6128045,GSM6128046,GSM6128047,GSM6128048,GSM6128049,GSM6128050,GSM6128051,GSM6128052,GSM6128053,GSM6128054,GSM6128055,GSM6128056,GSM6128057,GSM6128058,GSM6128059,GSM6128060,GSM6128061,GSM6128062,GSM6128063,GSM6128064,GSM6128065,GSM6128066,GSM6128067,GSM6128068,GSM6128069,GSM6128070,GSM6128071,GSM6128072,GSM6128073,GSM6128074,GSM6128075,GSM6128076,GSM6128077,GSM6128078,GSM6128079,GSM6128080,GSM6128081,GSM6128082,GSM6128083,GSM6128084,GSM6128085,GSM6128086,GSM6128087,GSM6128088,GSM6128089,GSM6128090,GSM6128091,GSM6128092,GSM6128093,GSM6128094,GSM6128095,GSM6128096,GSM6128097,GSM6128098,GSM6128099,GSM6128100,GSM6128101,GSM6128102
|
2 |
+
1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
3 |
+
53.0,53.0,53.0,53.0,53.0,53.0,57.0,57.0,57.0,57.0,57.0,63.0,63.0,63.0,63.0,63.0,63.0,75.0,75.0,75.0,75.0,75.0,75.0,85.0,85.0,85.0,85.0,85.0,85.0,76.0,76.0,76.0,76.0,76.0,76.0,63.0,63.0,63.0,63.0,63.0,63.0,69.0,69.0,69.0,69.0,69.0,69.0,66.0,66.0,66.0,66.0,66.0,66.0,53.0,53.0,53.0,53.0,53.0,53.0
|
p1/preprocess/Parkinsons_Disease/clinical_data/GSE202667.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
GSM6128103,GSM6128104,GSM6128105,GSM6128106,GSM6128107,GSM6128108,GSM6128109,GSM6128110,GSM6128111,GSM6128112,GSM6128113,GSM6128114,GSM6128115,GSM6128116,GSM6128117,GSM6128118,GSM6128119,GSM6128120,GSM6128121,GSM6128122,GSM6128123,GSM6128124,GSM6128125,GSM6128126,GSM6128127,GSM6128128,GSM6128129,GSM6128130,GSM6128131,GSM6128132,GSM6128133,GSM6128134,GSM6128135,GSM6128136,GSM6128137,GSM6128138,GSM6128139,GSM6128140,GSM6128141,GSM6128142,GSM6128143,GSM6128144,GSM6128145,GSM6128146,GSM6128147,GSM6128148,GSM6128149,GSM6128150,GSM6128151,GSM6128152,GSM6128153,GSM6128154,GSM6128155,GSM6128156,GSM6128157,GSM6128158,GSM6128159,GSM6128160,GSM6128161,GSM6128162
|
2 |
+
1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
3 |
+
53.0,53.0,53.0,53.0,53.0,53.0,57.0,57.0,57.0,57.0,57.0,57.0,63.0,63.0,63.0,63.0,63.0,63.0,75.0,75.0,75.0,75.0,75.0,75.0,85.0,85.0,85.0,85.0,85.0,85.0,76.0,76.0,76.0,76.0,76.0,76.0,63.0,63.0,63.0,63.0,63.0,63.0,69.0,69.0,69.0,69.0,69.0,69.0,66.0,66.0,66.0,66.0,66.0,66.0,53.0,53.0,53.0,53.0,53.0,53.0
|
p1/preprocess/Parkinsons_Disease/clinical_data/GSE49126.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
GSM1194062,GSM1194063,GSM1194064,GSM1194065,GSM1194066,GSM1194067,GSM1194068,GSM1194069,GSM1194070,GSM1194071,GSM1194072,GSM1194073,GSM1194074,GSM1194075,GSM1194076,GSM1194077,GSM1194078,GSM1194079,GSM1194080,GSM1194081,GSM1194082,GSM1194083,GSM1194084,GSM1194085,GSM1194086,GSM1194087,GSM1194088,GSM1194089,GSM1194090,GSM1194091,GSM1194092,GSM1194093,GSM1194094,GSM1194095,GSM1194096,GSM1194097,GSM1194098,GSM1194099,GSM1194100,GSM1194101,GSM1194102,GSM1194103,GSM1194104,GSM1194105,GSM1194106,GSM1194107,GSM1194108,GSM1194109,GSM1194110,GSM1194111
|
2 |
+
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
p1/preprocess/Parkinsons_Disease/clinical_data/GSE57475.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
GSM1383302,GSM1383303,GSM1383304,GSM1383305,GSM1383306,GSM1383307,GSM1383308,GSM1383309,GSM1383310,GSM1383311,GSM1383312,GSM1383313,GSM1383314,GSM1383315,GSM1383316,GSM1383317,GSM1383318,GSM1383319,GSM1383320,GSM1383321,GSM1383322,GSM1383323,GSM1383324,GSM1383325,GSM1383326,GSM1383327,GSM1383328,GSM1383329,GSM1383330,GSM1383331,GSM1383332,GSM1383333,GSM1383334,GSM1383335,GSM1383336,GSM1383337,GSM1383338,GSM1383339,GSM1383340,GSM1383341,GSM1383342,GSM1383343,GSM1383344,GSM1383345,GSM1383346,GSM1383347,GSM1383348,GSM1383349,GSM1383350,GSM1383351,GSM1383352,GSM1383353,GSM1383354,GSM1383355,GSM1383356,GSM1383357,GSM1383358,GSM1383359,GSM1383360,GSM1383361,GSM1383362,GSM1383363,GSM1383364,GSM1383365,GSM1383366,GSM1383367,GSM1383368,GSM1383369,GSM1383370,GSM1383371,GSM1383372,GSM1383373,GSM1383374,GSM1383375,GSM1383376,GSM1383377,GSM1383378,GSM1383379,GSM1383380,GSM1383381,GSM1383382,GSM1383383,GSM1383384,GSM1383385,GSM1383386,GSM1383387,GSM1383388,GSM1383389,GSM1383390,GSM1383391,GSM1383392,GSM1383393,GSM1383394,GSM1383395,GSM1383396,GSM1383397,GSM1383398,GSM1383399,GSM1383400,GSM1383401,GSM1383402,GSM1383403,GSM1383404,GSM1383405,GSM1383406,GSM1383407,GSM1383408,GSM1383409,GSM1383410,GSM1383411,GSM1383412,GSM1383413,GSM1383414,GSM1383415,GSM1383416,GSM1383417,GSM1383418,GSM1383419,GSM1383420,GSM1383421,GSM1383422,GSM1383423,GSM1383424,GSM1383425,GSM1383426,GSM1383427,GSM1383428,GSM1383429,GSM1383430,GSM1383431,GSM1383432,GSM1383433,GSM1383434,GSM1383435,GSM1383436,GSM1383437,GSM1383438,GSM1383439,GSM1383440,GSM1383441,GSM1383442,GSM1383443
|
2 |
+
1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
3 |
+
62.0,54.0,58.0,76.0,52.0,52.0,72.0,54.0,78.0,61.0,67.0,68.0,76.0,84.0,65.0,58.0,86.0,49.0,72.0,71.0,69.0,64.0,55.0,69.0,60.0,56.0,60.0,61.0,53.0,69.0,65.0,58.0,63.0,80.0,45.0,52.0,49.0,67.0,75.0,66.0,78.0,65.0,51.0,60.0,70.0,76.0,57.0,66.0,52.0,68.0,55.0,39.0,53.0,78.0,61.0,59.0,52.0,67.0,53.0,64.0,61.0,58.0,70.0,49.0,59.0,63.0,49.0,84.0,79.0,59.0,67.0,72.0,61.0,58.0,77.0,58.0,61.0,69.0,61.0,55.0,62.0,77.0,60.0,55.0,62.0,61.0,66.0,59.0,61.0,52.0,53.0,59.0,69.0,81.0,54.0,57.0,70.0,49.0,73.0,74.0,79.0,67.0,49.0,55.0,57.0,63.0,59.0,55.0,54.0,56.0,57.0,58.0,59.0,69.0,60.0,60.0,53.0,52.0,59.0,87.0,47.0,59.0,51.0,76.0,51.0,73.0,65.0,48.0,57.0,65.0,64.0,61.0,49.0,55.0,63.0,57.0,58.0,64.0,74.0,57.0,76.0,76.0
|
4 |
+
1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0
|
p1/preprocess/Parkinsons_Disease/clinical_data/GSE72267.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM1859079,GSM1859080,GSM1859081,GSM1859082,GSM1859083,GSM1859084,GSM1859085,GSM1859086,GSM1859087,GSM1859088,GSM1859089,GSM1859090,GSM1859091,GSM1859092,GSM1859093,GSM1859094,GSM1859095,GSM1859096,GSM1859097,GSM1859098,GSM1859099,GSM1859100,GSM1859101,GSM1859102,GSM1859103,GSM1859104,GSM1859105,GSM1859106,GSM1859107,GSM1859108,GSM1859109,GSM1859110,GSM1859111,GSM1859112,GSM1859113,GSM1859114,GSM1859115,GSM1859116,GSM1859117,GSM1859118,GSM1859119,GSM1859120,GSM1859121,GSM1859122,GSM1859123,GSM1859124,GSM1859125,GSM1859126,GSM1859127,GSM1859128,GSM1859129,GSM1859130,GSM1859131,GSM1859132,GSM1859133,GSM1859134,GSM1859135,GSM1859136,GSM1859137
|
2 |
+
Parkinsons_Disease,0.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
p1/preprocess/Parkinsons_Disease/code/GSE101534.py
ADDED
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Parkinsons_Disease"
|
6 |
+
cohort = "GSE101534"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Parkinsons_Disease"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Parkinsons_Disease/GSE101534"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Parkinsons_Disease/GSE101534.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Parkinsons_Disease/gene_data/GSE101534.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Parkinsons_Disease/clinical_data/GSE101534.csv"
|
16 |
+
json_path = "./output/preprocess/1/Parkinsons_Disease/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# Step 1: Determine gene expression data availability
|
37 |
+
# Based on the series title "Genome-wide expression profiling...", we conclude:
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# Step 2: Determine variable availability and define row indices
|
41 |
+
# The sample characteristics dictionary only has key=0 with multiple distinct values
|
42 |
+
# representing different mutation statuses ("healthy", "patient", etc.).
|
43 |
+
# We'll treat this as the trait variable (Parkinson's vs. non-Parkinson's).
|
44 |
+
trait_row = 0
|
45 |
+
age_row = None
|
46 |
+
gender_row = None
|
47 |
+
|
48 |
+
# Step 2.2: Data Type Conversion Functions
|
49 |
+
def convert_trait(value: str):
|
50 |
+
"""
|
51 |
+
Convert trait string to binary indicator:
|
52 |
+
'healthy' -> 0
|
53 |
+
'gene corrected' -> 0
|
54 |
+
'patient' -> 1
|
55 |
+
'inserted G2019S' -> 1
|
56 |
+
Unknown -> None
|
57 |
+
"""
|
58 |
+
# Extract substring after colon if present
|
59 |
+
parts = value.split(':')
|
60 |
+
if len(parts) > 1:
|
61 |
+
val = parts[1].strip().lower()
|
62 |
+
else:
|
63 |
+
val = value.strip().lower()
|
64 |
+
|
65 |
+
if val == 'healthy':
|
66 |
+
return 0
|
67 |
+
elif val == 'gene corrected':
|
68 |
+
return 0
|
69 |
+
elif val == 'patient':
|
70 |
+
return 1
|
71 |
+
elif val == 'inserted g2019s':
|
72 |
+
return 1
|
73 |
+
else:
|
74 |
+
return None
|
75 |
+
|
76 |
+
def convert_age(value: str):
|
77 |
+
# Not used because age_row is None, but defined as required
|
78 |
+
return None
|
79 |
+
|
80 |
+
def convert_gender(value: str):
|
81 |
+
# Not used because gender_row is None, but defined as required
|
82 |
+
return None
|
83 |
+
|
84 |
+
# Step 3: Initial filtering and saving metadata
|
85 |
+
is_trait_available = (trait_row is not None)
|
86 |
+
is_usable = validate_and_save_cohort_info(
|
87 |
+
is_final=False,
|
88 |
+
cohort=cohort,
|
89 |
+
info_path=json_path,
|
90 |
+
is_gene_available=is_gene_available,
|
91 |
+
is_trait_available=is_trait_available
|
92 |
+
)
|
93 |
+
|
94 |
+
# Step 4: Clinical feature extraction (only if trait data is available)
|
95 |
+
if trait_row is not None:
|
96 |
+
selected_clinical_df = geo_select_clinical_features(
|
97 |
+
clinical_data,
|
98 |
+
trait=trait,
|
99 |
+
trait_row=trait_row,
|
100 |
+
convert_trait=convert_trait,
|
101 |
+
age_row=age_row,
|
102 |
+
convert_age=convert_age,
|
103 |
+
gender_row=gender_row,
|
104 |
+
convert_gender=convert_gender
|
105 |
+
)
|
106 |
+
|
107 |
+
# Preview the extracted clinical data
|
108 |
+
preview = preview_df(selected_clinical_df)
|
109 |
+
print("Clinical data preview:", preview)
|
110 |
+
|
111 |
+
# Save to CSV
|
112 |
+
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
|
113 |
+
# STEP3
|
114 |
+
import gzip
|
115 |
+
import pandas as pd
|
116 |
+
|
117 |
+
try:
|
118 |
+
# 1. Attempt to extract gene expression data using the library function
|
119 |
+
gene_data = get_genetic_data(matrix_file)
|
120 |
+
except KeyError:
|
121 |
+
# Fallback: the expected "ID_REF" column may be absent, so manually parse the file
|
122 |
+
# and rename the first column to "ID".
|
123 |
+
marker = "!series_matrix_table_begin"
|
124 |
+
skip_rows = None
|
125 |
+
|
126 |
+
# Determine how many rows to skip before the matrix data begins
|
127 |
+
with gzip.open(matrix_file, 'rt') as f:
|
128 |
+
for i, line in enumerate(f):
|
129 |
+
if marker in line:
|
130 |
+
skip_rows = i + 1
|
131 |
+
break
|
132 |
+
else:
|
133 |
+
raise ValueError(f"Marker '{marker}' not found in the file.")
|
134 |
+
|
135 |
+
# Read the data from the determined position
|
136 |
+
gene_data = pd.read_csv(
|
137 |
+
matrix_file,
|
138 |
+
compression='gzip',
|
139 |
+
skiprows=skip_rows,
|
140 |
+
comment='!',
|
141 |
+
delimiter='\t',
|
142 |
+
on_bad_lines='skip'
|
143 |
+
)
|
144 |
+
|
145 |
+
# If a different column name is used instead of 'ID_REF', rename appropriately
|
146 |
+
if 'ID_REF' in gene_data.columns:
|
147 |
+
gene_data.rename(columns={'ID_REF': 'ID'}, inplace=True)
|
148 |
+
else:
|
149 |
+
first_col = gene_data.columns[0]
|
150 |
+
gene_data.rename(columns={first_col: 'ID'}, inplace=True)
|
151 |
+
|
152 |
+
gene_data['ID'] = gene_data['ID'].astype(str)
|
153 |
+
gene_data.set_index('ID', inplace=True)
|
154 |
+
|
155 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
156 |
+
print(gene_data.index[:20])
|
157 |
+
# These appear to be numeric identifiers rather than standard human gene symbols, so gene mapping is required.
|
158 |
+
print("requires_gene_mapping = True")
|
159 |
+
# STEP5
|
160 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
161 |
+
gene_annotation = get_gene_annotation(soft_file)
|
162 |
+
|
163 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
164 |
+
print("Gene annotation preview:")
|
165 |
+
print(preview_df(gene_annotation))
|
166 |
+
# STEP 6: Gene Identifier Mapping
|
167 |
+
|
168 |
+
# After reviewing the annotation and expression data, it appears that the numeric row IDs in gene_data
|
169 |
+
# (e.g., "16650001", "16650003", etc.) do not match the "ID" column in gene_annotation (e.g., "16657436", "16657440").
|
170 |
+
# There's no direct overlap, so standard probe-to-gene mapping yields an empty dataframe.
|
171 |
+
|
172 |
+
# 1) Let's check if there's any overlap at all between gene_data.index and the annotation "ID":
|
173 |
+
common_ids_with_ID = set(gene_data.index).intersection(set(gene_annotation["ID"].astype(str)))
|
174 |
+
if len(common_ids_with_ID) > 0:
|
175 |
+
# If we somehow have overlap with the "ID" column in annotation:
|
176 |
+
print("Using gene_annotation['ID'] to map gene_data.")
|
177 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="GB_ACC")
|
178 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
179 |
+
print("Mapping dataframe shape:", mapping_df.shape)
|
180 |
+
print("Gene expression dataframe shape after mapping:", gene_data.shape)
|
181 |
+
else:
|
182 |
+
# 2) Otherwise, check if there's overlap with the "SPOT_ID" column:
|
183 |
+
if "SPOT_ID" in gene_annotation.columns:
|
184 |
+
# Convert SPOT_ID to string just in case
|
185 |
+
gene_annotation["SPOT_ID"] = gene_annotation["SPOT_ID"].astype(str)
|
186 |
+
common_ids_with_spot = set(gene_data.index).intersection(set(gene_annotation["SPOT_ID"]))
|
187 |
+
if len(common_ids_with_spot) > 0:
|
188 |
+
print("Using gene_annotation['SPOT_ID'] to map gene_data.")
|
189 |
+
# Create a mapping dataframe from SPOT_ID to GB_ACC
|
190 |
+
temp_annot = gene_annotation.rename(columns={"SPOT_ID": "ID", "GB_ACC": "Gene"})
|
191 |
+
temp_annot = temp_annot[["ID", "Gene"]]
|
192 |
+
# Map
|
193 |
+
gene_data = apply_gene_mapping(gene_data, temp_annot)
|
194 |
+
print("Gene expression dataframe shape after mapping:", gene_data.shape)
|
195 |
+
else:
|
196 |
+
# 3) If no column overlaps, skip mapping
|
197 |
+
print(
|
198 |
+
"No overlap found between gene_data row IDs and any relevant column in gene_annotation. "
|
199 |
+
"Skipping probe-to-gene mapping step. The gene_data DataFrame remains as probe-level data."
|
200 |
+
)
|
201 |
+
else:
|
202 |
+
# If there's no SPOT_ID column, just skip
|
203 |
+
print(
|
204 |
+
"No overlap found between gene_data row IDs and gene_annotation['ID'], "
|
205 |
+
"and 'SPOT_ID' column not available. Skipping mapping step."
|
206 |
+
)
|
207 |
+
import os
|
208 |
+
import pandas as pd
|
209 |
+
|
210 |
+
# STEP 7: Data Normalization and Linking
|
211 |
+
|
212 |
+
# First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
|
213 |
+
if not os.path.exists(out_clinical_data_file):
|
214 |
+
# No trait data file => dataset is not usable for trait analysis
|
215 |
+
df_null = pd.DataFrame()
|
216 |
+
is_biased = True # Arbitrary boolean to satisfy function requirement
|
217 |
+
validate_and_save_cohort_info(
|
218 |
+
is_final=True,
|
219 |
+
cohort=cohort,
|
220 |
+
info_path=json_path,
|
221 |
+
is_gene_available=True,
|
222 |
+
is_trait_available=False,
|
223 |
+
is_biased=is_biased,
|
224 |
+
df=df_null,
|
225 |
+
note="No trait data file found; dataset not usable for trait analysis."
|
226 |
+
)
|
227 |
+
|
228 |
+
else:
|
229 |
+
# 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
|
230 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
231 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
232 |
+
|
233 |
+
# 2. Load the previously extracted clinical CSV.
|
234 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file)
|
235 |
+
# If we had a single-row trait, rename row 0 to the trait name (example usage).
|
236 |
+
selected_clinical_df = selected_clinical_df.rename(index={0: trait})
|
237 |
+
|
238 |
+
# Combine these as our final clinical data; in this dataset, we only have trait info (if any).
|
239 |
+
combined_clinical_df = selected_clinical_df
|
240 |
+
|
241 |
+
# Link the clinical and genetic data by matching sample IDs in columns.
|
242 |
+
linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
|
243 |
+
|
244 |
+
# 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
|
245 |
+
processed_data = handle_missing_values(linked_data, trait)
|
246 |
+
|
247 |
+
# 4. Check trait bias and remove any biased demographic features (if any).
|
248 |
+
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
|
249 |
+
|
250 |
+
# 5. Final validation and metadata saving.
|
251 |
+
is_usable = validate_and_save_cohort_info(
|
252 |
+
is_final=True,
|
253 |
+
cohort=cohort,
|
254 |
+
info_path=json_path,
|
255 |
+
is_gene_available=True,
|
256 |
+
is_trait_available=True,
|
257 |
+
is_biased=trait_biased,
|
258 |
+
df=processed_data,
|
259 |
+
note="Completed trait-based preprocessing."
|
260 |
+
)
|
261 |
+
|
262 |
+
# 6. If final dataset is usable, save. Otherwise, skip.
|
263 |
+
if is_usable:
|
264 |
+
processed_data.to_csv(out_data_file)
|
p1/preprocess/Parkinsons_Disease/code/GSE103099.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Parkinsons_Disease"
|
6 |
+
cohort = "GSE103099"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Parkinsons_Disease"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Parkinsons_Disease/GSE103099"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Parkinsons_Disease/GSE103099.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Parkinsons_Disease/gene_data/GSE103099.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Parkinsons_Disease/clinical_data/GSE103099.csv"
|
16 |
+
json_path = "./output/preprocess/1/Parkinsons_Disease/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1. Determine if gene expression data is likely available
|
37 |
+
is_gene_available = True # Based on the series title mentioning LRRK2 expression
|
38 |
+
|
39 |
+
# 2. Identify data availability for trait, age, and gender
|
40 |
+
|
41 |
+
# From inspection:
|
42 |
+
# - Row 0 has only "gender: female" → single value → treat as not available
|
43 |
+
gender_row = None
|
44 |
+
|
45 |
+
# - Row 1 has only "age: 2 year old" → single value → treat as not available
|
46 |
+
age_row = None
|
47 |
+
|
48 |
+
# - Row 2 describes infection status (control vs. infected). We interpret this as our trait.
|
49 |
+
# Hence, multiple unique values → potential trait data
|
50 |
+
trait_row = 2
|
51 |
+
|
52 |
+
# 2.2 Define data type conversion functions
|
53 |
+
def convert_trait(x: str) -> int:
|
54 |
+
"""
|
55 |
+
Converts raw infection descriptor into a binary trait:
|
56 |
+
0 = no infection (control), 1 = infection (Parkinson's-like).
|
57 |
+
"""
|
58 |
+
parts = x.split(':')
|
59 |
+
if len(parts) < 2:
|
60 |
+
return None # Unknown format
|
61 |
+
val = parts[-1].strip().lower()
|
62 |
+
if val == "no infection":
|
63 |
+
return 0
|
64 |
+
else:
|
65 |
+
return 1
|
66 |
+
|
67 |
+
# Age and gender are not available, so conversion functions are not needed.
|
68 |
+
convert_age = None
|
69 |
+
convert_gender = None
|
70 |
+
|
71 |
+
# 3. Initial filtering and saving metadata
|
72 |
+
is_trait_available = (trait_row is not None)
|
73 |
+
is_usable = validate_and_save_cohort_info(
|
74 |
+
is_final=False,
|
75 |
+
cohort=cohort,
|
76 |
+
info_path=json_path,
|
77 |
+
is_gene_available=is_gene_available,
|
78 |
+
is_trait_available=is_trait_available
|
79 |
+
)
|
80 |
+
|
81 |
+
# 4. Extract clinical features if trait data is available
|
82 |
+
if trait_row is not None:
|
83 |
+
selected_clinical_df = geo_select_clinical_features(
|
84 |
+
clinical_df=clinical_data, # assumed to be loaded in a previous step
|
85 |
+
trait=trait,
|
86 |
+
trait_row=trait_row,
|
87 |
+
convert_trait=convert_trait,
|
88 |
+
age_row=age_row,
|
89 |
+
convert_age=convert_age,
|
90 |
+
gender_row=gender_row,
|
91 |
+
convert_gender=convert_gender
|
92 |
+
)
|
93 |
+
|
94 |
+
# Preview and save clinical data
|
95 |
+
preview = preview_df(selected_clinical_df)
|
96 |
+
print("Clinical Data Preview:", preview)
|
97 |
+
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
|
98 |
+
# STEP3
|
99 |
+
import gzip
|
100 |
+
import pandas as pd
|
101 |
+
|
102 |
+
try:
|
103 |
+
# 1. Attempt to extract gene expression data using the library function
|
104 |
+
gene_data = get_genetic_data(matrix_file)
|
105 |
+
except KeyError:
|
106 |
+
# Fallback: the expected "ID_REF" column may be absent, so manually parse the file
|
107 |
+
# and rename the first column to "ID".
|
108 |
+
marker = "!series_matrix_table_begin"
|
109 |
+
skip_rows = None
|
110 |
+
|
111 |
+
# Determine how many rows to skip before the matrix data begins
|
112 |
+
with gzip.open(matrix_file, 'rt') as f:
|
113 |
+
for i, line in enumerate(f):
|
114 |
+
if marker in line:
|
115 |
+
skip_rows = i + 1
|
116 |
+
break
|
117 |
+
else:
|
118 |
+
raise ValueError(f"Marker '{marker}' not found in the file.")
|
119 |
+
|
120 |
+
# Read the data from the determined position
|
121 |
+
gene_data = pd.read_csv(
|
122 |
+
matrix_file,
|
123 |
+
compression='gzip',
|
124 |
+
skiprows=skip_rows,
|
125 |
+
comment='!',
|
126 |
+
delimiter='\t',
|
127 |
+
on_bad_lines='skip'
|
128 |
+
)
|
129 |
+
|
130 |
+
# If a different column name is used instead of 'ID_REF', rename appropriately
|
131 |
+
if 'ID_REF' in gene_data.columns:
|
132 |
+
gene_data.rename(columns={'ID_REF': 'ID'}, inplace=True)
|
133 |
+
else:
|
134 |
+
first_col = gene_data.columns[0]
|
135 |
+
gene_data.rename(columns={first_col: 'ID'}, inplace=True)
|
136 |
+
|
137 |
+
gene_data['ID'] = gene_data['ID'].astype(str)
|
138 |
+
gene_data.set_index('ID', inplace=True)
|
139 |
+
|
140 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
141 |
+
print(gene_data.index[:20])
|
142 |
+
# Based on the observed identifiers (e.g., "1007_s_at", "1255_g_at"), these are Affymetrix probe set IDs
|
143 |
+
# and are not standard human gene symbols; therefore, mapping to gene symbols is needed.
|
144 |
+
print("requires_gene_mapping = True")
|
145 |
+
# STEP5
|
146 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
147 |
+
gene_annotation = get_gene_annotation(soft_file)
|
148 |
+
|
149 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
150 |
+
print("Gene annotation preview:")
|
151 |
+
print(preview_df(gene_annotation))
|
152 |
+
# Gene Identifier Mapping
|
153 |
+
|
154 |
+
# 1. Identify the appropriate columns for probe IDs and gene symbols.
|
155 |
+
# From inspection of the gene annotation preview:
|
156 |
+
# - The 'ID' column matches the probe IDs like '1007_s_at'.
|
157 |
+
# - The 'Gene Symbol' column contains the gene symbols (e.g., 'DDR1 /// MIR4640').
|
158 |
+
|
159 |
+
# 2. Create a mapping dataframe between probe IDs and gene symbols.
|
160 |
+
mapping_df = get_gene_mapping(
|
161 |
+
annotation=gene_annotation,
|
162 |
+
prob_col='ID',
|
163 |
+
gene_col='Gene Symbol'
|
164 |
+
)
|
165 |
+
|
166 |
+
# 3. Convert probe-level data to gene-level data by applying the mapping,
|
167 |
+
# distributing expression values equally across multiple mapped genes,
|
168 |
+
# and summing for genes that map from multiple probes.
|
169 |
+
gene_data = apply_gene_mapping(
|
170 |
+
expression_df=gene_data,
|
171 |
+
mapping_df=mapping_df
|
172 |
+
)
|
173 |
+
|
174 |
+
# Optional: Preview result
|
175 |
+
print("Mapped gene_data shape:", gene_data.shape)
|
176 |
+
print(gene_data.head())
|
177 |
+
import os
|
178 |
+
import pandas as pd
|
179 |
+
|
180 |
+
# STEP 7: Data Normalization and Linking
|
181 |
+
|
182 |
+
# First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
|
183 |
+
if not os.path.exists(out_clinical_data_file):
|
184 |
+
# No trait data file => dataset is not usable for trait analysis
|
185 |
+
df_null = pd.DataFrame()
|
186 |
+
is_biased = True # Arbitrary boolean to satisfy function requirement
|
187 |
+
validate_and_save_cohort_info(
|
188 |
+
is_final=True,
|
189 |
+
cohort=cohort,
|
190 |
+
info_path=json_path,
|
191 |
+
is_gene_available=True,
|
192 |
+
is_trait_available=False,
|
193 |
+
is_biased=is_biased,
|
194 |
+
df=df_null,
|
195 |
+
note="No trait data file found; dataset not usable for trait analysis."
|
196 |
+
)
|
197 |
+
|
198 |
+
else:
|
199 |
+
# 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
|
200 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
201 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
202 |
+
|
203 |
+
# 2. Load the previously extracted clinical CSV.
|
204 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file)
|
205 |
+
# If we had a single-row trait, rename row 0 to the trait name (example usage).
|
206 |
+
selected_clinical_df = selected_clinical_df.rename(index={0: trait})
|
207 |
+
|
208 |
+
# Combine these as our final clinical data; in this dataset, we only have trait info (if any).
|
209 |
+
combined_clinical_df = selected_clinical_df
|
210 |
+
|
211 |
+
# Link the clinical and genetic data by matching sample IDs in columns.
|
212 |
+
linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
|
213 |
+
|
214 |
+
# 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
|
215 |
+
processed_data = handle_missing_values(linked_data, trait)
|
216 |
+
|
217 |
+
# 4. Check trait bias and remove any biased demographic features (if any).
|
218 |
+
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
|
219 |
+
|
220 |
+
# 5. Final validation and metadata saving.
|
221 |
+
is_usable = validate_and_save_cohort_info(
|
222 |
+
is_final=True,
|
223 |
+
cohort=cohort,
|
224 |
+
info_path=json_path,
|
225 |
+
is_gene_available=True,
|
226 |
+
is_trait_available=True,
|
227 |
+
is_biased=trait_biased,
|
228 |
+
df=processed_data,
|
229 |
+
note="Completed trait-based preprocessing."
|
230 |
+
)
|
231 |
+
|
232 |
+
# 6. If final dataset is usable, save. Otherwise, skip.
|
233 |
+
if is_usable:
|
234 |
+
processed_data.to_csv(out_data_file)
|
p1/preprocess/Parkinsons_Disease/code/GSE202665.py
ADDED
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Parkinsons_Disease"
|
6 |
+
cohort = "GSE202665"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Parkinsons_Disease"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Parkinsons_Disease/GSE202665"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Parkinsons_Disease/GSE202665.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Parkinsons_Disease/gene_data/GSE202665.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Parkinsons_Disease/clinical_data/GSE202665.csv"
|
16 |
+
json_path = "./output/preprocess/1/Parkinsons_Disease/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1. Determine whether the dataset likely contains gene expression data
|
37 |
+
is_gene_available = True # Based on the series description ("mRNAarray")
|
38 |
+
|
39 |
+
# 2. Identify data availability and define data type conversion functions
|
40 |
+
trait_row = 0
|
41 |
+
age_row = 3
|
42 |
+
gender_row = None # All samples are male; hence it's effectively a constant variable
|
43 |
+
|
44 |
+
def convert_trait(value: str) -> int:
|
45 |
+
"""
|
46 |
+
Convert trait data to binary integers:
|
47 |
+
'Parkinson's disease' -> 1
|
48 |
+
'Healthy Control' -> 0
|
49 |
+
otherwise -> None
|
50 |
+
"""
|
51 |
+
parts = value.split(':', 1)
|
52 |
+
if len(parts) < 2:
|
53 |
+
return None
|
54 |
+
val = parts[1].strip().lower()
|
55 |
+
if "parkinson" in val:
|
56 |
+
return 1
|
57 |
+
elif "healthy" in val:
|
58 |
+
return 0
|
59 |
+
else:
|
60 |
+
return None
|
61 |
+
|
62 |
+
def convert_age(value: str) -> float:
|
63 |
+
"""
|
64 |
+
Convert age data to a continuous variable (float or int).
|
65 |
+
Returns None if conversion is not possible.
|
66 |
+
"""
|
67 |
+
parts = value.split(':', 1)
|
68 |
+
if len(parts) < 2:
|
69 |
+
return None
|
70 |
+
val = parts[1].strip()
|
71 |
+
try:
|
72 |
+
return float(val)
|
73 |
+
except ValueError:
|
74 |
+
return None
|
75 |
+
|
76 |
+
def convert_gender(value: str) -> int:
|
77 |
+
"""
|
78 |
+
Convert gender data to binary integers:
|
79 |
+
female -> 0
|
80 |
+
male -> 1
|
81 |
+
otherwise -> None
|
82 |
+
"""
|
83 |
+
parts = value.split(':', 1)
|
84 |
+
if len(parts) < 2:
|
85 |
+
return None
|
86 |
+
val = parts[1].strip().lower()
|
87 |
+
if "female" in val:
|
88 |
+
return 0
|
89 |
+
elif "male" in val:
|
90 |
+
return 1
|
91 |
+
else:
|
92 |
+
return None
|
93 |
+
|
94 |
+
# 3. Conduct initial filtering with validate_and_save_cohort_info
|
95 |
+
is_trait_available = (trait_row is not None)
|
96 |
+
_ = validate_and_save_cohort_info(
|
97 |
+
is_final=False,
|
98 |
+
cohort=cohort,
|
99 |
+
info_path=json_path,
|
100 |
+
is_gene_available=is_gene_available,
|
101 |
+
is_trait_available=is_trait_available,
|
102 |
+
note=''
|
103 |
+
)
|
104 |
+
|
105 |
+
# 4. If trait data is available, extract clinical features, preview, and save
|
106 |
+
if trait_row is not None:
|
107 |
+
selected_clinical_df = geo_select_clinical_features(
|
108 |
+
clinical_df=clinical_data,
|
109 |
+
trait=trait,
|
110 |
+
trait_row=trait_row,
|
111 |
+
convert_trait=convert_trait,
|
112 |
+
age_row=age_row,
|
113 |
+
convert_age=convert_age,
|
114 |
+
gender_row=gender_row,
|
115 |
+
convert_gender=convert_gender
|
116 |
+
)
|
117 |
+
preview = preview_df(selected_clinical_df, n=5, max_items=200)
|
118 |
+
print("Clinical Data Preview:", preview)
|
119 |
+
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
|
120 |
+
# STEP3
|
121 |
+
import gzip
|
122 |
+
import pandas as pd
|
123 |
+
|
124 |
+
try:
|
125 |
+
# 1. Attempt to extract gene expression data using the library function
|
126 |
+
gene_data = get_genetic_data(matrix_file)
|
127 |
+
except KeyError:
|
128 |
+
# Fallback: the expected "ID_REF" column may be absent, so manually parse the file
|
129 |
+
# and rename the first column to "ID".
|
130 |
+
marker = "!series_matrix_table_begin"
|
131 |
+
skip_rows = None
|
132 |
+
|
133 |
+
# Determine how many rows to skip before the matrix data begins
|
134 |
+
with gzip.open(matrix_file, 'rt') as f:
|
135 |
+
for i, line in enumerate(f):
|
136 |
+
if marker in line:
|
137 |
+
skip_rows = i + 1
|
138 |
+
break
|
139 |
+
else:
|
140 |
+
raise ValueError(f"Marker '{marker}' not found in the file.")
|
141 |
+
|
142 |
+
# Read the data from the determined position
|
143 |
+
gene_data = pd.read_csv(
|
144 |
+
matrix_file,
|
145 |
+
compression='gzip',
|
146 |
+
skiprows=skip_rows,
|
147 |
+
comment='!',
|
148 |
+
delimiter='\t',
|
149 |
+
on_bad_lines='skip'
|
150 |
+
)
|
151 |
+
|
152 |
+
# If a different column name is used instead of 'ID_REF', rename appropriately
|
153 |
+
if 'ID_REF' in gene_data.columns:
|
154 |
+
gene_data.rename(columns={'ID_REF': 'ID'}, inplace=True)
|
155 |
+
else:
|
156 |
+
first_col = gene_data.columns[0]
|
157 |
+
gene_data.rename(columns={first_col: 'ID'}, inplace=True)
|
158 |
+
|
159 |
+
gene_data['ID'] = gene_data['ID'].astype(str)
|
160 |
+
gene_data.set_index('ID', inplace=True)
|
161 |
+
|
162 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
163 |
+
print(gene_data.index[:20])
|
164 |
+
# Based on the given gene identifiers (1, 2, 3, ...), they do not appear to be standard human gene symbols.
|
165 |
+
# They likely require mapping to recognized gene symbols.
|
166 |
+
print("requires_gene_mapping = True")
|
167 |
+
# STEP5
|
168 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
169 |
+
gene_annotation = get_gene_annotation(soft_file)
|
170 |
+
|
171 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
172 |
+
print("Gene annotation preview:")
|
173 |
+
print(preview_df(gene_annotation))
|
174 |
+
# STEP6: Gene Identifier Mapping
|
175 |
+
|
176 |
+
# 1. Identify columns in the annotation dataframe
|
177 |
+
# The 'ID' column in gene_annotation matches the row IDs in the gene expression data,
|
178 |
+
# and 'GENE_SYMBOL' holds the gene symbols to which we need to map.
|
179 |
+
|
180 |
+
# 2. Get a gene mapping dataframe
|
181 |
+
mapping_df = get_gene_mapping(
|
182 |
+
annotation=gene_annotation,
|
183 |
+
prob_col="ID",
|
184 |
+
gene_col="GENE_SYMBOL"
|
185 |
+
)
|
186 |
+
|
187 |
+
# 3. Convert probe-level measurements to gene expression data
|
188 |
+
gene_data = apply_gene_mapping(
|
189 |
+
expression_df=gene_data,
|
190 |
+
mapping_df=mapping_df
|
191 |
+
)
|
192 |
+
|
193 |
+
# (Optional) Preview the mapped gene data dimensions and a few rows
|
194 |
+
print("Mapped Gene Data Shape:", gene_data.shape)
|
195 |
+
print(gene_data.head())
|
196 |
+
import os
|
197 |
+
import pandas as pd
|
198 |
+
|
199 |
+
# STEP 7: Data Normalization and Linking
|
200 |
+
|
201 |
+
# First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
|
202 |
+
if not os.path.exists(out_clinical_data_file):
|
203 |
+
# No trait data file => dataset is not usable for trait analysis
|
204 |
+
df_null = pd.DataFrame()
|
205 |
+
is_biased = True # Arbitrary boolean to satisfy function requirement
|
206 |
+
validate_and_save_cohort_info(
|
207 |
+
is_final=True,
|
208 |
+
cohort=cohort,
|
209 |
+
info_path=json_path,
|
210 |
+
is_gene_available=True,
|
211 |
+
is_trait_available=False,
|
212 |
+
is_biased=is_biased,
|
213 |
+
df=df_null,
|
214 |
+
note="No trait data file found; dataset not usable for trait analysis."
|
215 |
+
)
|
216 |
+
|
217 |
+
else:
|
218 |
+
# 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
|
219 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
220 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
221 |
+
|
222 |
+
# 2. Load the previously extracted clinical CSV.
|
223 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file)
|
224 |
+
# If we had a single-row trait, rename row 0 to the trait name (example usage).
|
225 |
+
selected_clinical_df = selected_clinical_df.rename(index={0: trait})
|
226 |
+
|
227 |
+
# Combine these as our final clinical data; in this dataset, we only have trait info (if any).
|
228 |
+
combined_clinical_df = selected_clinical_df
|
229 |
+
|
230 |
+
# Link the clinical and genetic data by matching sample IDs in columns.
|
231 |
+
linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
|
232 |
+
|
233 |
+
# 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
|
234 |
+
processed_data = handle_missing_values(linked_data, trait)
|
235 |
+
|
236 |
+
# 4. Check trait bias and remove any biased demographic features (if any).
|
237 |
+
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
|
238 |
+
|
239 |
+
# 5. Final validation and metadata saving.
|
240 |
+
is_usable = validate_and_save_cohort_info(
|
241 |
+
is_final=True,
|
242 |
+
cohort=cohort,
|
243 |
+
info_path=json_path,
|
244 |
+
is_gene_available=True,
|
245 |
+
is_trait_available=True,
|
246 |
+
is_biased=trait_biased,
|
247 |
+
df=processed_data,
|
248 |
+
note="Completed trait-based preprocessing."
|
249 |
+
)
|
250 |
+
|
251 |
+
# 6. If final dataset is usable, save. Otherwise, skip.
|
252 |
+
if is_usable:
|
253 |
+
processed_data.to_csv(out_data_file)
|
p1/preprocess/Parkinsons_Disease/code/GSE202667.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Parkinsons_Disease"
|
6 |
+
cohort = "GSE202667"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Parkinsons_Disease"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Parkinsons_Disease/GSE202667"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Parkinsons_Disease/GSE202667.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Parkinsons_Disease/gene_data/GSE202667.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Parkinsons_Disease/clinical_data/GSE202667.csv"
|
16 |
+
json_path = "./output/preprocess/1/Parkinsons_Disease/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
is_gene_available = True # Based on "RNA signatures", this dataset likely contains gene expression data
|
38 |
+
|
39 |
+
# 2. Variable Availability and Data Type Conversion
|
40 |
+
trait_row = 0 # 0 -> ["disease state: Parkinson's disease", 'disease state: Healthy Control']
|
41 |
+
age_row = 3 # 3 -> ['age: 53', 'age: 57', 'age: 63', 'age: 75', ...]
|
42 |
+
gender_row = None # Only 'male' is observed (constant), so treat as not available
|
43 |
+
|
44 |
+
# Define the conversion functions
|
45 |
+
def convert_trait(x: str):
|
46 |
+
"""Convert 'disease state: X' to binary (Parkinson's disease -> 1, Healthy Control -> 0)."""
|
47 |
+
if not isinstance(x, str):
|
48 |
+
return None
|
49 |
+
parts = x.split(':', 1)
|
50 |
+
if len(parts) < 2:
|
51 |
+
return None
|
52 |
+
val = parts[1].strip().lower()
|
53 |
+
if 'parkinson' in val:
|
54 |
+
return 1
|
55 |
+
elif 'healthy control' in val:
|
56 |
+
return 0
|
57 |
+
return None
|
58 |
+
|
59 |
+
def convert_age(x: str):
|
60 |
+
"""Convert 'age: XX' to numeric."""
|
61 |
+
if not isinstance(x, str):
|
62 |
+
return None
|
63 |
+
parts = x.split(':', 1)
|
64 |
+
if len(parts) < 2:
|
65 |
+
return None
|
66 |
+
val = parts[1].strip()
|
67 |
+
try:
|
68 |
+
return float(val)
|
69 |
+
except ValueError:
|
70 |
+
return None
|
71 |
+
|
72 |
+
# 3. Save Metadata (initial filtering)
|
73 |
+
is_trait_available = (trait_row is not None)
|
74 |
+
is_usable = validate_and_save_cohort_info(
|
75 |
+
is_final=False,
|
76 |
+
cohort=cohort,
|
77 |
+
info_path=json_path,
|
78 |
+
is_gene_available=is_gene_available,
|
79 |
+
is_trait_available=is_trait_available
|
80 |
+
)
|
81 |
+
|
82 |
+
# 4. Clinical Feature Extraction (only if trait_row is not None)
|
83 |
+
if trait_row is not None:
|
84 |
+
selected_clinical_df = geo_select_clinical_features(
|
85 |
+
clinical_data,
|
86 |
+
trait=trait,
|
87 |
+
trait_row=trait_row,
|
88 |
+
convert_trait=convert_trait,
|
89 |
+
age_row=age_row,
|
90 |
+
convert_age=convert_age,
|
91 |
+
gender_row=gender_row,
|
92 |
+
convert_gender=None # Not used since gender_row is None
|
93 |
+
)
|
94 |
+
preview = preview_df(selected_clinical_df)
|
95 |
+
print("Preview of selected clinical features:", preview)
|
96 |
+
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
|
97 |
+
# STEP3
|
98 |
+
import gzip
|
99 |
+
import pandas as pd
|
100 |
+
|
101 |
+
try:
|
102 |
+
# 1. Attempt to extract gene expression data using the library function
|
103 |
+
gene_data = get_genetic_data(matrix_file)
|
104 |
+
except KeyError:
|
105 |
+
# Fallback: the expected "ID_REF" column may be absent, so manually parse the file
|
106 |
+
# and rename the first column to "ID".
|
107 |
+
marker = "!series_matrix_table_begin"
|
108 |
+
skip_rows = None
|
109 |
+
|
110 |
+
# Determine how many rows to skip before the matrix data begins
|
111 |
+
with gzip.open(matrix_file, 'rt') as f:
|
112 |
+
for i, line in enumerate(f):
|
113 |
+
if marker in line:
|
114 |
+
skip_rows = i + 1
|
115 |
+
break
|
116 |
+
else:
|
117 |
+
raise ValueError(f"Marker '{marker}' not found in the file.")
|
118 |
+
|
119 |
+
# Read the data from the determined position
|
120 |
+
gene_data = pd.read_csv(
|
121 |
+
matrix_file,
|
122 |
+
compression='gzip',
|
123 |
+
skiprows=skip_rows,
|
124 |
+
comment='!',
|
125 |
+
delimiter='\t',
|
126 |
+
on_bad_lines='skip'
|
127 |
+
)
|
128 |
+
|
129 |
+
# If a different column name is used instead of 'ID_REF', rename appropriately
|
130 |
+
if 'ID_REF' in gene_data.columns:
|
131 |
+
gene_data.rename(columns={'ID_REF': 'ID'}, inplace=True)
|
132 |
+
else:
|
133 |
+
first_col = gene_data.columns[0]
|
134 |
+
gene_data.rename(columns={first_col: 'ID'}, inplace=True)
|
135 |
+
|
136 |
+
gene_data['ID'] = gene_data['ID'].astype(str)
|
137 |
+
gene_data.set_index('ID', inplace=True)
|
138 |
+
|
139 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
140 |
+
print(gene_data.index[:20])
|
141 |
+
# Based on the numeric-only identifiers (e.g., '1', '2', '3', ...),
|
142 |
+
# it is clear they are not standard human gene symbols.
|
143 |
+
# Therefore, gene mapping is required.
|
144 |
+
|
145 |
+
print("requires_gene_mapping = True")
|
146 |
+
# STEP5
|
147 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
148 |
+
gene_annotation = get_gene_annotation(soft_file)
|
149 |
+
|
150 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
151 |
+
print("Gene annotation preview:")
|
152 |
+
print(preview_df(gene_annotation))
|
153 |
+
# STEP: Gene Identifier Mapping
|
154 |
+
|
155 |
+
# 1. Identify the columns in the annotation DataFrame that correspond to the same IDs as in the gene expression data,
|
156 |
+
# and the column that holds the gene symbols.
|
157 |
+
# From the previews, it appears "ID" matches the numeric IDs in the gene expression data,
|
158 |
+
# and "GENE_SYMBOL" corresponds to the gene symbols.
|
159 |
+
|
160 |
+
# 2. Obtain the gene mapping DataFrame using these two columns.
|
161 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="GENE_SYMBOL")
|
162 |
+
|
163 |
+
# 3. Apply the gene mapping to convert probe-level measurements to gene-level expression data.
|
164 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
165 |
+
|
166 |
+
# For confirmation, let's print out some basic information about the remapped gene data.
|
167 |
+
print("Remapped gene_data shape:", gene_data.shape)
|
168 |
+
print("First 20 gene indices after mapping:")
|
169 |
+
print(gene_data.index[:20])
|
170 |
+
import os
|
171 |
+
import pandas as pd
|
172 |
+
|
173 |
+
# STEP 7: Data Normalization and Linking
|
174 |
+
|
175 |
+
# First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
|
176 |
+
if not os.path.exists(out_clinical_data_file):
|
177 |
+
# No trait data file => dataset is not usable for trait analysis
|
178 |
+
df_null = pd.DataFrame()
|
179 |
+
is_biased = True # Arbitrary boolean to satisfy function requirement
|
180 |
+
validate_and_save_cohort_info(
|
181 |
+
is_final=True,
|
182 |
+
cohort=cohort,
|
183 |
+
info_path=json_path,
|
184 |
+
is_gene_available=True,
|
185 |
+
is_trait_available=False,
|
186 |
+
is_biased=is_biased,
|
187 |
+
df=df_null,
|
188 |
+
note="No trait data file found; dataset not usable for trait analysis."
|
189 |
+
)
|
190 |
+
|
191 |
+
else:
|
192 |
+
# 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
|
193 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
194 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
195 |
+
|
196 |
+
# 2. Load the previously extracted clinical CSV.
|
197 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file)
|
198 |
+
# If we had a single-row trait, rename row 0 to the trait name (example usage).
|
199 |
+
selected_clinical_df = selected_clinical_df.rename(index={0: trait})
|
200 |
+
|
201 |
+
# Combine these as our final clinical data; in this dataset, we only have trait info (if any).
|
202 |
+
combined_clinical_df = selected_clinical_df
|
203 |
+
|
204 |
+
# Link the clinical and genetic data by matching sample IDs in columns.
|
205 |
+
linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
|
206 |
+
|
207 |
+
# 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
|
208 |
+
processed_data = handle_missing_values(linked_data, trait)
|
209 |
+
|
210 |
+
# 4. Check trait bias and remove any biased demographic features (if any).
|
211 |
+
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
|
212 |
+
|
213 |
+
# 5. Final validation and metadata saving.
|
214 |
+
is_usable = validate_and_save_cohort_info(
|
215 |
+
is_final=True,
|
216 |
+
cohort=cohort,
|
217 |
+
info_path=json_path,
|
218 |
+
is_gene_available=True,
|
219 |
+
is_trait_available=True,
|
220 |
+
is_biased=trait_biased,
|
221 |
+
df=processed_data,
|
222 |
+
note="Completed trait-based preprocessing."
|
223 |
+
)
|
224 |
+
|
225 |
+
# 6. If final dataset is usable, save. Otherwise, skip.
|
226 |
+
if is_usable:
|
227 |
+
processed_data.to_csv(out_data_file)
|
p1/preprocess/Parkinsons_Disease/code/GSE30335.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Parkinsons_Disease"
|
6 |
+
cohort = "GSE30335"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Parkinsons_Disease"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Parkinsons_Disease/GSE30335"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Parkinsons_Disease/GSE30335.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Parkinsons_Disease/gene_data/GSE30335.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Parkinsons_Disease/clinical_data/GSE30335.csv"
|
16 |
+
json_path = "./output/preprocess/1/Parkinsons_Disease/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1. Determine availability of gene expression data
|
37 |
+
is_gene_available = True # From the series summary, it clearly states "Blood gene expression"
|
38 |
+
|
39 |
+
# 2. Determine availability for trait, age, and gender
|
40 |
+
# and define the corresponding data type conversion functions.
|
41 |
+
|
42 |
+
# From the provided dictionary and background,
|
43 |
+
# there is no Parkinson's Disease status key (trait),
|
44 |
+
# no mention of age, and everyone in the dataset is male (constant feature).
|
45 |
+
# Hence, none of them are effectively available for analysis.
|
46 |
+
trait_row = None
|
47 |
+
age_row = None
|
48 |
+
gender_row = None
|
49 |
+
|
50 |
+
# Placeholder conversion functions returning None
|
51 |
+
def convert_trait(value: str):
|
52 |
+
return None
|
53 |
+
|
54 |
+
def convert_age(value: str):
|
55 |
+
return None
|
56 |
+
|
57 |
+
def convert_gender(value: str):
|
58 |
+
return None
|
59 |
+
|
60 |
+
# 3. Save initial metadata using validate_and_save_cohort_info
|
61 |
+
# (trait availability is False because trait_row is None).
|
62 |
+
is_trait_available = (trait_row is not None)
|
63 |
+
validate_and_save_cohort_info(
|
64 |
+
is_final=False,
|
65 |
+
cohort=cohort,
|
66 |
+
info_path=json_path,
|
67 |
+
is_gene_available=is_gene_available,
|
68 |
+
is_trait_available=is_trait_available
|
69 |
+
)
|
70 |
+
|
71 |
+
# 4. Since trait_row is None, we skip the clinical feature extraction step.
|
p1/preprocess/Parkinsons_Disease/code/GSE49126.py
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Parkinsons_Disease"
|
6 |
+
cohort = "GSE49126"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Parkinsons_Disease"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Parkinsons_Disease/GSE49126"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Parkinsons_Disease/GSE49126.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Parkinsons_Disease/gene_data/GSE49126.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Parkinsons_Disease/clinical_data/GSE49126.csv"
|
16 |
+
json_path = "./output/preprocess/1/Parkinsons_Disease/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1. Determine gene expression data availability
|
37 |
+
is_gene_available = True # Based on the provided info ("Transcriptomic profiling" on Agilent)
|
38 |
+
|
39 |
+
# 2. Variable availability and data type conversion
|
40 |
+
# Observing the sample characteristics dictionary:
|
41 |
+
# 0: ['disease state: control', "disease state: Parkinson's disease"]
|
42 |
+
# 1: ['cell type: peripheral blood mononuclear cells']
|
43 |
+
# We see that row 0 has two unique values ("control" vs. "Parkinson's disease"), which map to the trait.
|
44 |
+
trait_row = 0
|
45 |
+
age_row = None
|
46 |
+
gender_row = None
|
47 |
+
|
48 |
+
def convert_trait(value: str) -> Optional[int]:
|
49 |
+
if ':' in value:
|
50 |
+
val = value.split(':', 1)[1].strip().lower()
|
51 |
+
if 'control' in val:
|
52 |
+
return 0
|
53 |
+
elif 'parkinson' in val:
|
54 |
+
return 1
|
55 |
+
return None
|
56 |
+
|
57 |
+
def convert_age(value: str) -> Optional[float]:
|
58 |
+
# Not available in this dataset
|
59 |
+
return None
|
60 |
+
|
61 |
+
def convert_gender(value: str) -> Optional[int]:
|
62 |
+
# Not available in this dataset
|
63 |
+
return None
|
64 |
+
|
65 |
+
# 3. Save metadata via initial filtering
|
66 |
+
is_trait_available = (trait_row is not None)
|
67 |
+
is_usable = validate_and_save_cohort_info(
|
68 |
+
is_final=False,
|
69 |
+
cohort=cohort,
|
70 |
+
info_path=json_path,
|
71 |
+
is_gene_available=is_gene_available,
|
72 |
+
is_trait_available=is_trait_available
|
73 |
+
)
|
74 |
+
|
75 |
+
# 4. If trait data is available, extract clinical features
|
76 |
+
if trait_row is not None:
|
77 |
+
selected_clinical_df = geo_select_clinical_features(
|
78 |
+
clinical_df=clinical_data,
|
79 |
+
trait=trait,
|
80 |
+
trait_row=trait_row,
|
81 |
+
convert_trait=convert_trait,
|
82 |
+
age_row=age_row,
|
83 |
+
convert_age=convert_age,
|
84 |
+
gender_row=gender_row,
|
85 |
+
convert_gender=convert_gender
|
86 |
+
)
|
87 |
+
preview = preview_df(selected_clinical_df)
|
88 |
+
print("Clinical Data Preview:", preview)
|
89 |
+
|
90 |
+
# Save extracted clinical dataframe
|
91 |
+
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
|
92 |
+
# STEP3
|
93 |
+
import gzip
|
94 |
+
import pandas as pd
|
95 |
+
|
96 |
+
try:
|
97 |
+
# 1. Attempt to extract gene expression data using the library function
|
98 |
+
gene_data = get_genetic_data(matrix_file)
|
99 |
+
except KeyError:
|
100 |
+
# Fallback: the expected "ID_REF" column may be absent, so manually parse the file
|
101 |
+
# and rename the first column to "ID".
|
102 |
+
marker = "!series_matrix_table_begin"
|
103 |
+
skip_rows = None
|
104 |
+
|
105 |
+
# Determine how many rows to skip before the matrix data begins
|
106 |
+
with gzip.open(matrix_file, 'rt') as f:
|
107 |
+
for i, line in enumerate(f):
|
108 |
+
if marker in line:
|
109 |
+
skip_rows = i + 1
|
110 |
+
break
|
111 |
+
else:
|
112 |
+
raise ValueError(f"Marker '{marker}' not found in the file.")
|
113 |
+
|
114 |
+
# Read the data from the determined position
|
115 |
+
gene_data = pd.read_csv(
|
116 |
+
matrix_file,
|
117 |
+
compression='gzip',
|
118 |
+
skiprows=skip_rows,
|
119 |
+
comment='!',
|
120 |
+
delimiter='\t',
|
121 |
+
on_bad_lines='skip'
|
122 |
+
)
|
123 |
+
|
124 |
+
# If a different column name is used instead of 'ID_REF', rename appropriately
|
125 |
+
if 'ID_REF' in gene_data.columns:
|
126 |
+
gene_data.rename(columns={'ID_REF': 'ID'}, inplace=True)
|
127 |
+
else:
|
128 |
+
first_col = gene_data.columns[0]
|
129 |
+
gene_data.rename(columns={first_col: 'ID'}, inplace=True)
|
130 |
+
|
131 |
+
gene_data['ID'] = gene_data['ID'].astype(str)
|
132 |
+
gene_data.set_index('ID', inplace=True)
|
133 |
+
|
134 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
135 |
+
print(gene_data.index[:20])
|
136 |
+
# Based on the observed identifiers (numeric indices), they are not standard human gene symbols.
|
137 |
+
# Therefore, they require mapping to gene symbols.
|
138 |
+
print("requires_gene_mapping = True")
|
139 |
+
# STEP5
|
140 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
141 |
+
gene_annotation = get_gene_annotation(soft_file)
|
142 |
+
|
143 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
144 |
+
print("Gene annotation preview:")
|
145 |
+
print(preview_df(gene_annotation))
|
146 |
+
# STEP: Gene Identifier Mapping
|
147 |
+
|
148 |
+
# 1. Decide which columns in 'gene_annotation' match the gene expression data and the gene symbols:
|
149 |
+
# From the preview, the 'ID' column in 'gene_annotation' appears to correspond to the probe IDs
|
150 |
+
# in 'gene_data'. The 'GENE_SYMBOL' column is presumably the gene symbol field.
|
151 |
+
|
152 |
+
probe_id_column = "ID"
|
153 |
+
gene_symbol_column = "GENE_SYMBOL"
|
154 |
+
|
155 |
+
# 2. Get a dataframe mapping probe IDs to gene symbols
|
156 |
+
mapping_df = get_gene_mapping(gene_annotation, probe_id_column, gene_symbol_column)
|
157 |
+
|
158 |
+
# 3. Convert the probe-level measurements to gene-level by applying the mapping
|
159 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
160 |
+
|
161 |
+
# Just print a brief shape info for verification
|
162 |
+
print("Mapped gene_data shape:", gene_data.shape)
|
163 |
+
import os
|
164 |
+
import pandas as pd
|
165 |
+
|
166 |
+
# STEP 7: Data Normalization and Linking
|
167 |
+
|
168 |
+
# First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
|
169 |
+
if not os.path.exists(out_clinical_data_file):
|
170 |
+
# No trait data file => dataset is not usable for trait analysis
|
171 |
+
df_null = pd.DataFrame()
|
172 |
+
is_biased = True # Arbitrary boolean to satisfy function requirement
|
173 |
+
validate_and_save_cohort_info(
|
174 |
+
is_final=True,
|
175 |
+
cohort=cohort,
|
176 |
+
info_path=json_path,
|
177 |
+
is_gene_available=True,
|
178 |
+
is_trait_available=False,
|
179 |
+
is_biased=is_biased,
|
180 |
+
df=df_null,
|
181 |
+
note="No trait data file found; dataset not usable for trait analysis."
|
182 |
+
)
|
183 |
+
|
184 |
+
else:
|
185 |
+
# 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
|
186 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
187 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
188 |
+
|
189 |
+
# 2. Load the previously extracted clinical CSV.
|
190 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file)
|
191 |
+
# If we had a single-row trait, rename row 0 to the trait name (example usage).
|
192 |
+
selected_clinical_df = selected_clinical_df.rename(index={0: trait})
|
193 |
+
|
194 |
+
# Combine these as our final clinical data; in this dataset, we only have trait info (if any).
|
195 |
+
combined_clinical_df = selected_clinical_df
|
196 |
+
|
197 |
+
# Link the clinical and genetic data by matching sample IDs in columns.
|
198 |
+
linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
|
199 |
+
|
200 |
+
# 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
|
201 |
+
processed_data = handle_missing_values(linked_data, trait)
|
202 |
+
|
203 |
+
# 4. Check trait bias and remove any biased demographic features (if any).
|
204 |
+
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
|
205 |
+
|
206 |
+
# 5. Final validation and metadata saving.
|
207 |
+
is_usable = validate_and_save_cohort_info(
|
208 |
+
is_final=True,
|
209 |
+
cohort=cohort,
|
210 |
+
info_path=json_path,
|
211 |
+
is_gene_available=True,
|
212 |
+
is_trait_available=True,
|
213 |
+
is_biased=trait_biased,
|
214 |
+
df=processed_data,
|
215 |
+
note="Completed trait-based preprocessing."
|
216 |
+
)
|
217 |
+
|
218 |
+
# 6. If final dataset is usable, save. Otherwise, skip.
|
219 |
+
if is_usable:
|
220 |
+
processed_data.to_csv(out_data_file)
|
p1/preprocess/Parkinsons_Disease/code/GSE57475.py
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Parkinsons_Disease"
|
6 |
+
cohort = "GSE57475"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Parkinsons_Disease"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Parkinsons_Disease/GSE57475"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Parkinsons_Disease/GSE57475.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Parkinsons_Disease/gene_data/GSE57475.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Parkinsons_Disease/clinical_data/GSE57475.csv"
|
16 |
+
json_path = "./output/preprocess/1/Parkinsons_Disease/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
import re
|
37 |
+
|
38 |
+
# 1) Determine if gene expression data is available
|
39 |
+
is_gene_available = True # Based on the series title and summary, it clearly involves gene expression data
|
40 |
+
|
41 |
+
# 2) Identify the keys in the sample characteristics dictionary
|
42 |
+
# From the background, we see:
|
43 |
+
# key=0 -> age data
|
44 |
+
# key=1 -> gender data
|
45 |
+
# key=2 -> disease state (PD or control)
|
46 |
+
trait_row = 2
|
47 |
+
age_row = 0
|
48 |
+
gender_row = 1
|
49 |
+
|
50 |
+
# 2.2) Define conversion functions
|
51 |
+
def convert_trait(value: str):
|
52 |
+
# Extract the portion after the first colon
|
53 |
+
match = re.split(r':\s*', value, maxsplit=1)
|
54 |
+
if len(match) < 2:
|
55 |
+
return None
|
56 |
+
val = match[1].strip().lower()
|
57 |
+
# Map PD to 1, control to 0
|
58 |
+
if "pd" in val:
|
59 |
+
return 1
|
60 |
+
elif "control" in val:
|
61 |
+
return 0
|
62 |
+
else:
|
63 |
+
return None
|
64 |
+
|
65 |
+
def convert_age(value: str):
|
66 |
+
# Extract the portion after the first colon
|
67 |
+
match = re.split(r':\s*', value, maxsplit=1)
|
68 |
+
if len(match) < 2:
|
69 |
+
return None
|
70 |
+
val = match[1].strip()
|
71 |
+
# Convert to float if possible
|
72 |
+
try:
|
73 |
+
return float(val)
|
74 |
+
except ValueError:
|
75 |
+
return None
|
76 |
+
|
77 |
+
def convert_gender(value: str):
|
78 |
+
# Extract the portion after the first colon
|
79 |
+
match = re.split(r':\s*', value, maxsplit=1)
|
80 |
+
if len(match) < 2:
|
81 |
+
return None
|
82 |
+
val = match[1].strip().upper()
|
83 |
+
# Map F -> 0, M -> 1
|
84 |
+
if val == "F":
|
85 |
+
return 0
|
86 |
+
elif val == "M":
|
87 |
+
return 1
|
88 |
+
else:
|
89 |
+
return None
|
90 |
+
|
91 |
+
# 3) Initial filtering on the usability of the dataset
|
92 |
+
is_trait_available = (trait_row is not None)
|
93 |
+
is_usable = validate_and_save_cohort_info(
|
94 |
+
is_final=False,
|
95 |
+
cohort=cohort,
|
96 |
+
info_path=json_path,
|
97 |
+
is_gene_available=is_gene_available,
|
98 |
+
is_trait_available=is_trait_available
|
99 |
+
)
|
100 |
+
|
101 |
+
# 4) If trait data is available, extract and preview clinical features
|
102 |
+
if trait_row is not None:
|
103 |
+
df_clinical = geo_select_clinical_features(
|
104 |
+
clinical_df=clinical_data,
|
105 |
+
trait=trait,
|
106 |
+
trait_row=trait_row,
|
107 |
+
convert_trait=convert_trait,
|
108 |
+
age_row=age_row,
|
109 |
+
convert_age=convert_age,
|
110 |
+
gender_row=gender_row,
|
111 |
+
convert_gender=convert_gender
|
112 |
+
)
|
113 |
+
# Preview
|
114 |
+
clinical_preview = preview_df(df_clinical)
|
115 |
+
print("Clinical Feature Preview:", clinical_preview)
|
116 |
+
|
117 |
+
# Save the extracted clinical features
|
118 |
+
df_clinical.to_csv(out_clinical_data_file, index=False)
|
119 |
+
# STEP3
|
120 |
+
import gzip
|
121 |
+
import pandas as pd
|
122 |
+
|
123 |
+
try:
|
124 |
+
# 1. Attempt to extract gene expression data using the library function
|
125 |
+
gene_data = get_genetic_data(matrix_file)
|
126 |
+
except KeyError:
|
127 |
+
# Fallback: the expected "ID_REF" column may be absent, so manually parse the file
|
128 |
+
# and rename the first column to "ID".
|
129 |
+
marker = "!series_matrix_table_begin"
|
130 |
+
skip_rows = None
|
131 |
+
|
132 |
+
# Determine how many rows to skip before the matrix data begins
|
133 |
+
with gzip.open(matrix_file, 'rt') as f:
|
134 |
+
for i, line in enumerate(f):
|
135 |
+
if marker in line:
|
136 |
+
skip_rows = i + 1
|
137 |
+
break
|
138 |
+
else:
|
139 |
+
raise ValueError(f"Marker '{marker}' not found in the file.")
|
140 |
+
|
141 |
+
# Read the data from the determined position
|
142 |
+
gene_data = pd.read_csv(
|
143 |
+
matrix_file,
|
144 |
+
compression='gzip',
|
145 |
+
skiprows=skip_rows,
|
146 |
+
comment='!',
|
147 |
+
delimiter='\t',
|
148 |
+
on_bad_lines='skip'
|
149 |
+
)
|
150 |
+
|
151 |
+
# If a different column name is used instead of 'ID_REF', rename appropriately
|
152 |
+
if 'ID_REF' in gene_data.columns:
|
153 |
+
gene_data.rename(columns={'ID_REF': 'ID'}, inplace=True)
|
154 |
+
else:
|
155 |
+
first_col = gene_data.columns[0]
|
156 |
+
gene_data.rename(columns={first_col: 'ID'}, inplace=True)
|
157 |
+
|
158 |
+
gene_data['ID'] = gene_data['ID'].astype(str)
|
159 |
+
gene_data.set_index('ID', inplace=True)
|
160 |
+
|
161 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
162 |
+
print(gene_data.index[:20])
|
163 |
+
# These identifiers are Illumina probe IDs, not standard human gene symbols.
|
164 |
+
# Therefore, we need to map them to the corresponding gene symbols.
|
165 |
+
print("Based on the provided gene identifiers, they appear to be Illumina probe IDs "
|
166 |
+
"rather than standard human gene symbols.\nrequires_gene_mapping = True")
|
167 |
+
# STEP5
|
168 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
169 |
+
gene_annotation = get_gene_annotation(soft_file)
|
170 |
+
|
171 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
172 |
+
print("Gene annotation preview:")
|
173 |
+
print(preview_df(gene_annotation))
|
174 |
+
# STEP: Gene Identifier Mapping
|
175 |
+
|
176 |
+
# 1. Identify which columns in gene_annotation match the probe IDs in gene_data and the actual gene symbols.
|
177 |
+
# From the preview, the "ID" column in gene_annotation corresponds to the probe IDs (e.g. ILMN_1811966),
|
178 |
+
# and the "Symbol" column corresponds to the gene symbol (e.g. FCGR2B, TRIM44).
|
179 |
+
prob_col = 'ID'
|
180 |
+
gene_col = 'Symbol'
|
181 |
+
|
182 |
+
# 2. Get a gene mapping dataframe by extracting these two columns.
|
183 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col=prob_col, gene_col=gene_col)
|
184 |
+
|
185 |
+
# 3. Map probe-level expression data to gene-level expression data:
|
186 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
187 |
+
import os
|
188 |
+
import pandas as pd
|
189 |
+
|
190 |
+
# STEP 7: Data Normalization and Linking
|
191 |
+
|
192 |
+
# First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
|
193 |
+
if not os.path.exists(out_clinical_data_file):
|
194 |
+
# No trait data file => dataset is not usable for trait analysis
|
195 |
+
df_null = pd.DataFrame()
|
196 |
+
is_biased = True # Arbitrary boolean to satisfy function requirement
|
197 |
+
validate_and_save_cohort_info(
|
198 |
+
is_final=True,
|
199 |
+
cohort=cohort,
|
200 |
+
info_path=json_path,
|
201 |
+
is_gene_available=True,
|
202 |
+
is_trait_available=False,
|
203 |
+
is_biased=is_biased,
|
204 |
+
df=df_null,
|
205 |
+
note="No trait data file found; dataset not usable for trait analysis."
|
206 |
+
)
|
207 |
+
|
208 |
+
else:
|
209 |
+
# 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
|
210 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
211 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
212 |
+
|
213 |
+
# 2. Load the previously extracted clinical CSV.
|
214 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file)
|
215 |
+
# If we had a single-row trait, rename row 0 to the trait name (example usage).
|
216 |
+
selected_clinical_df = selected_clinical_df.rename(index={0: trait})
|
217 |
+
|
218 |
+
# Combine these as our final clinical data; in this dataset, we only have trait info (if any).
|
219 |
+
combined_clinical_df = selected_clinical_df
|
220 |
+
|
221 |
+
# Link the clinical and genetic data by matching sample IDs in columns.
|
222 |
+
linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
|
223 |
+
|
224 |
+
# 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
|
225 |
+
processed_data = handle_missing_values(linked_data, trait)
|
226 |
+
|
227 |
+
# 4. Check trait bias and remove any biased demographic features (if any).
|
228 |
+
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
|
229 |
+
|
230 |
+
# 5. Final validation and metadata saving.
|
231 |
+
is_usable = validate_and_save_cohort_info(
|
232 |
+
is_final=True,
|
233 |
+
cohort=cohort,
|
234 |
+
info_path=json_path,
|
235 |
+
is_gene_available=True,
|
236 |
+
is_trait_available=True,
|
237 |
+
is_biased=trait_biased,
|
238 |
+
df=processed_data,
|
239 |
+
note="Completed trait-based preprocessing."
|
240 |
+
)
|
241 |
+
|
242 |
+
# 6. If final dataset is usable, save. Otherwise, skip.
|
243 |
+
if is_usable:
|
244 |
+
processed_data.to_csv(out_data_file)
|
p1/preprocess/Parkinsons_Disease/code/GSE71220.py
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Parkinsons_Disease"
|
6 |
+
cohort = "GSE71220"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Parkinsons_Disease"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Parkinsons_Disease/GSE71220"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Parkinsons_Disease/GSE71220.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Parkinsons_Disease/gene_data/GSE71220.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Parkinsons_Disease/clinical_data/GSE71220.csv"
|
16 |
+
json_path = "./output/preprocess/1/Parkinsons_Disease/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# Step 1: Determine if this dataset contains gene expression data
|
37 |
+
# Based on the background information, it mentions "Whole blood gene expression was measured"
|
38 |
+
# using Affymetrix microarray chips. Hence we can conclude:
|
39 |
+
is_gene_available = True
|
40 |
+
|
41 |
+
# Step 2: Check variable (trait, age, gender) availability
|
42 |
+
|
43 |
+
# 2.1 Data Availability
|
44 |
+
# - The sample characteristics dictionary does not contain "Parkinson's Disease" or an equivalent field.
|
45 |
+
# Therefore, we cannot map the trait "Parkinsons_Disease" to any row:
|
46 |
+
trait_row = None
|
47 |
+
|
48 |
+
# - For age, the dictionary at key=2 contains age information ("age: XX"):
|
49 |
+
age_row = 2
|
50 |
+
|
51 |
+
# - For gender, the dictionary at key=3 contains sex information ("Sex: F" or "Sex: M"):
|
52 |
+
gender_row = 3
|
53 |
+
|
54 |
+
# 2.2 Data Type Conversion
|
55 |
+
|
56 |
+
def convert_trait(value: str) -> Optional[int]:
|
57 |
+
"""
|
58 |
+
Convert the trait string to a binary value:
|
59 |
+
- If it indicates 'Parkinsons_Disease', return 1
|
60 |
+
- If it indicates a control or non-PD state, return 0
|
61 |
+
- Otherwise, return None
|
62 |
+
Since the dataset does not have explicit PD data, this function is mostly a placeholder.
|
63 |
+
"""
|
64 |
+
# Typically, we parse after the colon:
|
65 |
+
val_part = value.split(':')[-1].strip().lower()
|
66 |
+
if 'parkinson' in val_part:
|
67 |
+
return 1
|
68 |
+
elif 'control' in val_part or 'no' in val_part:
|
69 |
+
return 0
|
70 |
+
else:
|
71 |
+
return None
|
72 |
+
|
73 |
+
def convert_age(value: str) -> Optional[float]:
|
74 |
+
"""
|
75 |
+
Convert age from string to a float. If parsing fails, return None.
|
76 |
+
Example input: "age: 57"
|
77 |
+
"""
|
78 |
+
val_part = value.split(':')[-1].strip()
|
79 |
+
try:
|
80 |
+
return float(val_part)
|
81 |
+
except ValueError:
|
82 |
+
return None
|
83 |
+
|
84 |
+
def convert_gender(value: str) -> Optional[int]:
|
85 |
+
"""
|
86 |
+
Convert gender to binary:
|
87 |
+
- Female (F) -> 0
|
88 |
+
- Male (M) -> 1
|
89 |
+
- Otherwise -> None
|
90 |
+
Example input: "Sex: F"
|
91 |
+
"""
|
92 |
+
val_part = value.split(':')[-1].strip().lower()
|
93 |
+
if val_part == 'f':
|
94 |
+
return 0
|
95 |
+
elif val_part == 'm':
|
96 |
+
return 1
|
97 |
+
return None
|
98 |
+
|
99 |
+
# Step 3: Save metadata (initial filtering) using validate_and_save_cohort_info
|
100 |
+
# trait data is not available because trait_row is None.
|
101 |
+
is_trait_available = (trait_row is not None)
|
102 |
+
|
103 |
+
validate_and_save_cohort_info(
|
104 |
+
is_final=False,
|
105 |
+
cohort=cohort,
|
106 |
+
info_path=json_path,
|
107 |
+
is_gene_available=is_gene_available,
|
108 |
+
is_trait_available=is_trait_available
|
109 |
+
)
|
110 |
+
|
111 |
+
# Step 4: Since trait_row is None, we do NOT proceed with clinical feature extraction (skip).
|
112 |
+
# STEP3
|
113 |
+
import gzip
|
114 |
+
import pandas as pd
|
115 |
+
|
116 |
+
try:
|
117 |
+
# 1. Attempt to extract gene expression data using the library function
|
118 |
+
gene_data = get_genetic_data(matrix_file)
|
119 |
+
except KeyError:
|
120 |
+
# Fallback: the expected "ID_REF" column may be absent, so manually parse the file
|
121 |
+
# and rename the first column to "ID".
|
122 |
+
marker = "!series_matrix_table_begin"
|
123 |
+
skip_rows = None
|
124 |
+
|
125 |
+
# Determine how many rows to skip before the matrix data begins
|
126 |
+
with gzip.open(matrix_file, 'rt') as f:
|
127 |
+
for i, line in enumerate(f):
|
128 |
+
if marker in line:
|
129 |
+
skip_rows = i + 1
|
130 |
+
break
|
131 |
+
else:
|
132 |
+
raise ValueError(f"Marker '{marker}' not found in the file.")
|
133 |
+
|
134 |
+
# Read the data from the determined position
|
135 |
+
gene_data = pd.read_csv(
|
136 |
+
matrix_file,
|
137 |
+
compression='gzip',
|
138 |
+
skiprows=skip_rows,
|
139 |
+
comment='!',
|
140 |
+
delimiter='\t',
|
141 |
+
on_bad_lines='skip'
|
142 |
+
)
|
143 |
+
|
144 |
+
# If a different column name is used instead of 'ID_REF', rename appropriately
|
145 |
+
if 'ID_REF' in gene_data.columns:
|
146 |
+
gene_data.rename(columns={'ID_REF': 'ID'}, inplace=True)
|
147 |
+
else:
|
148 |
+
first_col = gene_data.columns[0]
|
149 |
+
gene_data.rename(columns={first_col: 'ID'}, inplace=True)
|
150 |
+
|
151 |
+
gene_data['ID'] = gene_data['ID'].astype(str)
|
152 |
+
gene_data.set_index('ID', inplace=True)
|
153 |
+
|
154 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
155 |
+
print(gene_data.index[:20])
|
156 |
+
# Based on observation, these numeric IDs (e.g., 7892501, 7892504) appear to be probe identifiers, not standard gene symbols.
|
157 |
+
# Therefore, they likely require mapping to human gene symbols.
|
158 |
+
print("requires_gene_mapping = True")
|
159 |
+
# STEP5
|
160 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
161 |
+
gene_annotation = get_gene_annotation(soft_file)
|
162 |
+
|
163 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
164 |
+
print("Gene annotation preview:")
|
165 |
+
print(preview_df(gene_annotation))
|
166 |
+
# STEP: Gene Identifier Mapping
|
167 |
+
|
168 |
+
# 1. Decide which columns in gene_annotation correspond to probe IDs and gene symbols
|
169 |
+
probe_col = "ID"
|
170 |
+
gene_col = "gene_assignment"
|
171 |
+
|
172 |
+
# 2. Get a gene mapping dataframe
|
173 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=gene_col)
|
174 |
+
|
175 |
+
# 3. Convert probe-level measurements to gene expression data
|
176 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
177 |
+
|
178 |
+
# Optional: Print resulting shape to verify
|
179 |
+
print("Gene data shape after mapping:", gene_data.shape)
|
180 |
+
import os
|
181 |
+
import pandas as pd
|
182 |
+
|
183 |
+
# STEP 7: Data Normalization and Linking
|
184 |
+
|
185 |
+
# First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
|
186 |
+
if not os.path.exists(out_clinical_data_file):
|
187 |
+
# No trait data file => dataset is not usable for trait analysis
|
188 |
+
df_null = pd.DataFrame()
|
189 |
+
is_biased = True # Arbitrary boolean to satisfy function requirement
|
190 |
+
validate_and_save_cohort_info(
|
191 |
+
is_final=True,
|
192 |
+
cohort=cohort,
|
193 |
+
info_path=json_path,
|
194 |
+
is_gene_available=True,
|
195 |
+
is_trait_available=False,
|
196 |
+
is_biased=is_biased,
|
197 |
+
df=df_null,
|
198 |
+
note="No trait data file found; dataset not usable for trait analysis."
|
199 |
+
)
|
200 |
+
|
201 |
+
else:
|
202 |
+
# 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
|
203 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
204 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
205 |
+
|
206 |
+
# 2. Load the previously extracted clinical CSV.
|
207 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file)
|
208 |
+
# If we had a single-row trait, rename row 0 to the trait name (example usage).
|
209 |
+
selected_clinical_df = selected_clinical_df.rename(index={0: trait})
|
210 |
+
|
211 |
+
# Combine these as our final clinical data; in this dataset, we only have trait info (if any).
|
212 |
+
combined_clinical_df = selected_clinical_df
|
213 |
+
|
214 |
+
# Link the clinical and genetic data by matching sample IDs in columns.
|
215 |
+
linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
|
216 |
+
|
217 |
+
# 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
|
218 |
+
processed_data = handle_missing_values(linked_data, trait)
|
219 |
+
|
220 |
+
# 4. Check trait bias and remove any biased demographic features (if any).
|
221 |
+
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
|
222 |
+
|
223 |
+
# 5. Final validation and metadata saving.
|
224 |
+
is_usable = validate_and_save_cohort_info(
|
225 |
+
is_final=True,
|
226 |
+
cohort=cohort,
|
227 |
+
info_path=json_path,
|
228 |
+
is_gene_available=True,
|
229 |
+
is_trait_available=True,
|
230 |
+
is_biased=trait_biased,
|
231 |
+
df=processed_data,
|
232 |
+
note="Completed trait-based preprocessing."
|
233 |
+
)
|
234 |
+
|
235 |
+
# 6. If final dataset is usable, save. Otherwise, skip.
|
236 |
+
if is_usable:
|
237 |
+
processed_data.to_csv(out_data_file)
|
p1/preprocess/Parkinsons_Disease/code/GSE72267.py
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Parkinsons_Disease"
|
6 |
+
cohort = "GSE72267"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Parkinsons_Disease"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Parkinsons_Disease/GSE72267"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Parkinsons_Disease/GSE72267.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Parkinsons_Disease/gene_data/GSE72267.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Parkinsons_Disease/clinical_data/GSE72267.csv"
|
16 |
+
json_path = "./output/preprocess/1/Parkinsons_Disease/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1) Determine gene expression data availability.
|
37 |
+
# Based on the background info indicating Affymetrix transcriptomic data,
|
38 |
+
# we set is_gene_available to True.
|
39 |
+
is_gene_available = True
|
40 |
+
|
41 |
+
# 2) Identify the availability of trait, age, and gender data from the sample characteristics dictionary
|
42 |
+
# and define the corresponding row indices. From the dictionary:
|
43 |
+
# 0: ['diagnosis: Healthy', "diagnosis: Parkinson's disease"]
|
44 |
+
# 1: ['tissue: blood']
|
45 |
+
# Only row 0 provides a meaningful variable for the trait (Parkinson's disease vs. Healthy).
|
46 |
+
# Age and gender data are not present, so we set them to None.
|
47 |
+
|
48 |
+
trait_row = 0
|
49 |
+
age_row = None
|
50 |
+
gender_row = None
|
51 |
+
|
52 |
+
# 2.2) Define conversion functions for each variable.
|
53 |
+
# The trait is considered a binary variable (0 = Healthy, 1 = Parkinson's disease).
|
54 |
+
# For unknown or unexpected values, return None.
|
55 |
+
def convert_trait(value: str):
|
56 |
+
parts = value.split(':', 1)
|
57 |
+
if len(parts) == 2:
|
58 |
+
val = parts[1].strip().lower()
|
59 |
+
if val == "healthy":
|
60 |
+
return 0
|
61 |
+
elif val == "parkinson's disease":
|
62 |
+
return 1
|
63 |
+
return None
|
64 |
+
|
65 |
+
# For age and gender, we have None for the row indices.
|
66 |
+
# Define placeholder converters (they won't be used if the row index is None).
|
67 |
+
def convert_age(value: str):
|
68 |
+
return None
|
69 |
+
|
70 |
+
def convert_gender(value: str):
|
71 |
+
return None
|
72 |
+
|
73 |
+
# 3) Conduct initial filtering of dataset usability and save metadata.
|
74 |
+
# We check if the trait data is available (i.e., trait_row is not None).
|
75 |
+
is_trait_available = (trait_row is not None)
|
76 |
+
|
77 |
+
is_usable = validate_and_save_cohort_info(
|
78 |
+
is_final=False,
|
79 |
+
cohort=cohort,
|
80 |
+
info_path=json_path,
|
81 |
+
is_gene_available=is_gene_available,
|
82 |
+
is_trait_available=is_trait_available
|
83 |
+
)
|
84 |
+
|
85 |
+
# 4) If trait_row is not None, extract clinical features and save the output.
|
86 |
+
# Assume a variable `clinical_data` contains the relevant sample characteristics DataFrame.
|
87 |
+
if trait_row is not None:
|
88 |
+
selected_clinical_df = geo_select_clinical_features(
|
89 |
+
clinical_df=clinical_data,
|
90 |
+
trait=trait,
|
91 |
+
trait_row=trait_row,
|
92 |
+
convert_trait=convert_trait,
|
93 |
+
age_row=age_row,
|
94 |
+
convert_age=convert_age,
|
95 |
+
gender_row=gender_row,
|
96 |
+
convert_gender=convert_gender
|
97 |
+
)
|
98 |
+
preview = preview_df(selected_clinical_df)
|
99 |
+
print(preview) # For inspection; remove or comment out if not needed.
|
100 |
+
selected_clinical_df.to_csv(out_clinical_data_file)
|
101 |
+
# STEP3
|
102 |
+
import gzip
|
103 |
+
import pandas as pd
|
104 |
+
|
105 |
+
try:
|
106 |
+
# 1. Attempt to extract gene expression data using the library function
|
107 |
+
gene_data = get_genetic_data(matrix_file)
|
108 |
+
except KeyError:
|
109 |
+
# Fallback: the expected "ID_REF" column may be absent, so manually parse the file
|
110 |
+
# and rename the first column to "ID".
|
111 |
+
marker = "!series_matrix_table_begin"
|
112 |
+
skip_rows = None
|
113 |
+
|
114 |
+
# Determine how many rows to skip before the matrix data begins
|
115 |
+
with gzip.open(matrix_file, 'rt') as f:
|
116 |
+
for i, line in enumerate(f):
|
117 |
+
if marker in line:
|
118 |
+
skip_rows = i + 1
|
119 |
+
break
|
120 |
+
else:
|
121 |
+
raise ValueError(f"Marker '{marker}' not found in the file.")
|
122 |
+
|
123 |
+
# Read the data from the determined position
|
124 |
+
gene_data = pd.read_csv(
|
125 |
+
matrix_file,
|
126 |
+
compression='gzip',
|
127 |
+
skiprows=skip_rows,
|
128 |
+
comment='!',
|
129 |
+
delimiter='\t',
|
130 |
+
on_bad_lines='skip'
|
131 |
+
)
|
132 |
+
|
133 |
+
# If a different column name is used instead of 'ID_REF', rename appropriately
|
134 |
+
if 'ID_REF' in gene_data.columns:
|
135 |
+
gene_data.rename(columns={'ID_REF': 'ID'}, inplace=True)
|
136 |
+
else:
|
137 |
+
first_col = gene_data.columns[0]
|
138 |
+
gene_data.rename(columns={first_col: 'ID'}, inplace=True)
|
139 |
+
|
140 |
+
gene_data['ID'] = gene_data['ID'].astype(str)
|
141 |
+
gene_data.set_index('ID', inplace=True)
|
142 |
+
|
143 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
144 |
+
print(gene_data.index[:20])
|
145 |
+
# Observing the identifiers, they appear to be Affymetrix microarray probe set IDs,
|
146 |
+
# which are not standard human gene symbols and therefore require gene mapping.
|
147 |
+
|
148 |
+
print("""
|
149 |
+
These IDs (e.g., '1007_s_at', '1053_at', etc.) are Affymetrix probe set identifiers
|
150 |
+
and do not directly correspond to standard human gene symbols.
|
151 |
+
They should be mapped to official gene symbols.
|
152 |
+
|
153 |
+
requires_gene_mapping = True
|
154 |
+
""".strip())
|
155 |
+
# STEP5
|
156 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
157 |
+
gene_annotation = get_gene_annotation(soft_file)
|
158 |
+
|
159 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
160 |
+
print("Gene annotation preview:")
|
161 |
+
print(preview_df(gene_annotation))
|
162 |
+
# STEP: Gene Identifier Mapping
|
163 |
+
|
164 |
+
# 1. From our earlier observations, the 'ID' column of the gene_annotation dataframe
|
165 |
+
# corresponds to the Affymetrix probe identifiers that match those in our gene_data index.
|
166 |
+
# The 'Gene Symbol' column in the gene_annotation holds the actual gene symbols.
|
167 |
+
|
168 |
+
# 2. Create a gene mapping dataframe from the gene_annotation, specifying
|
169 |
+
# the probe ID column as 'ID' and the gene symbol column as 'Gene Symbol'.
|
170 |
+
mapping_df = get_gene_mapping(
|
171 |
+
annotation=gene_annotation,
|
172 |
+
prob_col='ID',
|
173 |
+
gene_col='Gene Symbol'
|
174 |
+
)
|
175 |
+
|
176 |
+
# 3. Convert probe-level measurements to gene-level expression by applying the mapping.
|
177 |
+
# Each probe's expression is evenly distributed among mapped genes, then summed.
|
178 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
179 |
+
|
180 |
+
# For inspection, one could optionally print the top rows of the resulting gene_data:
|
181 |
+
#print(gene_data.head())
|
182 |
+
import os
|
183 |
+
import pandas as pd
|
184 |
+
|
185 |
+
# STEP 7: Data Normalization and Linking
|
186 |
+
|
187 |
+
# First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
|
188 |
+
if not os.path.exists(out_clinical_data_file):
|
189 |
+
# No trait data file => dataset is not usable for trait analysis
|
190 |
+
df_null = pd.DataFrame()
|
191 |
+
is_biased = True # Arbitrary boolean to satisfy function requirement
|
192 |
+
validate_and_save_cohort_info(
|
193 |
+
is_final=True,
|
194 |
+
cohort=cohort,
|
195 |
+
info_path=json_path,
|
196 |
+
is_gene_available=True,
|
197 |
+
is_trait_available=False,
|
198 |
+
is_biased=is_biased,
|
199 |
+
df=df_null,
|
200 |
+
note="No trait data file found; dataset not usable for trait analysis."
|
201 |
+
)
|
202 |
+
|
203 |
+
else:
|
204 |
+
# 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
|
205 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
206 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
207 |
+
|
208 |
+
# 2. Load the previously extracted clinical CSV.
|
209 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file)
|
210 |
+
# If we had a single-row trait, rename row 0 to the trait name (example usage).
|
211 |
+
selected_clinical_df = selected_clinical_df.rename(index={0: trait})
|
212 |
+
|
213 |
+
# Combine these as our final clinical data; in this dataset, we only have trait info (if any).
|
214 |
+
combined_clinical_df = selected_clinical_df
|
215 |
+
|
216 |
+
# Link the clinical and genetic data by matching sample IDs in columns.
|
217 |
+
linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
|
218 |
+
|
219 |
+
# 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
|
220 |
+
processed_data = handle_missing_values(linked_data, trait)
|
221 |
+
|
222 |
+
# 4. Check trait bias and remove any biased demographic features (if any).
|
223 |
+
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
|
224 |
+
|
225 |
+
# 5. Final validation and metadata saving.
|
226 |
+
is_usable = validate_and_save_cohort_info(
|
227 |
+
is_final=True,
|
228 |
+
cohort=cohort,
|
229 |
+
info_path=json_path,
|
230 |
+
is_gene_available=True,
|
231 |
+
is_trait_available=True,
|
232 |
+
is_biased=trait_biased,
|
233 |
+
df=processed_data,
|
234 |
+
note="Completed trait-based preprocessing."
|
235 |
+
)
|
236 |
+
|
237 |
+
# 6. If final dataset is usable, save. Otherwise, skip.
|
238 |
+
if is_usable:
|
239 |
+
processed_data.to_csv(out_data_file)
|
p1/preprocess/Parkinsons_Disease/code/GSE80599.py
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Parkinsons_Disease"
|
6 |
+
cohort = "GSE80599"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Parkinsons_Disease"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Parkinsons_Disease/GSE80599"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Parkinsons_Disease/GSE80599.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Parkinsons_Disease/gene_data/GSE80599.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Parkinsons_Disease/clinical_data/GSE80599.csv"
|
16 |
+
json_path = "./output/preprocess/1/Parkinsons_Disease/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1. Determine if gene expression data is available
|
37 |
+
is_gene_available = True # Based on platform information (Affymetrix HG-U219), it contains gene expression data
|
38 |
+
|
39 |
+
# 2.1 Identify data availability for trait, age, and gender
|
40 |
+
# The entire cohort has Parkinson's Disease, so there's no variation for the 'trait' variable.
|
41 |
+
trait_row = None # No key provides variation for presence/absence of Parkinson's Disease
|
42 |
+
|
43 |
+
# Row 4 in the sample characteristics stores multiple 'age at examination' values
|
44 |
+
age_row = 4
|
45 |
+
|
46 |
+
# Row 1 in the sample characteristics stores 'gender: Male' or 'gender: Female'
|
47 |
+
gender_row = 1
|
48 |
+
|
49 |
+
# 2.2 Define conversion functions
|
50 |
+
def convert_trait(value: str):
|
51 |
+
# Not used here because trait_row is None
|
52 |
+
return None
|
53 |
+
|
54 |
+
def convert_age(value: str):
|
55 |
+
parts = value.split(':', 1)
|
56 |
+
if len(parts) < 2:
|
57 |
+
return None
|
58 |
+
raw = parts[1].strip()
|
59 |
+
try:
|
60 |
+
return float(raw)
|
61 |
+
except ValueError:
|
62 |
+
return None
|
63 |
+
|
64 |
+
def convert_gender(value: str):
|
65 |
+
parts = value.split(':', 1)
|
66 |
+
if len(parts) < 2:
|
67 |
+
return None
|
68 |
+
raw = parts[1].strip().lower()
|
69 |
+
if raw == 'male':
|
70 |
+
return 1
|
71 |
+
elif raw == 'female':
|
72 |
+
return 0
|
73 |
+
return None
|
74 |
+
|
75 |
+
# 3. Save metadata with initial filtering
|
76 |
+
is_trait_available = (trait_row is not None)
|
77 |
+
validate_and_save_cohort_info(
|
78 |
+
is_final=False,
|
79 |
+
cohort=cohort,
|
80 |
+
info_path=json_path,
|
81 |
+
is_gene_available=is_gene_available,
|
82 |
+
is_trait_available=is_trait_available
|
83 |
+
)
|
84 |
+
|
85 |
+
# 4. Since trait_row is None, skip clinical feature extraction
|
86 |
+
# STEP3
|
87 |
+
import gzip
|
88 |
+
import pandas as pd
|
89 |
+
|
90 |
+
try:
|
91 |
+
# 1. Attempt to extract gene expression data using the library function
|
92 |
+
gene_data = get_genetic_data(matrix_file)
|
93 |
+
except KeyError:
|
94 |
+
# Fallback: the expected "ID_REF" column may be absent, so manually parse the file
|
95 |
+
# and rename the first column to "ID".
|
96 |
+
marker = "!series_matrix_table_begin"
|
97 |
+
skip_rows = None
|
98 |
+
|
99 |
+
# Determine how many rows to skip before the matrix data begins
|
100 |
+
with gzip.open(matrix_file, 'rt') as f:
|
101 |
+
for i, line in enumerate(f):
|
102 |
+
if marker in line:
|
103 |
+
skip_rows = i + 1
|
104 |
+
break
|
105 |
+
else:
|
106 |
+
raise ValueError(f"Marker '{marker}' not found in the file.")
|
107 |
+
|
108 |
+
# Read the data from the determined position
|
109 |
+
gene_data = pd.read_csv(
|
110 |
+
matrix_file,
|
111 |
+
compression='gzip',
|
112 |
+
skiprows=skip_rows,
|
113 |
+
comment='!',
|
114 |
+
delimiter='\t',
|
115 |
+
on_bad_lines='skip'
|
116 |
+
)
|
117 |
+
|
118 |
+
# If a different column name is used instead of 'ID_REF', rename appropriately
|
119 |
+
if 'ID_REF' in gene_data.columns:
|
120 |
+
gene_data.rename(columns={'ID_REF': 'ID'}, inplace=True)
|
121 |
+
else:
|
122 |
+
first_col = gene_data.columns[0]
|
123 |
+
gene_data.rename(columns={first_col: 'ID'}, inplace=True)
|
124 |
+
|
125 |
+
gene_data['ID'] = gene_data['ID'].astype(str)
|
126 |
+
gene_data.set_index('ID', inplace=True)
|
127 |
+
|
128 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
129 |
+
print(gene_data.index[:20])
|
130 |
+
# Based on the given identifiers, these are Affymetrix probe set IDs rather than standard gene symbols.
|
131 |
+
# Therefore, they likely require mapping to gene symbols.
|
132 |
+
print("requires_gene_mapping = True")
|
133 |
+
# STEP5
|
134 |
+
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
|
135 |
+
gene_annotation = get_gene_annotation(soft_file)
|
136 |
+
|
137 |
+
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
|
138 |
+
print("Gene annotation preview:")
|
139 |
+
print(preview_df(gene_annotation))
|
140 |
+
# STEP6: Gene Identifier Mapping
|
141 |
+
|
142 |
+
# 1. Identify the columns in the gene annotation that correspond to probe identifiers and gene symbols
|
143 |
+
probe_col = "ID"
|
144 |
+
gene_symbol_col = "Gene Symbol"
|
145 |
+
|
146 |
+
# 2. Create a mapping dataframe specifying which probe maps to which gene symbol
|
147 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=gene_symbol_col)
|
148 |
+
|
149 |
+
# 3. Convert probe-level measurements to gene-level expression data
|
150 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
151 |
+
import os
|
152 |
+
import pandas as pd
|
153 |
+
|
154 |
+
# STEP 7: Data Normalization and Linking
|
155 |
+
|
156 |
+
# First, check if the clinical CSV file exists. If it does not, we cannot proceed with trait-based linking.
|
157 |
+
if not os.path.exists(out_clinical_data_file):
|
158 |
+
# No trait data file => dataset is not usable for trait analysis
|
159 |
+
df_null = pd.DataFrame()
|
160 |
+
is_biased = True # Arbitrary boolean to satisfy function requirement
|
161 |
+
validate_and_save_cohort_info(
|
162 |
+
is_final=True,
|
163 |
+
cohort=cohort,
|
164 |
+
info_path=json_path,
|
165 |
+
is_gene_available=True,
|
166 |
+
is_trait_available=False,
|
167 |
+
is_biased=is_biased,
|
168 |
+
df=df_null,
|
169 |
+
note="No trait data file found; dataset not usable for trait analysis."
|
170 |
+
)
|
171 |
+
|
172 |
+
else:
|
173 |
+
# 1. Normalize the mapped gene expression data using known gene symbol synonyms, then save.
|
174 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
175 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
176 |
+
|
177 |
+
# 2. Load the previously extracted clinical CSV.
|
178 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file)
|
179 |
+
# If we had a single-row trait, rename row 0 to the trait name (example usage).
|
180 |
+
selected_clinical_df = selected_clinical_df.rename(index={0: trait})
|
181 |
+
|
182 |
+
# Combine these as our final clinical data; in this dataset, we only have trait info (if any).
|
183 |
+
combined_clinical_df = selected_clinical_df
|
184 |
+
|
185 |
+
# Link the clinical and genetic data by matching sample IDs in columns.
|
186 |
+
linked_data = geo_link_clinical_genetic_data(combined_clinical_df, normalized_gene_data)
|
187 |
+
|
188 |
+
# 3. Handle missing values in the linked data (drop incomplete rows/columns, then impute).
|
189 |
+
processed_data = handle_missing_values(linked_data, trait)
|
190 |
+
|
191 |
+
# 4. Check trait bias and remove any biased demographic features (if any).
|
192 |
+
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
|
193 |
+
|
194 |
+
# 5. Final validation and metadata saving.
|
195 |
+
is_usable = validate_and_save_cohort_info(
|
196 |
+
is_final=True,
|
197 |
+
cohort=cohort,
|
198 |
+
info_path=json_path,
|
199 |
+
is_gene_available=True,
|
200 |
+
is_trait_available=True,
|
201 |
+
is_biased=trait_biased,
|
202 |
+
df=processed_data,
|
203 |
+
note="Completed trait-based preprocessing."
|
204 |
+
)
|
205 |
+
|
206 |
+
# 6. If final dataset is usable, save. Otherwise, skip.
|
207 |
+
if is_usable:
|
208 |
+
processed_data.to_csv(out_data_file)
|
p1/preprocess/Parkinsons_Disease/code/TCGA.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Parkinsons_Disease"
|
6 |
+
|
7 |
+
# Input paths
|
8 |
+
tcga_root_dir = "../DATA/TCGA"
|
9 |
+
|
10 |
+
# Output paths
|
11 |
+
out_data_file = "./output/preprocess/1/Parkinsons_Disease/TCGA.csv"
|
12 |
+
out_gene_data_file = "./output/preprocess/1/Parkinsons_Disease/gene_data/TCGA.csv"
|
13 |
+
out_clinical_data_file = "./output/preprocess/1/Parkinsons_Disease/clinical_data/TCGA.csv"
|
14 |
+
json_path = "./output/preprocess/1/Parkinsons_Disease/cohort_info.json"
|
15 |
+
|
16 |
+
import os
|
17 |
+
import pandas as pd
|
18 |
+
|
19 |
+
# List of subdirectories provided in the instructions:
|
20 |
+
subdirectories = [
|
21 |
+
'CrawlData.ipynb', '.DS_Store', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)',
|
22 |
+
'TCGA_Uterine_Carcinosarcoma_(UCS)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Thymoma_(THYM)',
|
23 |
+
'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Sarcoma_(SARC)',
|
24 |
+
'TCGA_Rectal_Cancer_(READ)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)',
|
25 |
+
'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Ocular_melanomas_(UVM)',
|
26 |
+
'TCGA_Mesothelioma_(MESO)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)',
|
27 |
+
'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lower_Grade_Glioma_(LGG)',
|
28 |
+
'TCGA_Liver_Cancer_(LIHC)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)',
|
29 |
+
'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Head_and_Neck_Cancer_(HNSC)',
|
30 |
+
'TCGA_Glioblastoma_(GBM)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Endometrioid_Cancer_(UCEC)',
|
31 |
+
'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Cervical_Cancer_(CESC)',
|
32 |
+
'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Bile_Duct_Cancer_(CHOL)',
|
33 |
+
'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Acute_Myeloid_Leukemia_(LAML)'
|
34 |
+
]
|
35 |
+
|
36 |
+
# Synonyms for "Parkinsons_Disease"
|
37 |
+
parkinsons_synonyms = ["parkinson", "parkinson's", "parkinsons"]
|
38 |
+
|
39 |
+
selected_subdirectory = None
|
40 |
+
for subdir in subdirectories:
|
41 |
+
# Skip non-directory markers
|
42 |
+
if subdir.lower() in ['crawldata.ipynb', '.ds_store']:
|
43 |
+
continue
|
44 |
+
subdir_lower = subdir.lower()
|
45 |
+
if any(syn in subdir_lower for syn in parkinsons_synonyms):
|
46 |
+
selected_subdirectory = subdir
|
47 |
+
break
|
48 |
+
|
49 |
+
if not selected_subdirectory:
|
50 |
+
# If no matching directory is found, mark dataset as unavailable
|
51 |
+
is_final = False
|
52 |
+
is_gene_available = False
|
53 |
+
is_trait_available = False
|
54 |
+
_ = validate_and_save_cohort_info(
|
55 |
+
is_final=is_final,
|
56 |
+
cohort="TCGA",
|
57 |
+
info_path=json_path,
|
58 |
+
is_gene_available=is_gene_available,
|
59 |
+
is_trait_available=is_trait_available
|
60 |
+
)
|
61 |
+
print(f"No suitable directory found for '{trait}'. Skipped this trait.")
|
62 |
+
else:
|
63 |
+
# Step 2: Identify clinicalMatrix file and PANCAN file
|
64 |
+
cohort_dir = os.path.join(tcga_root_dir, selected_subdirectory)
|
65 |
+
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
|
66 |
+
|
67 |
+
# Step 3: Load both files as dataframes
|
68 |
+
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
|
69 |
+
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
|
70 |
+
|
71 |
+
# Step 4: Print the column names of the clinical data
|
72 |
+
print("Clinical data columns:")
|
73 |
+
print(list(clinical_df.columns))
|