Liu-Hy commited on
Commit
ba264e7
·
verified ·
1 Parent(s): 24fe0da

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +28 -0
  2. p1/preprocess/Cystic_Fibrosis/gene_data/GSE60690.csv +3 -0
  3. p1/preprocess/Endometrioid_Cancer/TCGA.csv +3 -0
  4. p1/preprocess/Endometrioid_Cancer/gene_data/TCGA.csv +3 -0
  5. p1/preprocess/Endometriosis/GSE51981.csv +3 -0
  6. p1/preprocess/Endometriosis/gene_data/GSE51981.csv +3 -0
  7. p1/preprocess/Epilepsy/GSE143272.csv +3 -0
  8. p1/preprocess/Epilepsy/GSE29796.csv +3 -0
  9. p1/preprocess/Epilepsy/gene_data/GSE123993.csv +3 -0
  10. p1/preprocess/Epilepsy/gene_data/GSE143272.csv +3 -0
  11. p1/preprocess/Epilepsy/gene_data/GSE29796.csv +3 -0
  12. p1/preprocess/Epilepsy/gene_data/GSE63808.csv +3 -0
  13. p1/preprocess/Epilepsy/gene_data/GSE65106.csv +3 -0
  14. p1/preprocess/Epilepsy/gene_data/GSE74571.csv +3 -0
  15. p1/preprocess/Esophageal_Cancer/GSE104958.csv +3 -0
  16. p1/preprocess/Esophageal_Cancer/GSE75241.csv +0 -0
  17. p1/preprocess/Esophageal_Cancer/clinical_data/GSE131027.csv +2 -0
  18. p1/preprocess/Esophageal_Cancer/clinical_data/GSE55857.csv +2 -0
  19. p1/preprocess/Esophageal_Cancer/clinical_data/GSE75241.csv +2 -0
  20. p1/preprocess/Esophageal_Cancer/clinical_data/GSE77790.csv +2 -0
  21. p1/preprocess/Esophageal_Cancer/code/GSE100843.py +171 -0
  22. p1/preprocess/Esophageal_Cancer/code/GSE104958.py +206 -0
  23. p1/preprocess/Esophageal_Cancer/code/GSE107754.py +223 -0
  24. p1/preprocess/Esophageal_Cancer/code/GSE131027.py +203 -0
  25. p1/preprocess/Esophageal_Cancer/code/GSE156915.py +71 -0
  26. p1/preprocess/Esophageal_Cancer/code/GSE218109.py +211 -0
  27. p1/preprocess/Esophageal_Cancer/code/GSE55857.py +89 -0
  28. p1/preprocess/Esophageal_Cancer/code/GSE66258.py +74 -0
  29. p1/preprocess/Esophageal_Cancer/code/GSE75241.py +204 -0
  30. p1/preprocess/Esophageal_Cancer/code/GSE77790.py +201 -0
  31. p1/preprocess/Esophageal_Cancer/code/TCGA.py +104 -0
  32. p1/preprocess/Esophageal_Cancer/gene_data/GSE100843.csv +3 -0
  33. p1/preprocess/Esophageal_Cancer/gene_data/GSE104958.csv +3 -0
  34. p1/preprocess/Esophageal_Cancer/gene_data/GSE107754.csv +3 -0
  35. p1/preprocess/Esophageal_Cancer/gene_data/GSE131027.csv +3 -0
  36. p1/preprocess/Esophageal_Cancer/gene_data/GSE218109.csv +0 -0
  37. p1/preprocess/Esophageal_Cancer/gene_data/GSE75241.csv +0 -0
  38. p1/preprocess/Esophageal_Cancer/gene_data/GSE77790.csv +0 -0
  39. p1/preprocess/Essential_Thrombocythemia/GSE103237.csv +3 -0
  40. p1/preprocess/Essential_Thrombocythemia/GSE12295.csv +0 -0
  41. p1/preprocess/Essential_Thrombocythemia/GSE159514.csv +3 -0
  42. p1/preprocess/Essential_Thrombocythemia/GSE174060.csv +3 -0
  43. p1/preprocess/Essential_Thrombocythemia/GSE55976.csv +0 -0
  44. p1/preprocess/Essential_Thrombocythemia/GSE57793.csv +3 -0
  45. p1/preprocess/Essential_Thrombocythemia/GSE61629.csv +3 -0
  46. p1/preprocess/Essential_Thrombocythemia/clinical_data/GSE103176.csv +3 -0
  47. p1/preprocess/Essential_Thrombocythemia/clinical_data/GSE103237.csv +3 -0
  48. p1/preprocess/Essential_Thrombocythemia/clinical_data/GSE12295.csv +2 -0
  49. p1/preprocess/Essential_Thrombocythemia/clinical_data/GSE159514.csv +2 -0
  50. p1/preprocess/Essential_Thrombocythemia/clinical_data/GSE174060.csv +4 -0
.gitattributes CHANGED
@@ -1076,3 +1076,31 @@ p1/preprocess/Endometrioid_Cancer/gene_data/GSE120490.csv filter=lfs diff=lfs me
1076
  p1/preprocess/Chronic_kidney_disease/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
1077
  p1/preprocess/Endometriosis/gene_data/GSE165004.csv filter=lfs diff=lfs merge=lfs -text
1078
  p1/preprocess/Endometriosis/gene_data/GSE73622.csv filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1076
  p1/preprocess/Chronic_kidney_disease/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
1077
  p1/preprocess/Endometriosis/gene_data/GSE165004.csv filter=lfs diff=lfs merge=lfs -text
1078
  p1/preprocess/Endometriosis/gene_data/GSE73622.csv filter=lfs diff=lfs merge=lfs -text
1079
+ p1/preprocess/Endometriosis/GSE51981.csv filter=lfs diff=lfs merge=lfs -text
1080
+ p1/preprocess/Epilepsy/GSE29796.csv filter=lfs diff=lfs merge=lfs -text
1081
+ p1/preprocess/Epilepsy/gene_data/GSE29796.csv filter=lfs diff=lfs merge=lfs -text
1082
+ p1/preprocess/Epilepsy/gene_data/GSE123993.csv filter=lfs diff=lfs merge=lfs -text
1083
+ p1/preprocess/Epilepsy/GSE143272.csv filter=lfs diff=lfs merge=lfs -text
1084
+ p1/preprocess/Epilepsy/gene_data/GSE143272.csv filter=lfs diff=lfs merge=lfs -text
1085
+ p1/preprocess/Endometrioid_Cancer/TCGA.csv filter=lfs diff=lfs merge=lfs -text
1086
+ p1/preprocess/Esophageal_Cancer/GSE104958.csv filter=lfs diff=lfs merge=lfs -text
1087
+ p1/preprocess/Epilepsy/gene_data/GSE74571.csv filter=lfs diff=lfs merge=lfs -text
1088
+ p1/preprocess/Endometriosis/gene_data/GSE51981.csv filter=lfs diff=lfs merge=lfs -text
1089
+ p1/preprocess/Endometrioid_Cancer/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
1090
+ p1/preprocess/Epilepsy/gene_data/GSE65106.csv filter=lfs diff=lfs merge=lfs -text
1091
+ p1/preprocess/Cystic_Fibrosis/gene_data/GSE60690.csv filter=lfs diff=lfs merge=lfs -text
1092
+ p1/preprocess/Esophageal_Cancer/gene_data/GSE104958.csv filter=lfs diff=lfs merge=lfs -text
1093
+ p1/preprocess/Essential_Thrombocythemia/GSE103237.csv filter=lfs diff=lfs merge=lfs -text
1094
+ p1/preprocess/Epilepsy/gene_data/GSE63808.csv filter=lfs diff=lfs merge=lfs -text
1095
+ p1/preprocess/Essential_Thrombocythemia/GSE61629.csv filter=lfs diff=lfs merge=lfs -text
1096
+ p1/preprocess/Esophageal_Cancer/gene_data/GSE107754.csv filter=lfs diff=lfs merge=lfs -text
1097
+ p1/preprocess/Esophageal_Cancer/gene_data/GSE131027.csv filter=lfs diff=lfs merge=lfs -text
1098
+ p1/preprocess/Essential_Thrombocythemia/GSE57793.csv filter=lfs diff=lfs merge=lfs -text
1099
+ p1/preprocess/Essential_Thrombocythemia/GSE174060.csv filter=lfs diff=lfs merge=lfs -text
1100
+ p1/preprocess/Essential_Thrombocythemia/GSE159514.csv filter=lfs diff=lfs merge=lfs -text
1101
+ p1/preprocess/Esophageal_Cancer/gene_data/GSE100843.csv filter=lfs diff=lfs merge=lfs -text
1102
+ p1/preprocess/Essential_Thrombocythemia/gene_data/GSE103237.csv filter=lfs diff=lfs merge=lfs -text
1103
+ p1/preprocess/Essential_Thrombocythemia/gene_data/GSE174060.csv filter=lfs diff=lfs merge=lfs -text
1104
+ p1/preprocess/Essential_Thrombocythemia/gene_data/GSE61629.csv filter=lfs diff=lfs merge=lfs -text
1105
+ p1/preprocess/Gastroesophageal_reflux_disease_(GERD)/GSE77563.csv filter=lfs diff=lfs merge=lfs -text
1106
+ p1/preprocess/Essential_Thrombocythemia/gene_data/GSE57793.csv filter=lfs diff=lfs merge=lfs -text
p1/preprocess/Cystic_Fibrosis/gene_data/GSE60690.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e128091a184991c399c08ec7096bd394cf9a2d6d02f54f4d228319c3cd78f9e2
3
+ size 119925885
p1/preprocess/Endometrioid_Cancer/TCGA.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55f316c5dae0221d1ab50b0b07ad177d1be08555af114b396a1bed974702af8a
3
+ size 60336948
p1/preprocess/Endometrioid_Cancer/gene_data/TCGA.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:965772a8ddafe3b0baec55f80b0a37ac57d1cd394c3678a057598d5b214d2edd
3
+ size 60335341
p1/preprocess/Endometriosis/GSE51981.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de007696482bc115aece4bc25168f6fac723e93985ece506a35b5404f174bcd9
3
+ size 38974242
p1/preprocess/Endometriosis/gene_data/GSE51981.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:048fb7b5686b2236d3a974895fdba0e8c8f39f28a5d03be84e611b41f63d78d7
3
+ size 38973640
p1/preprocess/Epilepsy/GSE143272.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1974ef47a5f985df6efe680c2bfc644aff121b6a1963c83a72836efdeb1b6d9
3
+ size 15849794
p1/preprocess/Epilepsy/GSE29796.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2633f250b30287d83725118636a9b02734c66f5d19db9b76ef651efa998b5cf
3
+ size 13410909
p1/preprocess/Epilepsy/gene_data/GSE123993.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6111dad1e9f5abfbe6f2768c0cd1c1fd1396db43109b545e718dd54b7561f133
3
+ size 15123583
p1/preprocess/Epilepsy/gene_data/GSE143272.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11b9d688b7c816f77cf4cb2f913fd2d0be6ab7c38198dfa9f4153f033b3e7172
3
+ size 15847932
p1/preprocess/Epilepsy/gene_data/GSE29796.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4edf231b1d6038cad00622845fdb6c06ada9b682c6e46af24a4183d565ff6de6
3
+ size 13410616
p1/preprocess/Epilepsy/gene_data/GSE63808.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0bdac0043b2478db21da09fd00218c0f7d9f63bb25c5927b251c695c06e19eeb
3
+ size 34094852
p1/preprocess/Epilepsy/gene_data/GSE65106.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08bb07f91bda98eadc3f24926d365682061405a5583febcd0f6ca3ad243f99c0
3
+ size 19365342
p1/preprocess/Epilepsy/gene_data/GSE74571.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3535ea344d801f0a42c2294e42f2c4bbe0172e4fea404df54a5023c9f660e27
3
+ size 13432589
p1/preprocess/Esophageal_Cancer/GSE104958.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:205d603e58f6b10dbe0463fb8dc5e83082881ff216919a22383220960703a795
3
+ size 11772902
p1/preprocess/Esophageal_Cancer/GSE75241.csv ADDED
The diff for this file is too large to render. See raw diff
 
p1/preprocess/Esophageal_Cancer/clinical_data/GSE131027.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ GSM3759992,GSM3759993,GSM3759994,GSM3759995,GSM3759996,GSM3759997,GSM3759998,GSM3759999,GSM3760000,GSM3760001,GSM3760002,GSM3760003,GSM3760004,GSM3760005,GSM3760006,GSM3760007,GSM3760008,GSM3760009,GSM3760010,GSM3760011,GSM3760012,GSM3760013,GSM3760014,GSM3760015,GSM3760016,GSM3760017,GSM3760018,GSM3760019,GSM3760020,GSM3760021,GSM3760022,GSM3760023,GSM3760024,GSM3760025,GSM3760026,GSM3760027,GSM3760028,GSM3760029,GSM3760030,GSM3760031,GSM3760032,GSM3760033,GSM3760034,GSM3760035,GSM3760036,GSM3760037,GSM3760038,GSM3760039,GSM3760040,GSM3760041,GSM3760042,GSM3760043,GSM3760044,GSM3760045,GSM3760046,GSM3760047,GSM3760048,GSM3760049,GSM3760050,GSM3760051,GSM3760052,GSM3760053,GSM3760054,GSM3760055,GSM3760056,GSM3760057,GSM3760058,GSM3760059,GSM3760060,GSM3760061,GSM3760062,GSM3760063,GSM3760064,GSM3760065,GSM3760066,GSM3760067,GSM3760068,GSM3760069,GSM3760070,GSM3760071,GSM3760072,GSM3760073,GSM3760074,GSM3760075,GSM3760076,GSM3760077,GSM3760078,GSM3760079,GSM3760080,GSM3760081,GSM3760082,GSM3760083
2
+ 0.0,0.0,0.0,0.0,,0.0,0.0,,0.0,0.0,0.0,,0.0,,0.0,,0.0,0.0,0.0,0.0,,0.0,0.0,0.0,0.0,0.0,0.0,,0.0,,0.0,,0.0,0.0,,0.0,0.0,0.0,,1.0,0.0,0.0,0.0,,0.0,0.0,,0.0,0.0,0.0,,0.0,0.0,,0.0,0.0,,0.0,0.0,,,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,0.0,0.0,,0.0,,0.0,,0.0,0.0,0.0,,0.0,0.0,0.0,,,0.0,0.0,0.0,0.0,0.0,0.0
p1/preprocess/Esophageal_Cancer/clinical_data/GSE55857.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ GSM1347399,GSM1347400,GSM1347401,GSM1347402,GSM1347403,GSM1347404,GSM1347405,GSM1347406,GSM1347407,GSM1347408,GSM1347409,GSM1347410,GSM1347411,GSM1347412,GSM1347413,GSM1347414,GSM1347415,GSM1347416,GSM1347417,GSM1347418,GSM1347419,GSM1347420,GSM1347421,GSM1347422,GSM1347423,GSM1347424,GSM1347425,GSM1347426,GSM1347427,GSM1347428,GSM1347429,GSM1347430,GSM1347431,GSM1347432,GSM1347433,GSM1347434,GSM1347435,GSM1347436,GSM1347437,GSM1347438,GSM1347439,GSM1347440,GSM1347441,GSM1347442,GSM1347443,GSM1347444,GSM1347445,GSM1347446,GSM1347447,GSM1347448,GSM1347449,GSM1347450,GSM1347451,GSM1347452,GSM1347453,GSM1347454,GSM1347455,GSM1347456,GSM1347457,GSM1347458,GSM1347459,GSM1347460,GSM1347461,GSM1347462,GSM1347463,GSM1347464,GSM1347465,GSM1347466,GSM1347467,GSM1347468,GSM1347469,GSM1347470,GSM1347471,GSM1347472,GSM1347473,GSM1347474,GSM1347475,GSM1347476,GSM1347477,GSM1347478,GSM1347479,GSM1347480,GSM1347481,GSM1347482,GSM1347483,GSM1347484,GSM1347485,GSM1347486,GSM1347487,GSM1347488,GSM1347489,GSM1347490,GSM1347491,GSM1347492,GSM1347493,GSM1347494,GSM1347495,GSM1347496,GSM1347497,GSM1347498,GSM1347499,GSM1347500,GSM1347501,GSM1347502,GSM1347503,GSM1347504,GSM1347505,GSM1347506,GSM1347507,GSM1347508,GSM1347509,GSM1347510,GSM1347511,GSM1347512,GSM1347513,GSM1347514,GSM1347515,GSM1347516,GSM1347517,GSM1347518,GSM1347519,GSM1347520,GSM1347521,GSM1347522,GSM1347523,GSM1347524,GSM1347525,GSM1347526,GSM1347527,GSM1347528,GSM1347529,GSM1347530,GSM1347531,GSM1347532,GSM1347533,GSM1347534,GSM1347535,GSM1347536,GSM1347537,GSM1347538,GSM1347539,GSM1347540,GSM1347541,GSM1347542,GSM1347543,GSM1347544,GSM1347545,GSM1347546,GSM1347547,GSM1347548,GSM1347549,GSM1347550,GSM1347551,GSM1347552,GSM1347553,GSM1347554,GSM1347555,GSM1347556,GSM1347557,GSM1347558,GSM1347559,GSM1347560,GSM1347561,GSM1347562,GSM1347563,GSM1347564,GSM1347565,GSM1347566,GSM1347567,GSM1347568,GSM1347569,GSM1347570,GSM1347571,GSM1347572,GSM1347573,GSM1347574,GSM1347575,GSM1347576,GSM1347577,GSM1347578,GSM1347579,GSM1347580,GSM1347581,GSM1347582,GSM1347583,GSM1347584,GSM1347585,GSM1347586,GSM1347587,GSM1347588,GSM1347589,GSM1347590,GSM1347591,GSM1347592,GSM1347593,GSM1347594,GSM1347595,GSM1347596,GSM1347597,GSM1347598,GSM1347599,GSM1347600,GSM1347601,GSM1347602,GSM1347603,GSM1347604,GSM1347605,GSM1347606,GSM1347607,GSM1347608,GSM1347609,GSM1347610,GSM1347611,GSM1347612,GSM1347613,GSM1347614
2
+ 0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0
p1/preprocess/Esophageal_Cancer/clinical_data/GSE75241.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ GSM1946756,GSM1946757,GSM1946758,GSM1946759,GSM1946760,GSM1946761,GSM1946762,GSM1946763,GSM1946764,GSM1946765,GSM1946766,GSM1946767,GSM1946768,GSM1946769,GSM1946770,GSM1946771,GSM1946772,GSM1946773,GSM1946774,GSM1946775,GSM1946776,GSM1946777,GSM1946778,GSM1946779,GSM1946780,GSM1946781,GSM1946782,GSM1946783,GSM1946784,GSM1946785
2
+ 0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0
p1/preprocess/Esophageal_Cancer/clinical_data/GSE77790.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM2059404,GSM2059405,GSM2059406,GSM2059407,GSM2059408,GSM2059409,GSM2059410,GSM2059411,GSM2059412,GSM2059413,GSM2059414,GSM2059415,GSM2059416,GSM2059417,GSM2059418,GSM2059419,GSM2059420,GSM2059421,GSM2059422,GSM2059423,GSM2059424,GSM2059425,GSM2059426,GSM2059427,GSM2059428,GSM2059429,GSM2059430,GSM2059431,GSM2059432,GSM2059433,GSM2059434,GSM2059435
2
+ Esophageal_Cancer,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0
p1/preprocess/Esophageal_Cancer/code/GSE100843.py ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Esophageal_Cancer"
6
+ cohort = "GSE100843"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Esophageal_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Esophageal_Cancer/GSE100843"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Esophageal_Cancer/GSE100843.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Esophageal_Cancer/gene_data/GSE100843.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Esophageal_Cancer/clinical_data/GSE100843.csv"
16
+ json_path = "./output/preprocess/1/Esophageal_Cancer/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1) Determine if gene expression data is available
37
+ is_gene_available = True # The design mentions microarray for global gene expression.
38
+
39
+ # 2.1) Identify data availability for 'trait', 'age', 'gender'
40
+ # From the sample characteristics dictionary, none of these variables are present.
41
+ trait_row = None
42
+ age_row = None
43
+ gender_row = None
44
+
45
+ # 2.2) Define data type conversion functions (they will return None here, as data is unavailable)
46
+ def convert_trait(value):
47
+ return None
48
+
49
+ def convert_age(value):
50
+ return None
51
+
52
+ def convert_gender(value):
53
+ return None
54
+
55
+ # 3) Initial filtering: trait data is considered unavailable because trait_row is None
56
+ is_trait_available = (trait_row is not None)
57
+
58
+ validate_and_save_cohort_info(
59
+ is_final=False,
60
+ cohort=cohort,
61
+ info_path=json_path,
62
+ is_gene_available=is_gene_available,
63
+ is_trait_available=is_trait_available
64
+ )
65
+
66
+ # 4) Since trait_row is None, we skip clinical feature extraction
67
+ # STEP3
68
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
69
+ gene_data = get_genetic_data(matrix_file)
70
+
71
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
72
+ print(gene_data.index[:20])
73
+ # Based on the numeric pattern, these identifiers (e.g., 7892501, 7892502, etc.) are not recognized human gene symbols.
74
+ # They appear to be probe IDs that should be mapped to gene symbols for downstream analysis.
75
+ print("requires_gene_mapping = True")
76
+ # STEP5
77
+ import pandas as pd
78
+ import io
79
+
80
+ # 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet.
81
+ annotation_text, _ = filter_content_by_prefix(
82
+ source=soft_file,
83
+ prefixes_a=['^', '!', '#'],
84
+ unselect=True,
85
+ source_type='file',
86
+ return_df_a=False,
87
+ return_df_b=False
88
+ )
89
+
90
+ # 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues.
91
+ gene_annotation = pd.read_csv(
92
+ io.StringIO(annotation_text),
93
+ delimiter='\t',
94
+ on_bad_lines='skip',
95
+ engine='python'
96
+ )
97
+
98
+ print("Gene annotation preview:")
99
+ print(preview_df(gene_annotation))
100
+ # STEP: Gene Identifier Mapping
101
+
102
+ # 1. Identify the columns in the annotation dataframe that correspond to the probe ID and the gene symbol.
103
+ # From the preview above, "ID" stores the probe identifier and "gene_assignment" stores the gene information.
104
+
105
+ # 2. Generate the mapping dataframe using the library function get_gene_mapping.
106
+ mapping_df = get_gene_mapping(
107
+ annotation=gene_annotation,
108
+ prob_col="ID",
109
+ gene_col="gene_assignment"
110
+ )
111
+
112
+ # 3. Apply the mapping to convert probe-level measurements in 'gene_data' to gene-level expression.
113
+ gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)
114
+
115
+ # (Optional) Inspect the resulting gene_data shape or columns if desired
116
+ print("Gene expression dataframe shape after mapping:", gene_data.shape)
117
+ print("First few genes:", gene_data.index[:10].tolist())
118
+ import os
119
+ import pandas as pd
120
+
121
+ # STEP7
122
+
123
+ # 1) Normalize gene symbols and save
124
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
125
+ normalized_gene_data.to_csv(out_gene_data_file)
126
+
127
+ # Check whether we actually have a clinical CSV file (i.e., trait data) from Step 2
128
+ if os.path.exists(out_clinical_data_file):
129
+ # 2) Link the clinical and gene expression data
130
+ # Load the single-row clinical CSV without forcing an index column
131
+ tmp_df = pd.read_csv(out_clinical_data_file, header=0)
132
+ # Rename the single row to the trait. Now columns = sample IDs, index = [trait].
133
+ tmp_df.index = [trait]
134
+ selected_clinical_df = tmp_df
135
+
136
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
137
+
138
+ # 3) Handle missing values
139
+ final_data = handle_missing_values(linked_data, trait_col=trait)
140
+
141
+ # 4) Evaluate bias in the trait (and remove biased demographics if any)
142
+ trait_biased, final_data = judge_and_remove_biased_features(final_data, trait)
143
+
144
+ # 5) Final validation
145
+ is_usable = validate_and_save_cohort_info(
146
+ is_final=True,
147
+ cohort=cohort,
148
+ info_path=json_path,
149
+ is_gene_available=True,
150
+ is_trait_available=True,
151
+ is_biased=trait_biased,
152
+ df=final_data,
153
+ note="Trait data successfully extracted; row renamed to trait for linking."
154
+ )
155
+
156
+ # 6) If the dataset is usable, save
157
+ if is_usable:
158
+ final_data.to_csv(out_data_file)
159
+ else:
160
+ # If the clinical file does not exist, the trait is unavailable
161
+ empty_df = pd.DataFrame()
162
+ validate_and_save_cohort_info(
163
+ is_final=True,
164
+ cohort=cohort,
165
+ info_path=json_path,
166
+ is_gene_available=True,
167
+ is_trait_available=False,
168
+ is_biased=True,
169
+ df=empty_df,
170
+ note="No trait data was found; linking and final dataset output are skipped."
171
+ )
p1/preprocess/Esophageal_Cancer/code/GSE104958.py ADDED
@@ -0,0 +1,206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Esophageal_Cancer"
6
+ cohort = "GSE104958"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Esophageal_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Esophageal_Cancer/GSE104958"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Esophageal_Cancer/GSE104958.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Esophageal_Cancer/gene_data/GSE104958.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Esophageal_Cancer/clinical_data/GSE104958.csv"
16
+ json_path = "./output/preprocess/1/Esophageal_Cancer/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1) Determine if gene expression data is available for this dataset
37
+ is_gene_available = True # Based on the background info indicating DNA microarray data
38
+
39
+ # 2) Identify availability of trait, age, and gender, and define conversion functions
40
+
41
+ # From the sample characteristics dictionary:
42
+ # 0 => ['organ: esophagus']
43
+ # 1 => ['tissue: cancer tissue', 'tissue: normal tissue']
44
+ #
45
+ # Row 0 has only one unique value, so it's not useful for associative studies.
46
+ # Row 1 has two unique values ("cancer tissue" and "normal tissue"), which we can treat as a binary trait.
47
+
48
+ trait_row = 1
49
+ age_row = None
50
+ gender_row = None
51
+
52
+ def convert_trait(value: str) -> int:
53
+ # Extract the substring after colon
54
+ parts = value.split(':', 1)
55
+ val = parts[1].strip().lower() if len(parts) > 1 else ''
56
+ if val == 'cancer tissue':
57
+ return 1
58
+ elif val == 'normal tissue':
59
+ return 0
60
+ else:
61
+ return None
62
+
63
+ # Since age_row and gender_row are None, we define the following but won't use them:
64
+ def convert_age(value: str) -> float:
65
+ return None
66
+
67
+ def convert_gender(value: str) -> int:
68
+ return None
69
+
70
+ # 3) Save metadata with initial filtering
71
+ is_trait_available = (trait_row is not None)
72
+ is_usable = validate_and_save_cohort_info(
73
+ is_final=False,
74
+ cohort=cohort,
75
+ info_path=json_path,
76
+ is_gene_available=is_gene_available,
77
+ is_trait_available=is_trait_available
78
+ )
79
+
80
+ # 4) If trait_row is not None, extract clinical features
81
+ if trait_row is not None:
82
+ selected_clinical_df = geo_select_clinical_features(
83
+ clinical_data,
84
+ trait=trait,
85
+ trait_row=trait_row,
86
+ convert_trait=convert_trait,
87
+ age_row=age_row,
88
+ convert_age=convert_age,
89
+ gender_row=gender_row,
90
+ convert_gender=convert_gender
91
+ )
92
+ # Preview the resulting clinical DataFrame
93
+ preview = preview_df(selected_clinical_df)
94
+ print("Selected clinical feature preview:", preview)
95
+
96
+ # Save clinical data to CSV
97
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
98
+ # STEP3
99
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
100
+ gene_data = get_genetic_data(matrix_file)
101
+
102
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
103
+ print(gene_data.index[:20])
104
+ # Based on observation, these IDs look like custom transcript/probe IDs rather than standard human gene symbols.
105
+ # Therefore, gene mapping is needed.
106
+ print("requires_gene_mapping = True")
107
+ # STEP5
108
+ import pandas as pd
109
+ import io
110
+
111
+ # 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet.
112
+ annotation_text, _ = filter_content_by_prefix(
113
+ source=soft_file,
114
+ prefixes_a=['^', '!', '#'],
115
+ unselect=True,
116
+ source_type='file',
117
+ return_df_a=False,
118
+ return_df_b=False
119
+ )
120
+
121
+ # 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues.
122
+ gene_annotation = pd.read_csv(
123
+ io.StringIO(annotation_text),
124
+ delimiter='\t',
125
+ on_bad_lines='skip',
126
+ engine='python'
127
+ )
128
+
129
+ print("Gene annotation preview:")
130
+ print(preview_df(gene_annotation))
131
+ # STEP: Gene Identifier Mapping
132
+
133
+ # 1) Decide which annotation columns correspond to the gene expression identifiers and gene symbols
134
+ # From the preview, the "ID" column in the annotation corresponds to the row IDs in the expression data,
135
+ # and the "GENE_SYMBOL" column contains the gene symbols.
136
+
137
+ # 2) Create the gene mapping dataframe using these columns
138
+ mapping_df = get_gene_mapping(
139
+ annotation=gene_annotation,
140
+ prob_col="ID",
141
+ gene_col="GENE_SYMBOL"
142
+ )
143
+
144
+ # 3) Convert the probe-level expression data to gene-level expression data
145
+ gene_data = apply_gene_mapping(
146
+ expression_df=gene_data,
147
+ mapping_df=mapping_df
148
+ )
149
+
150
+ # Print a summary of the resulting gene_data
151
+ print("Mapped gene_data shape:", gene_data.shape)
152
+ print("Mapped gene_data preview:", preview_df(gene_data))
153
+ import os
154
+ import pandas as pd
155
+
156
+ # STEP7
157
+
158
+ # 1) Normalize gene symbols and save
159
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
160
+ normalized_gene_data.to_csv(out_gene_data_file)
161
+
162
+ # Check whether we actually have a clinical CSV file (i.e., trait data) from Step 2
163
+ if os.path.exists(out_clinical_data_file):
164
+ # 2) Link the clinical and gene expression data
165
+ # Load the single-row clinical CSV without forcing an index column
166
+ tmp_df = pd.read_csv(out_clinical_data_file, header=0)
167
+ # Rename the single row to the trait. Now columns = sample IDs, index = [trait].
168
+ tmp_df.index = [trait]
169
+ selected_clinical_df = tmp_df
170
+
171
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
172
+
173
+ # 3) Handle missing values
174
+ final_data = handle_missing_values(linked_data, trait_col=trait)
175
+
176
+ # 4) Evaluate bias in the trait (and remove biased demographics if any)
177
+ trait_biased, final_data = judge_and_remove_biased_features(final_data, trait)
178
+
179
+ # 5) Final validation
180
+ is_usable = validate_and_save_cohort_info(
181
+ is_final=True,
182
+ cohort=cohort,
183
+ info_path=json_path,
184
+ is_gene_available=True,
185
+ is_trait_available=True,
186
+ is_biased=trait_biased,
187
+ df=final_data,
188
+ note="Trait data successfully extracted; row renamed to trait for linking."
189
+ )
190
+
191
+ # 6) If the dataset is usable, save
192
+ if is_usable:
193
+ final_data.to_csv(out_data_file)
194
+ else:
195
+ # If the clinical file does not exist, the trait is unavailable
196
+ empty_df = pd.DataFrame()
197
+ validate_and_save_cohort_info(
198
+ is_final=True,
199
+ cohort=cohort,
200
+ info_path=json_path,
201
+ is_gene_available=True,
202
+ is_trait_available=False,
203
+ is_biased=True,
204
+ df=empty_df,
205
+ note="No trait data was found; linking and final dataset output are skipped."
206
+ )
p1/preprocess/Esophageal_Cancer/code/GSE107754.py ADDED
@@ -0,0 +1,223 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Esophageal_Cancer"
6
+ cohort = "GSE107754"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Esophageal_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Esophageal_Cancer/GSE107754"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Esophageal_Cancer/GSE107754.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Esophageal_Cancer/gene_data/GSE107754.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Esophageal_Cancer/clinical_data/GSE107754.csv"
16
+ json_path = "./output/preprocess/1/Esophageal_Cancer/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Determine if the dataset is likely to contain gene expression data.
37
+ # From the background information, this series uses "Whole human genome gene expression microarrays",
38
+ # so we set is_gene_available to True.
39
+ is_gene_available = True
40
+
41
+ # 2. Identify variable availability and define conversion functions.
42
+
43
+ # 2.1 Availability
44
+ # We see multiple tissue types including "Esophagus cancer" in row 2, so we'll treat that as the trait indicator.
45
+ # Gender is in row 0. Age is not found anywhere.
46
+ trait_row = 2
47
+ age_row = None
48
+ gender_row = 0
49
+
50
+ # 2.2 Data Type Conversions
51
+ def convert_trait(x: str):
52
+ """
53
+ Convert a sample characteristic string into a binary value for Esophageal_Cancer.
54
+ Return 1 if 'Esophagus cancer' is mentioned, otherwise 0.
55
+ Return None if the string format is unexpected.
56
+ """
57
+ parts = x.split(':', 1)
58
+ if len(parts) < 2:
59
+ return None
60
+ val = parts[1].strip().lower()
61
+ # Mark as 1 if it specifically contains 'esophagus cancer', else 0
62
+ return 1 if 'esophagus cancer' in val else 0
63
+
64
+ def convert_gender(x: str):
65
+ """
66
+ Convert a gender string into binary value: 0 for female, 1 for male.
67
+ Return None if unknown.
68
+ """
69
+ parts = x.split(':', 1)
70
+ if len(parts) < 2:
71
+ return None
72
+ val = parts[1].strip().lower()
73
+ if val == 'female':
74
+ return 0
75
+ elif val == 'male':
76
+ return 1
77
+ else:
78
+ return None
79
+
80
+ # Since age is not available, we won't define a convert_age function (or just pass None).
81
+ convert_age = None
82
+
83
+ # 3. Save metadata with initial filtering.
84
+ is_trait_available = (trait_row is not None)
85
+ validate_and_save_cohort_info(
86
+ is_final=False,
87
+ cohort=cohort,
88
+ info_path=json_path,
89
+ is_gene_available=is_gene_available,
90
+ is_trait_available=is_trait_available
91
+ )
92
+
93
+ # 4. If trait data is available, extract clinical features, preview, and save.
94
+ if trait_row is not None:
95
+ selected_clinical_df = geo_select_clinical_features(
96
+ clinical_df=clinical_data,
97
+ trait=trait,
98
+ trait_row=trait_row,
99
+ convert_trait=convert_trait,
100
+ age_row=age_row,
101
+ convert_age=convert_age,
102
+ gender_row=gender_row,
103
+ convert_gender=convert_gender
104
+ )
105
+ preview = preview_df(selected_clinical_df, n=5, max_items=200)
106
+ print("Preview of selected clinical features:\n", preview)
107
+
108
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
109
+ # STEP3
110
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
111
+ gene_data = get_genetic_data(matrix_file)
112
+
113
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
114
+ print(gene_data.index[:20])
115
+ # These probe IDs (e.g., A_23_P100xxx) appear to be array-specific identifiers rather than standard human gene symbols.
116
+ # Therefore, mapping is needed to convert these identifiers to canonical gene symbols.
117
+
118
+ print("requires_gene_mapping = True")
119
+ # STEP5
120
+ import pandas as pd
121
+ import io
122
+
123
+ # 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet.
124
+ annotation_text, _ = filter_content_by_prefix(
125
+ source=soft_file,
126
+ prefixes_a=['^', '!', '#'],
127
+ unselect=True,
128
+ source_type='file',
129
+ return_df_a=False,
130
+ return_df_b=False
131
+ )
132
+
133
+ # 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues.
134
+ gene_annotation = pd.read_csv(
135
+ io.StringIO(annotation_text),
136
+ delimiter='\t',
137
+ on_bad_lines='skip',
138
+ engine='python'
139
+ )
140
+
141
+ print("Gene annotation preview:")
142
+ print(preview_df(gene_annotation))
143
+ # STEP: Gene Identifier Mapping
144
+
145
+ # 1. Determine which columns map the probe IDs in the gene expression data ("ID") to the gene symbols ("GENE_SYMBOL").
146
+ # 2. Create a mapping dataframe.
147
+ mapping_df = get_gene_mapping(
148
+ annotation=gene_annotation,
149
+ prob_col='ID',
150
+ gene_col='GENE_SYMBOL'
151
+ )
152
+
153
+ # 3. Apply the mapping to convert the probe-level data into gene-level data.
154
+ gene_data = apply_gene_mapping(
155
+ expression_df=gene_data,
156
+ mapping_df=mapping_df
157
+ )
158
+
159
+ # Optional: Preview the newly mapped gene expression data.
160
+ print("Preview of gene_data after applying gene symbol mapping:")
161
+ print(preview_df(gene_data, n=5))
162
+ import os
163
+ import pandas as pd
164
+
165
+ # STEP7
166
+
167
+ # 1) Normalize gene symbols in the gene expression data,
168
+ # remove unrecognized symbols, and aggregate duplicates.
169
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
170
+ normalized_gene_data.to_csv(out_gene_data_file)
171
+
172
+ # 2) Check whether we have a clinical CSV file from previous steps.
173
+ if os.path.exists(out_clinical_data_file):
174
+ # Read the CSV so that sample IDs become columns,
175
+ # and rename rows to [trait, 'Gender'] accordingly.
176
+ tmp_df = pd.read_csv(out_clinical_data_file, header=0)
177
+
178
+ # If there are 2 rows (trait and gender), rename them.
179
+ # If only 1 row (trait only), rename just that row.
180
+ if tmp_df.shape[0] == 2:
181
+ tmp_df.index = [trait, 'Gender']
182
+ else:
183
+ tmp_df.index = [trait]
184
+
185
+ selected_clinical_df = tmp_df
186
+
187
+ # Link clinical data (now with rows as trait/covariates) and gene data.
188
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
189
+
190
+ # 3) Handle missing values (drop incomplete samples/features, then impute).
191
+ final_data = handle_missing_values(linked_data, trait_col=trait)
192
+
193
+ # 4) Check trait bias, and remove biased demographics if needed.
194
+ trait_biased, final_data = judge_and_remove_biased_features(final_data, trait)
195
+
196
+ # 5) Final validation and record dataset metadata.
197
+ is_usable = validate_and_save_cohort_info(
198
+ is_final=True,
199
+ cohort=cohort,
200
+ info_path=json_path,
201
+ is_gene_available=True,
202
+ is_trait_available=True,
203
+ is_biased=trait_biased,
204
+ df=final_data,
205
+ note="Trait and gender identified in two-row clinical file; indices renamed before linking."
206
+ )
207
+
208
+ # 6) If the dataset is usable, save the final linked data.
209
+ if is_usable:
210
+ final_data.to_csv(out_data_file)
211
+ else:
212
+ # If we have no clinical file, we cannot use the dataset.
213
+ empty_df = pd.DataFrame()
214
+ validate_and_save_cohort_info(
215
+ is_final=True,
216
+ cohort=cohort,
217
+ info_path=json_path,
218
+ is_gene_available=True,
219
+ is_trait_available=False,
220
+ is_biased=True,
221
+ df=empty_df,
222
+ note="No trait data was found; linking and final dataset output are skipped."
223
+ )
p1/preprocess/Esophageal_Cancer/code/GSE131027.py ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Esophageal_Cancer"
6
+ cohort = "GSE131027"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Esophageal_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Esophageal_Cancer/GSE131027"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Esophageal_Cancer/GSE131027.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Esophageal_Cancer/gene_data/GSE131027.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Esophageal_Cancer/clinical_data/GSE131027.csv"
16
+ json_path = "./output/preprocess/1/Esophageal_Cancer/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Determine if gene expression data is available
37
+ is_gene_available = True # Based on the summary indicating "investigation of expression features"
38
+
39
+ # 2. Determine data availability for trait, age, and gender
40
+ # From the sample characteristics dictionary, trait appears at key=1 with multiple cancer types,
41
+ # including "Oesophageal cancer". Age and gender information are not present.
42
+
43
+ trait_row = 1
44
+ age_row = None
45
+ gender_row = None
46
+
47
+ # 2.2 Define data type conversion functions
48
+ def convert_trait(x: str):
49
+ """
50
+ Convert string to binary indicator of trait ("Esophageal_Cancer").
51
+ 1 = Oesophageal cancer; 0 = other cancer types; None = unknown
52
+ """
53
+ parts = x.split(':', 1)
54
+ val = parts[1].strip().lower() if len(parts) > 1 else parts[0].strip().lower()
55
+ if 'oesophageal' in val:
56
+ return 1
57
+ elif 'cancer' in val:
58
+ return 0
59
+ else:
60
+ return None
61
+
62
+ def convert_age(x: str):
63
+ """
64
+ Not used in this dataset (age_row = None). Dummy placeholder.
65
+ """
66
+ return None
67
+
68
+ def convert_gender(x: str):
69
+ """
70
+ Not used in this dataset (gender_row = None). Dummy placeholder.
71
+ """
72
+ return None
73
+
74
+ # 3. Conduct initial filtering and save metadata
75
+ # Trait is available if trait_row is not None
76
+ is_trait_available = (trait_row is not None)
77
+
78
+ metadata_result = validate_and_save_cohort_info(
79
+ is_final=False,
80
+ cohort=cohort,
81
+ info_path=json_path,
82
+ is_gene_available=is_gene_available,
83
+ is_trait_available=is_trait_available
84
+ )
85
+
86
+ # 4. If trait data is available, extract clinical features
87
+ if trait_row is not None:
88
+ selected_clinical_df = geo_select_clinical_features(
89
+ clinical_df=clinical_data,
90
+ trait=trait,
91
+ trait_row=trait_row,
92
+ convert_trait=convert_trait,
93
+ age_row=age_row,
94
+ convert_age=convert_age,
95
+ gender_row=gender_row,
96
+ convert_gender=convert_gender
97
+ )
98
+ # Preview selected clinical features
99
+ preview_dict = preview_df(selected_clinical_df, n=5)
100
+ print("Preview of selected clinical features:", preview_dict)
101
+
102
+ # Save clinical dataframe
103
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
104
+ # STEP3
105
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
106
+ gene_data = get_genetic_data(matrix_file)
107
+
108
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
109
+ print(gene_data.index[:20])
110
+ # These identifiers (e.g., '1007_s_at', '1053_at') indicate Affymetrix probe set IDs rather than official gene symbols.
111
+ # Therefore, mapping to human gene symbols is required.
112
+
113
+ print("requires_gene_mapping = True")
114
+ # STEP5
115
+ import pandas as pd
116
+ import io
117
+
118
+ # 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet.
119
+ annotation_text, _ = filter_content_by_prefix(
120
+ source=soft_file,
121
+ prefixes_a=['^', '!', '#'],
122
+ unselect=True,
123
+ source_type='file',
124
+ return_df_a=False,
125
+ return_df_b=False
126
+ )
127
+
128
+ # 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues.
129
+ gene_annotation = pd.read_csv(
130
+ io.StringIO(annotation_text),
131
+ delimiter='\t',
132
+ on_bad_lines='skip',
133
+ engine='python'
134
+ )
135
+
136
+ print("Gene annotation preview:")
137
+ print(preview_df(gene_annotation))
138
+ # STEP: Gene Identifier Mapping
139
+
140
+ # 1. Identify the columns for probe identifiers ("ID") and gene symbols ("Gene Symbol")
141
+ # 2. Create a mapping dataframe
142
+ mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Gene Symbol")
143
+
144
+ # 3. Convert probe-level data to gene expression data
145
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
146
+
147
+ # Print a quick check of the transformed gene_data
148
+ print("Mapped gene_data shape:", gene_data.shape)
149
+ print("Mapped gene_data preview:\n", gene_data.head(5))
150
+ import os
151
+ import pandas as pd
152
+
153
+ # STEP7
154
+
155
+ # 1) Normalize gene symbols and save
156
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
157
+ normalized_gene_data.to_csv(out_gene_data_file)
158
+
159
+ # Check whether we actually have a clinical CSV file (i.e., trait data) from Step 2
160
+ if os.path.exists(out_clinical_data_file):
161
+ # 2) Link the clinical and gene expression data
162
+ # Load the single-row clinical CSV without forcing an index column
163
+ tmp_df = pd.read_csv(out_clinical_data_file, header=0)
164
+ # Rename the single row to the trait. Now columns = sample IDs, index = [trait].
165
+ tmp_df.index = [trait]
166
+ selected_clinical_df = tmp_df
167
+
168
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
169
+
170
+ # 3) Handle missing values
171
+ final_data = handle_missing_values(linked_data, trait_col=trait)
172
+
173
+ # 4) Evaluate bias in the trait (and remove biased demographics if any)
174
+ trait_biased, final_data = judge_and_remove_biased_features(final_data, trait)
175
+
176
+ # 5) Final validation
177
+ is_usable = validate_and_save_cohort_info(
178
+ is_final=True,
179
+ cohort=cohort,
180
+ info_path=json_path,
181
+ is_gene_available=True,
182
+ is_trait_available=True,
183
+ is_biased=trait_biased,
184
+ df=final_data,
185
+ note="Trait data successfully extracted; row renamed to trait for linking."
186
+ )
187
+
188
+ # 6) If the dataset is usable, save
189
+ if is_usable:
190
+ final_data.to_csv(out_data_file)
191
+ else:
192
+ # If the clinical file does not exist, the trait is unavailable
193
+ empty_df = pd.DataFrame()
194
+ validate_and_save_cohort_info(
195
+ is_final=True,
196
+ cohort=cohort,
197
+ info_path=json_path,
198
+ is_gene_available=True,
199
+ is_trait_available=False,
200
+ is_biased=True,
201
+ df=empty_df,
202
+ note="No trait data was found; linking and final dataset output are skipped."
203
+ )
p1/preprocess/Esophageal_Cancer/code/GSE156915.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Esophageal_Cancer"
6
+ cohort = "GSE156915"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Esophageal_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Esophageal_Cancer/GSE156915"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Esophageal_Cancer/GSE156915.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Esophageal_Cancer/gene_data/GSE156915.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Esophageal_Cancer/clinical_data/GSE156915.csv"
16
+ json_path = "./output/preprocess/1/Esophageal_Cancer/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Gene Expression Data Availability
37
+ # Based on the background info stating "Whole transcriptome" data were used, we set is_gene_available to True.
38
+ is_gene_available = True
39
+
40
+ # 2. Variable Availability and Data Type Conversion
41
+ # The sample characteristics do not provide information for our trait ("Esophageal_Cancer"), nor age or gender.
42
+ # Hence, all rows are None.
43
+ trait_row = None
44
+ age_row = None
45
+ gender_row = None
46
+
47
+ # Define minimal conversion functions (they will not be used since all rows are None).
48
+ def convert_trait(value: str) -> float:
49
+ return None
50
+
51
+ def convert_age(value: str) -> float:
52
+ return None
53
+
54
+ def convert_gender(value: str) -> int:
55
+ return None
56
+
57
+ # 3. Save Metadata (initial filtering)
58
+ # Trait data availability is determined by whether trait_row is None.
59
+ is_trait_available = (trait_row is not None)
60
+
61
+ is_usable = validate_and_save_cohort_info(
62
+ is_final=False,
63
+ cohort=cohort,
64
+ info_path=json_path,
65
+ is_gene_available=is_gene_available,
66
+ is_trait_available=is_trait_available
67
+ )
68
+ print("is_usable:", is_usable)
69
+
70
+ # 4. Clinical Feature Extraction
71
+ # Since trait_row is None, we skip the clinical feature extraction step.
p1/preprocess/Esophageal_Cancer/code/GSE218109.py ADDED
@@ -0,0 +1,211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Esophageal_Cancer"
6
+ cohort = "GSE218109"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Esophageal_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Esophageal_Cancer/GSE218109"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Esophageal_Cancer/GSE218109.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Esophageal_Cancer/gene_data/GSE218109.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Esophageal_Cancer/clinical_data/GSE218109.csv"
16
+ json_path = "./output/preprocess/1/Esophageal_Cancer/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Determine if this dataset is likely to contain gene expression data
37
+ is_gene_available = True # Based on "Transcriptional profiling" info
38
+
39
+ # 2.1 Identify availability of trait, age, and gender
40
+ # The dictionary shows "tissue" is constant (everyone has ESCC), so no variation => no valid trait data
41
+ trait_row = None
42
+
43
+ # Key 1 contains multiple ages
44
+ age_row = 1
45
+
46
+ # Key 0 contains sex categories (M, F)
47
+ gender_row = 0
48
+
49
+ # 2.2 Define data type conversion functions
50
+
51
+ def convert_trait(x: str):
52
+ # Trait data not available; always return None
53
+ return None
54
+
55
+ def convert_age(x: str):
56
+ # Example: "age: 45" -> 45 (int). Convert errors to None
57
+ parts = x.split(':', 1)
58
+ if len(parts) < 2:
59
+ return None
60
+ try:
61
+ return float(parts[1].strip())
62
+ except ValueError:
63
+ return None
64
+
65
+ def convert_gender(x: str):
66
+ # Example: "Sex: M" -> 1, "Sex: F" -> 0
67
+ parts = x.split(':', 1)
68
+ if len(parts) < 2:
69
+ return None
70
+ val = parts[1].strip().lower()
71
+ if val == 'm':
72
+ return 1
73
+ elif val == 'f':
74
+ return 0
75
+ else:
76
+ return None
77
+
78
+ # 3. Initial filtering and metadata saving
79
+ is_trait_available = (trait_row is not None)
80
+ is_usable = validate_and_save_cohort_info(
81
+ is_final=False,
82
+ cohort=cohort,
83
+ info_path=json_path,
84
+ is_gene_available=is_gene_available,
85
+ is_trait_available=is_trait_available
86
+ )
87
+
88
+ # 4. Clinical Feature Extraction (skip if trait_row is None)
89
+ if trait_row is not None:
90
+ selected_clinical_df = geo_select_clinical_features(
91
+ clinical_data, # assuming the DataFrame is available in variable 'clinical_data'
92
+ trait=trait,
93
+ trait_row=trait_row,
94
+ convert_trait=convert_trait,
95
+ age_row=age_row,
96
+ convert_age=convert_age,
97
+ gender_row=gender_row,
98
+ convert_gender=convert_gender
99
+ )
100
+ print("Preview of selected clinical features:")
101
+ print(preview_df(selected_clinical_df))
102
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
103
+ # STEP3
104
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
105
+ gene_data = get_genetic_data(matrix_file)
106
+
107
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
108
+ print(gene_data.index[:20])
109
+ # Based on the provided index, these are numeric identifiers rather than typical human gene symbols.
110
+
111
+ # Conclude by indicating if gene mapping is required:
112
+ requires_gene_mapping = True
113
+ # STEP5
114
+ import pandas as pd
115
+ import io
116
+
117
+ # 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet.
118
+ annotation_text, _ = filter_content_by_prefix(
119
+ source=soft_file,
120
+ prefixes_a=['^', '!', '#'],
121
+ unselect=True,
122
+ source_type='file',
123
+ return_df_a=False,
124
+ return_df_b=False
125
+ )
126
+
127
+ # 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues.
128
+ gene_annotation = pd.read_csv(
129
+ io.StringIO(annotation_text),
130
+ delimiter='\t',
131
+ on_bad_lines='skip',
132
+ engine='python'
133
+ )
134
+
135
+ print("Gene annotation preview:")
136
+ print(preview_df(gene_annotation))
137
+ # STEP6: Gene Identifier Mapping
138
+
139
+ # 1. Decide which columns represent the probe IDs and the gene symbols
140
+ # From the dictionary preview, it seems "ID" is the probe identifier and "GENE_SYMBOL" holds the gene symbol field.
141
+
142
+ # 2. Create a gene mapping dataframe
143
+ mapping_df = get_gene_mapping(
144
+ annotation=gene_annotation,
145
+ prob_col="ID", # Probe identifier column
146
+ gene_col="GENE_SYMBOL" # Gene symbol column
147
+ )
148
+
149
+ # 3. Convert the probe-level measurements to gene-level expression data
150
+ gene_data = apply_gene_mapping(
151
+ expression_df=gene_data, # The probe-level DataFrame previously read
152
+ mapping_df=mapping_df
153
+ )
154
+
155
+ # For verification, let's inspect the updated gene_data
156
+ print("Mapped gene_data shape:", gene_data.shape)
157
+ print("First few gene symbols after mapping:", gene_data.index[:10].tolist())
158
+ import os
159
+ import pandas as pd
160
+
161
+ # STEP7
162
+
163
+ # 1) Normalize gene symbols and save
164
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
165
+ normalized_gene_data.to_csv(out_gene_data_file)
166
+
167
+ # Check whether we actually have a clinical CSV file (i.e., trait data) from Step 2
168
+ if os.path.exists(out_clinical_data_file):
169
+ # 2) Link the clinical and gene expression data
170
+ # Load the single-row clinical CSV without forcing an index column
171
+ tmp_df = pd.read_csv(out_clinical_data_file, header=0)
172
+ # Rename the single row to the trait. Now columns = sample IDs, index = [trait].
173
+ tmp_df.index = [trait]
174
+ selected_clinical_df = tmp_df
175
+
176
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
177
+
178
+ # 3) Handle missing values
179
+ final_data = handle_missing_values(linked_data, trait_col=trait)
180
+
181
+ # 4) Evaluate bias in the trait (and remove biased demographics if any)
182
+ trait_biased, final_data = judge_and_remove_biased_features(final_data, trait)
183
+
184
+ # 5) Final validation
185
+ is_usable = validate_and_save_cohort_info(
186
+ is_final=True,
187
+ cohort=cohort,
188
+ info_path=json_path,
189
+ is_gene_available=True,
190
+ is_trait_available=True,
191
+ is_biased=trait_biased,
192
+ df=final_data,
193
+ note="Trait data successfully extracted; row renamed to trait for linking."
194
+ )
195
+
196
+ # 6) If the dataset is usable, save
197
+ if is_usable:
198
+ final_data.to_csv(out_data_file)
199
+ else:
200
+ # If the clinical file does not exist, the trait is unavailable
201
+ empty_df = pd.DataFrame()
202
+ validate_and_save_cohort_info(
203
+ is_final=True,
204
+ cohort=cohort,
205
+ info_path=json_path,
206
+ is_gene_available=True,
207
+ is_trait_available=False,
208
+ is_biased=True,
209
+ df=empty_df,
210
+ note="No trait data was found; linking and final dataset output are skipped."
211
+ )
p1/preprocess/Esophageal_Cancer/code/GSE55857.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Esophageal_Cancer"
6
+ cohort = "GSE55857"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Esophageal_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Esophageal_Cancer/GSE55857"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Esophageal_Cancer/GSE55857.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Esophageal_Cancer/gene_data/GSE55857.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Esophageal_Cancer/clinical_data/GSE55857.csv"
16
+ json_path = "./output/preprocess/1/Esophageal_Cancer/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1) Determine if gene expression data is available
37
+ is_gene_available = False # This dataset is about small non-coding RNAs (miRNAs), not mRNA gene expression
38
+
39
+ # 2) Identify rows for trait, age, and gender
40
+ trait_row = 1 # "tissue: ESCC normal"/"tissue: ESCC tumor"
41
+ age_row = None
42
+ gender_row = None
43
+
44
+ # 2.2) Define conversion functions
45
+ def convert_trait(value: str):
46
+ parts = value.split(':', 1)
47
+ if len(parts) < 2:
48
+ return None
49
+ label = parts[1].strip().lower()
50
+ if 'tumor' in label:
51
+ return 1
52
+ elif 'normal' in label:
53
+ return 0
54
+ return None
55
+
56
+ def convert_age(value: str):
57
+ return None
58
+
59
+ def convert_gender(value: str):
60
+ return None
61
+
62
+ # 3) Perform initial filtering and save metadata
63
+ is_trait_available = (trait_row is not None)
64
+ _ = validate_and_save_cohort_info(
65
+ is_final=False,
66
+ cohort=cohort,
67
+ info_path=json_path,
68
+ is_gene_available=is_gene_available,
69
+ is_trait_available=is_trait_available
70
+ )
71
+
72
+ # 4) If trait data is available, extract and save clinical features
73
+ if trait_row is not None:
74
+ selected_clinical_df = geo_select_clinical_features(
75
+ clinical_data,
76
+ trait=trait,
77
+ trait_row=trait_row,
78
+ convert_trait=convert_trait,
79
+ age_row=age_row,
80
+ convert_age=convert_age,
81
+ gender_row=gender_row,
82
+ convert_gender=convert_gender
83
+ )
84
+ # Preview the extracted clinical data
85
+ previewed_clinical = preview_df(selected_clinical_df)
86
+ print(previewed_clinical)
87
+
88
+ # Save the clinical data to CSV
89
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
p1/preprocess/Esophageal_Cancer/code/GSE66258.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Esophageal_Cancer"
6
+ cohort = "GSE66258"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Esophageal_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Esophageal_Cancer/GSE66258"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Esophageal_Cancer/GSE66258.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Esophageal_Cancer/gene_data/GSE66258.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Esophageal_Cancer/clinical_data/GSE66258.csv"
16
+ json_path = "./output/preprocess/1/Esophageal_Cancer/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Gene Expression Data Availability
37
+ is_gene_available = False # The dataset focuses on small non-coding RNAs (sncRNAs), which is not standard mRNA expression data.
38
+
39
+ # 2. Variable Availability and Data Type Conversion
40
+
41
+ # Based on sample characteristics, row 0 has a single unique value: 'tissue: esophageal squamous cell carcinoma (ESCC) tumor'
42
+ # and row 1 has only IDs. Neither age nor gender is provided. Hence, all are effectively unavailable or constant.
43
+
44
+ trait_row = None # No varying trait information found
45
+ age_row = None # No age information
46
+ gender_row = None # No gender information
47
+
48
+ # Since none of them are available, we set is_trait_available to False
49
+ is_trait_available = (trait_row is not None)
50
+
51
+ # We won't define conversion functions because there's no available data to convert.
52
+ # But for completeness, we'll define stubs:
53
+
54
+ def convert_trait(x: str) -> float:
55
+ return None
56
+
57
+ def convert_age(x: str) -> float:
58
+ return None
59
+
60
+ def convert_gender(x: str) -> int:
61
+ return None
62
+
63
+ # 3. Save Metadata: initial filtering
64
+ # Trait data is not available, so the dataset fails initial filtering on trait availability.
65
+ is_usable = validate_and_save_cohort_info(
66
+ is_final=False,
67
+ cohort=cohort,
68
+ info_path=json_path,
69
+ is_gene_available=is_gene_available,
70
+ is_trait_available=is_trait_available
71
+ )
72
+
73
+ # 4. Clinical Feature Extraction
74
+ # Because trait_row is None, we skip this sub-step.
p1/preprocess/Esophageal_Cancer/code/GSE75241.py ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Esophageal_Cancer"
6
+ cohort = "GSE75241"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Esophageal_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Esophageal_Cancer/GSE75241"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Esophageal_Cancer/GSE75241.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Esophageal_Cancer/gene_data/GSE75241.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Esophageal_Cancer/clinical_data/GSE75241.csv"
16
+ json_path = "./output/preprocess/1/Esophageal_Cancer/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Determine gene expression data availability
37
+ is_gene_available = True # Based on the series title indicating gene expression data
38
+
39
+ # 2. Identify data availability and define row indices for trait, age, gender
40
+ trait_row = 1 # "tissue: nonmalignant surrounding mucosa" or "tissue: esophageal tumor"
41
+ age_row = None # Not found
42
+ gender_row = None # Not found
43
+
44
+ # 2.2 Define data conversion functions
45
+
46
+ def convert_trait(value: str):
47
+ """
48
+ Convert trait-related strings to binary:
49
+ - 'nonmalignant' -> 0
50
+ - 'tumor' -> 1
51
+ Unknown/empty -> None
52
+ """
53
+ if not value or pd.isna(value):
54
+ return None
55
+ parts = value.split(':', 1)
56
+ if len(parts) < 2:
57
+ return None
58
+ val = parts[1].strip().lower()
59
+ if 'nonmalignant' in val:
60
+ return 0
61
+ elif 'tumor' in val:
62
+ return 1
63
+ else:
64
+ return None
65
+
66
+ def convert_age(value: str):
67
+ """
68
+ No age data available for this dataset, so return None.
69
+ """
70
+ return None
71
+
72
+ def convert_gender(value: str):
73
+ """
74
+ No gender data available for this dataset, so return None.
75
+ """
76
+ return None
77
+
78
+ # 3. Conduct initial filtering to save metadata
79
+ is_trait_available = (trait_row is not None)
80
+ is_usable = validate_and_save_cohort_info(
81
+ is_final=False,
82
+ cohort=cohort,
83
+ info_path=json_path,
84
+ is_gene_available=is_gene_available,
85
+ is_trait_available=is_trait_available
86
+ )
87
+
88
+ # 4. Clinical feature extraction if trait data is available
89
+ if trait_row is not None:
90
+ selected_clinical_df = geo_select_clinical_features(
91
+ clinical_data,
92
+ trait=trait,
93
+ trait_row=trait_row,
94
+ convert_trait=convert_trait,
95
+ age_row=age_row,
96
+ convert_age=convert_age,
97
+ gender_row=gender_row,
98
+ convert_gender=convert_gender
99
+ )
100
+
101
+ # Preview the result
102
+ previewed = preview_df(selected_clinical_df)
103
+ print("Preview of selected clinical features:", previewed)
104
+
105
+ # Save clinical features to CSV
106
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
107
+ # STEP3
108
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
109
+ gene_data = get_genetic_data(matrix_file)
110
+
111
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
112
+ print(gene_data.index[:20])
113
+ # Based on the provided gene IDs, they appear to be platform-specific probe identifiers rather than standard human gene symbols.
114
+ # Therefore, they require mapping to gene symbols.
115
+ print("requires_gene_mapping = True")
116
+ # STEP5
117
+ import pandas as pd
118
+ import io
119
+
120
+ # 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet.
121
+ annotation_text, _ = filter_content_by_prefix(
122
+ source=soft_file,
123
+ prefixes_a=['^', '!', '#'],
124
+ unselect=True,
125
+ source_type='file',
126
+ return_df_a=False,
127
+ return_df_b=False
128
+ )
129
+
130
+ # 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues.
131
+ gene_annotation = pd.read_csv(
132
+ io.StringIO(annotation_text),
133
+ delimiter='\t',
134
+ on_bad_lines='skip',
135
+ engine='python'
136
+ )
137
+
138
+ print("Gene annotation preview:")
139
+ print(preview_df(gene_annotation))
140
+ # STEP: Gene Identifier Mapping
141
+
142
+ # 1. Identify columns containing matching probe identifiers and gene symbols
143
+ id_col = "ID" # Matches the probe IDs of the gene expression data
144
+ symbol_col = "gene_assignment" # Contains gene symbols embedded in the text
145
+
146
+ # 2. Get the gene-probe mapping DataFrame
147
+ mapping_df = get_gene_mapping(gene_annotation, prob_col=id_col, gene_col=symbol_col)
148
+
149
+ # 3. Convert probe-level measurements into gene-level expression data
150
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
151
+ import os
152
+ import pandas as pd
153
+
154
+ # STEP7
155
+
156
+ # 1) Normalize gene symbols and save
157
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
158
+ normalized_gene_data.to_csv(out_gene_data_file)
159
+
160
+ # Check whether we actually have a clinical CSV file (i.e., trait data) from Step 2
161
+ if os.path.exists(out_clinical_data_file):
162
+ # 2) Link the clinical and gene expression data
163
+ # Load the single-row clinical CSV without forcing an index column
164
+ tmp_df = pd.read_csv(out_clinical_data_file, header=0)
165
+ # Rename the single row to the trait. Now columns = sample IDs, index = [trait].
166
+ tmp_df.index = [trait]
167
+ selected_clinical_df = tmp_df
168
+
169
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
170
+
171
+ # 3) Handle missing values
172
+ final_data = handle_missing_values(linked_data, trait_col=trait)
173
+
174
+ # 4) Evaluate bias in the trait (and remove biased demographics if any)
175
+ trait_biased, final_data = judge_and_remove_biased_features(final_data, trait)
176
+
177
+ # 5) Final validation
178
+ is_usable = validate_and_save_cohort_info(
179
+ is_final=True,
180
+ cohort=cohort,
181
+ info_path=json_path,
182
+ is_gene_available=True,
183
+ is_trait_available=True,
184
+ is_biased=trait_biased,
185
+ df=final_data,
186
+ note="Trait data successfully extracted; row renamed to trait for linking."
187
+ )
188
+
189
+ # 6) If the dataset is usable, save
190
+ if is_usable:
191
+ final_data.to_csv(out_data_file)
192
+ else:
193
+ # If the clinical file does not exist, the trait is unavailable
194
+ empty_df = pd.DataFrame()
195
+ validate_and_save_cohort_info(
196
+ is_final=True,
197
+ cohort=cohort,
198
+ info_path=json_path,
199
+ is_gene_available=True,
200
+ is_trait_available=False,
201
+ is_biased=True,
202
+ df=empty_df,
203
+ note="No trait data was found; linking and final dataset output are skipped."
204
+ )
p1/preprocess/Esophageal_Cancer/code/GSE77790.py ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Esophageal_Cancer"
6
+ cohort = "GSE77790"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Esophageal_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Esophageal_Cancer/GSE77790"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Esophageal_Cancer/GSE77790.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Esophageal_Cancer/gene_data/GSE77790.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Esophageal_Cancer/clinical_data/GSE77790.csv"
16
+ json_path = "./output/preprocess/1/Esophageal_Cancer/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1) Determine if gene expression data is available
37
+ is_gene_available = True # Based on "Agilent whole genome microarrays" mention
38
+
39
+ # 2) Identify availability of variables and define conversion functions
40
+
41
+ # From the sample characteristics dictionary, row 1 contains labels like
42
+ # 'cell type: lung squamous cell carcinoma', 'cell type: esophageal cancer', etc.
43
+ # We can use row 1 to infer the presence or absence of "esophageal cancer".
44
+ trait_row = 1 # We have multiple distinct values including "esophageal cancer", so it's valid
45
+
46
+ # No row indicates age or gender information. Hence, set them to None.
47
+ age_row = None
48
+ gender_row = None
49
+
50
+ # Conversion function for the trait. We map "esophageal cancer" to 1, all others to 0.
51
+ def convert_trait(value: str) -> int:
52
+ """
53
+ Convert cell type strings to a binary indicator for 'esophageal cancer'.
54
+ Unknown or unrecognized strings return 0 by default (non-esophageal).
55
+ """
56
+ # Typically the format is "cell type: something"
57
+ parts = value.split(':', 1)
58
+ if len(parts) < 2:
59
+ return 0
60
+ label = parts[1].strip().lower()
61
+ if 'esophageal' in label:
62
+ return 1
63
+ return 0
64
+
65
+ # Since age_row = None and gender_row = None, we define placeholder converters
66
+ def convert_age(value: str):
67
+ return None
68
+
69
+ def convert_gender(value: str):
70
+ return None
71
+
72
+ # 3) Conduct initial filtering and save metadata
73
+ is_trait_available = (trait_row is not None)
74
+ validate_and_save_cohort_info(
75
+ is_final=False,
76
+ cohort=cohort,
77
+ info_path=json_path,
78
+ is_gene_available=is_gene_available,
79
+ is_trait_available=is_trait_available
80
+ )
81
+
82
+ # 4) If trait_row is available, extract and preview clinical features, then save
83
+ if trait_row is not None:
84
+ clinical_features_df = geo_select_clinical_features(
85
+ clinical_data,
86
+ trait=trait,
87
+ trait_row=trait_row,
88
+ convert_trait=convert_trait,
89
+ age_row=age_row,
90
+ convert_age=convert_age,
91
+ gender_row=gender_row,
92
+ convert_gender=convert_gender
93
+ )
94
+ print("Preview of selected clinical features:")
95
+ print(preview_df(clinical_features_df, n=5))
96
+ clinical_features_df.to_csv(out_clinical_data_file, index=True)
97
+ # STEP3
98
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
99
+ gene_data = get_genetic_data(matrix_file)
100
+
101
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
102
+ print(gene_data.index[:20])
103
+ # Based on the numeric IDs observed, these are not standard human gene symbols.
104
+ # Hence, they would require mapping to human gene symbols.
105
+ print("requires_gene_mapping = True")
106
+ # STEP5
107
+ import pandas as pd
108
+ import io
109
+
110
+ # 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet.
111
+ annotation_text, _ = filter_content_by_prefix(
112
+ source=soft_file,
113
+ prefixes_a=['^', '!', '#'],
114
+ unselect=True,
115
+ source_type='file',
116
+ return_df_a=False,
117
+ return_df_b=False
118
+ )
119
+
120
+ # 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues.
121
+ gene_annotation = pd.read_csv(
122
+ io.StringIO(annotation_text),
123
+ delimiter='\t',
124
+ on_bad_lines='skip',
125
+ engine='python'
126
+ )
127
+
128
+ print("Gene annotation preview:")
129
+ print(preview_df(gene_annotation))
130
+ # STEP: Gene Identifier Mapping
131
+ # 1) Identify columns for gene ID and gene symbol
132
+ # From the annotation preview, 'ID' matches the probe ID used in gene_data,
133
+ # and 'GENE_SYMBOL' stores the gene symbols.
134
+
135
+ mapping_df = get_gene_mapping(
136
+ annotation=gene_annotation,
137
+ prob_col="ID",
138
+ gene_col="GENE_SYMBOL"
139
+ )
140
+
141
+ # 2) Convert probe-level measurements to gene-level expression
142
+ gene_data = apply_gene_mapping(
143
+ expression_df=gene_data,
144
+ mapping_df=mapping_df
145
+ )
146
+
147
+ # (Optional) Preview the mapped gene expression data
148
+ print("Preview of mapped gene expression data:")
149
+ print(preview_df(gene_data, n=5))
150
+ import os
151
+ import pandas as pd
152
+
153
+ # STEP7
154
+
155
+ # 1) Normalize gene symbols and save
156
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
157
+ normalized_gene_data.to_csv(out_gene_data_file)
158
+
159
+ # Check whether we actually have a clinical CSV file (i.e., trait data) from Step 2
160
+ if os.path.exists(out_clinical_data_file):
161
+ # 2) Link the clinical and gene expression data
162
+ # Load the clinical data with its row index (features) from the CSV
163
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, header=0, index_col=0)
164
+
165
+ # Link
166
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
167
+
168
+ # 3) Handle missing values
169
+ final_data = handle_missing_values(linked_data, trait_col=trait)
170
+
171
+ # 4) Evaluate bias in the trait (and remove biased demographics if any)
172
+ trait_biased, final_data = judge_and_remove_biased_features(final_data, trait)
173
+
174
+ # 5) Final validation
175
+ is_usable = validate_and_save_cohort_info(
176
+ is_final=True,
177
+ cohort=cohort,
178
+ info_path=json_path,
179
+ is_gene_available=True,
180
+ is_trait_available=True,
181
+ is_biased=trait_biased,
182
+ df=final_data,
183
+ note="Trait data successfully extracted; index set from CSV directly."
184
+ )
185
+
186
+ # 6) If the dataset is usable, save
187
+ if is_usable:
188
+ final_data.to_csv(out_data_file)
189
+ else:
190
+ # If the clinical file does not exist, the trait is unavailable
191
+ empty_df = pd.DataFrame()
192
+ validate_and_save_cohort_info(
193
+ is_final=True,
194
+ cohort=cohort,
195
+ info_path=json_path,
196
+ is_gene_available=True,
197
+ is_trait_available=False,
198
+ is_biased=True,
199
+ df=empty_df,
200
+ note="No trait data was found; linking and final dataset output are skipped."
201
+ )
p1/preprocess/Esophageal_Cancer/code/TCGA.py ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Esophageal_Cancer"
6
+
7
+ # Input paths
8
+ tcga_root_dir = "../DATA/TCGA"
9
+
10
+ # Output paths
11
+ out_data_file = "./output/preprocess/1/Esophageal_Cancer/TCGA.csv"
12
+ out_gene_data_file = "./output/preprocess/1/Esophageal_Cancer/gene_data/TCGA.csv"
13
+ out_clinical_data_file = "./output/preprocess/1/Esophageal_Cancer/clinical_data/TCGA.csv"
14
+ json_path = "./output/preprocess/1/Esophageal_Cancer/cohort_info.json"
15
+
16
+ import os
17
+ import pandas as pd
18
+
19
+ # 1. Identify subdirectories under tcga_root_dir
20
+ subdirectories = os.listdir(tcga_root_dir)
21
+
22
+ trait_subdir = None
23
+ for d in subdirectories:
24
+ # Check if the directory name contains "esophageal" or "esca" (lowercase match)
25
+ if "esophageal" in d.lower() or "esca" in d.lower():
26
+ trait_subdir = d
27
+ break
28
+
29
+ # 2. If none found, skip this trait
30
+ if not trait_subdir:
31
+ print(f"No suitable subdirectory found for trait '{trait}'. Skipping...")
32
+ is_gene_available = False
33
+ is_trait_available = False
34
+ validate_and_save_cohort_info(
35
+ is_final=False,
36
+ cohort="TCGA",
37
+ info_path=json_path,
38
+ is_gene_available=is_gene_available,
39
+ is_trait_available=is_trait_available
40
+ )
41
+ else:
42
+ # Identify the paths to the clinical and genetic data files
43
+ full_subdir_path = os.path.join(tcga_root_dir, trait_subdir)
44
+ clinical_path, genetic_path = tcga_get_relevant_filepaths(full_subdir_path)
45
+
46
+ # 3. Load data into DataFrames
47
+ clinical_df = pd.read_csv(clinical_path, index_col=0, sep='\t')
48
+ genetic_df = pd.read_csv(genetic_path, index_col=0, sep='\t')
49
+
50
+ # 4. Print the column names of the clinical data for inspection
51
+ print("Clinical Data Columns:")
52
+ print(clinical_df.columns.tolist())
53
+ candidate_age_cols = ["age_at_initial_pathologic_diagnosis", "age_began_smoking_in_years"]
54
+ candidate_gender_cols = ["gender"]
55
+
56
+ extracted_cols = candidate_age_cols + candidate_gender_cols
57
+
58
+ if extracted_cols:
59
+ subset_clinical = clinical_df[extracted_cols]
60
+ preview_data = subset_clinical.head(5).to_dict(orient='list')
61
+ print(preview_data)
62
+ # Step 1: Choose the best columns for age and gender based on the data inspection
63
+ age_col = "age_at_initial_pathologic_diagnosis"
64
+ gender_col = "gender"
65
+
66
+ # Step 2: Print out the chosen columns
67
+ print(f"age_col: {age_col}")
68
+ print(f"gender_col: {gender_col}")
69
+ # 1) Extract and standardize clinical features
70
+ selected_clinical_df = tcga_select_clinical_features(
71
+ clinical_df=clinical_df,
72
+ trait=trait,
73
+ age_col=age_col,
74
+ gender_col=gender_col
75
+ )
76
+
77
+ # 2) Normalize gene symbols
78
+ normalized_gene_df = normalize_gene_symbols_in_index(genetic_df)
79
+ normalized_gene_df.to_csv(out_gene_data_file)
80
+
81
+ # 3) Link clinical and genetic data
82
+ linked_data = selected_clinical_df.join(normalized_gene_df.T, how='inner')
83
+
84
+ # 4) Handle missing values
85
+ linked_data_clean = handle_missing_values(linked_data, trait)
86
+
87
+ # 5) Determine biased features
88
+ trait_biased, linked_data_no_bias = judge_and_remove_biased_features(linked_data_clean, trait)
89
+
90
+ # 6) Final quality validation
91
+ is_usable = validate_and_save_cohort_info(
92
+ is_final=True,
93
+ cohort="TCGA",
94
+ info_path=json_path,
95
+ is_gene_available=True,
96
+ is_trait_available=True,
97
+ is_biased=trait_biased,
98
+ df=linked_data_no_bias,
99
+ note="Endometrioid Cancer TCGA cohort processed successfully."
100
+ )
101
+
102
+ # 7) Save usable data
103
+ if is_usable:
104
+ linked_data_no_bias.to_csv(out_data_file)
p1/preprocess/Esophageal_Cancer/gene_data/GSE100843.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:100ceb54a1c0b1947a8d0d3ff0a55e95bea0464b6bf3bb0c67d5eddb8ee2f38a
3
+ size 28739857
p1/preprocess/Esophageal_Cancer/gene_data/GSE104958.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f56a51be1a5c9d45191e0295166f9ecde7c87bb40d6bfaf0a93ca8f8c181233
3
+ size 11772704
p1/preprocess/Esophageal_Cancer/gene_data/GSE107754.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a82da64a5edcbde2a3ccf1c07d005767e02ceeaad822b4ed6217419063405079
3
+ size 19822703
p1/preprocess/Esophageal_Cancer/gene_data/GSE131027.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8582008fe6fc5b90879aea7d12ca4ea58cc0bbe03209acb333425d229be6e33
3
+ size 24379939
p1/preprocess/Esophageal_Cancer/gene_data/GSE218109.csv ADDED
The diff for this file is too large to render. See raw diff
 
p1/preprocess/Esophageal_Cancer/gene_data/GSE75241.csv ADDED
The diff for this file is too large to render. See raw diff
 
p1/preprocess/Esophageal_Cancer/gene_data/GSE77790.csv ADDED
The diff for this file is too large to render. See raw diff
 
p1/preprocess/Essential_Thrombocythemia/GSE103237.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e20dc273a3c676762828b17649a046a42071d5234e562bcb985dc1bd5ef0080
3
+ size 12501629
p1/preprocess/Essential_Thrombocythemia/GSE12295.csv ADDED
The diff for this file is too large to render. See raw diff
 
p1/preprocess/Essential_Thrombocythemia/GSE159514.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c873419446df5c8a365accded2a02ea13fa2f70df150140be41d260e26125e79
3
+ size 21786888
p1/preprocess/Essential_Thrombocythemia/GSE174060.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be9bb6fa3109286d9b9cdf8d29d55e1b57972d31dd09a108ddb18c1bbaabfd74
3
+ size 12990427
p1/preprocess/Essential_Thrombocythemia/GSE55976.csv ADDED
The diff for this file is too large to render. See raw diff
 
p1/preprocess/Essential_Thrombocythemia/GSE57793.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:788c0950aca6203d9bab29622515671322fe26e660d824dc4c12830fde911eee
3
+ size 17564694
p1/preprocess/Essential_Thrombocythemia/GSE61629.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb468228287b315779a9ddb38ec15b31172fc5b1fdb5e1caa7d11fe442ded1f7
3
+ size 14391042
p1/preprocess/Essential_Thrombocythemia/clinical_data/GSE103176.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+
2
+
3
+
p1/preprocess/Essential_Thrombocythemia/clinical_data/GSE103237.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ GSM2758679,GSM2758680,GSM2758681,GSM2758682,GSM2758683,GSM2758684,GSM2758685,GSM2758686,GSM2758687,GSM2758688,GSM2758689,GSM2758690,GSM2758691,GSM2758692,GSM2758693,GSM2758694,GSM2758695,GSM2758696,GSM2758697,GSM2758698,GSM2758699,GSM2758700,GSM2758701,GSM2758702,GSM2758703,GSM2758704,GSM2758705,GSM2758706,GSM2758707,GSM2758708,GSM2758709,GSM2758710,GSM2758711,GSM2758712,GSM2758713,GSM2758714,GSM2758715,GSM2758716,GSM2758717,GSM2758718,GSM2758719,GSM2758720,GSM2758721,GSM2758722,GSM2758723,GSM2758724,GSM2758725,GSM2758726,GSM2758727,GSM2758728,GSM2758729,GSM2758730,GSM2758731,GSM2758732,GSM2758733,GSM2758734,GSM2758735,GSM2758736,GSM2758737,GSM2758738,GSM2758739,GSM2758740,GSM2758741,GSM2758742,GSM2758743
2
+ 1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
3
+ 1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,,,,,,,,,,,,,,,
p1/preprocess/Essential_Thrombocythemia/clinical_data/GSE12295.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ GSM309072,GSM309073,GSM309074,GSM309075,GSM309076,GSM309077,GSM309078,GSM309079,GSM309080,GSM309081,GSM309082,GSM309083,GSM309084,GSM309085,GSM309086,GSM309087,GSM309088,GSM309089,GSM309090,GSM309091,GSM309092,GSM309093,GSM309094,GSM309095,GSM309096,GSM309097,GSM309098,GSM309099,GSM309100,GSM309101,GSM309102,GSM309103,GSM309104,GSM309105,GSM309106,GSM309107,GSM309108,GSM309109,GSM309110,GSM309111,GSM309112,GSM309113,GSM309114,GSM309115,GSM309116,GSM309117,GSM309118,GSM309119,GSM309120,GSM309121,GSM309122,GSM309123,GSM309124,GSM309125,GSM309126,GSM309127,GSM309128,GSM309129,GSM309130,GSM309131,GSM309132,GSM309133,GSM309134,GSM309135,GSM309136,GSM309137,GSM309138,GSM309139,GSM309140,GSM309141,GSM309142,GSM309143,GSM309144,GSM309145,GSM309146,GSM309147,GSM309148,GSM309149,GSM309150,GSM309151,GSM309152,GSM309153,GSM309154,GSM309155,GSM309156,GSM309157,GSM309158,GSM309159,GSM309160,GSM309161,GSM309162,GSM309163,GSM309164,GSM309165,GSM309166
2
+ 1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0
p1/preprocess/Essential_Thrombocythemia/clinical_data/GSE159514.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ GSM4831515,GSM4831516,GSM4831517,GSM4831518,GSM4831519,GSM4831520,GSM4831521,GSM4831522,GSM4831523,GSM4831524,GSM4831525,GSM4831526,GSM4831527,GSM4831528,GSM4831529,GSM4831530,GSM4831531,GSM4831532,GSM4831533,GSM4831534,GSM4831535,GSM4831536,GSM4831537,GSM4831538,GSM4831539,GSM4831540,GSM4831541,GSM4831542,GSM4831543,GSM4831544,GSM4831545,GSM4831546,GSM4831547,GSM4831548,GSM4831549,GSM4831550,GSM4831551,GSM4831552,GSM4831553,GSM4831554,GSM4831555,GSM4831556,GSM4831557,GSM4831558,GSM4831559,GSM4831560,GSM4831561,GSM4831562,GSM4831563,GSM4831564,GSM4831565,GSM4831566,GSM4831567,GSM4831568,GSM4831569,GSM4831570,GSM4831571,GSM4831572,GSM4831573,GSM4831574,GSM4831575,GSM4831576,GSM4831577,GSM4831578,GSM4831579,GSM4831580,GSM4831581,GSM4831582,GSM4831583,GSM4831584,GSM4831585,GSM4831586,GSM4831587,GSM4831588,GSM4831589,GSM4831590,GSM4831591,GSM4831592,GSM4831593,GSM4831594,GSM4831595,GSM4831596,GSM4831597,GSM4831598,GSM4831599,GSM4831600,GSM4831601,GSM4831602,GSM4831603,GSM4831604,GSM4831605,GSM4831606,GSM4831607,GSM4831608,GSM4831609,GSM4831610,GSM4831611,GSM4831612,GSM4831613,GSM4831614,GSM4831615,GSM4831616,GSM4831617,GSM4831618,GSM4831619,GSM4831620,GSM4831621,GSM4831622,GSM4831623,GSM4831624,GSM4831625,GSM4831626,GSM4831627,GSM4831628
2
+ 0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
p1/preprocess/Essential_Thrombocythemia/clinical_data/GSE174060.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ GSM5285411,GSM5285412,GSM5285413,GSM5285414,GSM5285415,GSM5285416,GSM5285417,GSM5285418,GSM5285419,GSM5285420,GSM5285421,GSM5285422,GSM5285423,GSM5285424,GSM5285425,GSM5285426,GSM5285427,GSM5285428,GSM5285429,GSM5285430,GSM5285431,GSM5285432,GSM5285433,GSM5285434,GSM5285435,GSM5285436,GSM5285437,GSM5285438,GSM5285439,GSM5285440,GSM5285441,GSM5285442,GSM5285443,GSM5285444,GSM5285445,GSM5285446
2
+ 1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0
3
+ 41.0,53.0,52.0,47.0,19.0,33.0,58.0,76.0,68.0,65.0,61.0,45.0,68.0,42.0,36.0,42.0,69.0,45.0,74.0,75.0,62.0,58.0,76.0,72.0,61.0,76.0,71.0,43.0,56.0,68.0,29.0,27.0,28.0,28.0,32.0,27.0
4
+ 0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0