Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +26 -0
- p3/preprocess/Acute_Myeloid_Leukemia/GSE222124.csv +3 -0
- p3/preprocess/Acute_Myeloid_Leukemia/GSE249638.csv +3 -0
- p3/preprocess/Acute_Myeloid_Leukemia/GSE98578.csv +3 -0
- p3/preprocess/Acute_Myeloid_Leukemia/clinical_data/GSE121291.csv +2 -0
- p3/preprocess/Acute_Myeloid_Leukemia/clinical_data/GSE121431.csv +2 -0
- p3/preprocess/Acute_Myeloid_Leukemia/clinical_data/GSE161532.csv +4 -0
- p3/preprocess/Acute_Myeloid_Leukemia/clinical_data/GSE222124.csv +2 -0
- p3/preprocess/Acute_Myeloid_Leukemia/clinical_data/GSE222169.csv +2 -0
- p3/preprocess/Acute_Myeloid_Leukemia/clinical_data/GSE235070.csv +2 -0
- p3/preprocess/Acute_Myeloid_Leukemia/clinical_data/GSE249638.csv +2 -0
- p3/preprocess/Acute_Myeloid_Leukemia/clinical_data/GSE98578.csv +2 -0
- p3/preprocess/Acute_Myeloid_Leukemia/clinical_data/GSE99612.csv +4 -0
- p3/preprocess/Acute_Myeloid_Leukemia/code/GSE121291.py +127 -0
- p3/preprocess/Acute_Myeloid_Leukemia/code/GSE121431.py +139 -0
- p3/preprocess/Acute_Myeloid_Leukemia/code/GSE161532.py +156 -0
- p3/preprocess/Acute_Myeloid_Leukemia/code/GSE222124.py +137 -0
- p3/preprocess/Acute_Myeloid_Leukemia/code/GSE222169.py +177 -0
- p3/preprocess/Acute_Myeloid_Leukemia/code/GSE222616.py +120 -0
- p3/preprocess/Acute_Myeloid_Leukemia/code/GSE235070.py +85 -0
- p3/preprocess/Acute_Myeloid_Leukemia/code/GSE249638.py +142 -0
- p3/preprocess/Acute_Myeloid_Leukemia/code/GSE98578.py +144 -0
- p3/preprocess/Acute_Myeloid_Leukemia/code/GSE99612.py +110 -0
- p3/preprocess/Acute_Myeloid_Leukemia/code/TCGA.py +147 -0
- p3/preprocess/Acute_Myeloid_Leukemia/cohort_info.json +1 -0
- p3/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE121291.csv +0 -0
- p3/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE121431.csv +0 -0
- p3/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE222169.csv +1 -0
- p3/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE222616.csv +1 -0
- p3/preprocess/Adrenocortical_Cancer/GSE75415.csv +0 -0
- p3/preprocess/Adrenocortical_Cancer/clinical_data/GSE108088.csv +2 -0
- p3/preprocess/Adrenocortical_Cancer/clinical_data/GSE143383.csv +3 -0
- p3/preprocess/Adrenocortical_Cancer/clinical_data/GSE19776.csv +4 -0
- p3/preprocess/Adrenocortical_Cancer/clinical_data/GSE49278.csv +4 -0
- p3/preprocess/Adrenocortical_Cancer/clinical_data/GSE68606.csv +4 -0
- p3/preprocess/Adrenocortical_Cancer/clinical_data/GSE68950.csv +2 -0
- p3/preprocess/Adrenocortical_Cancer/clinical_data/GSE75415.csv +3 -0
- p3/preprocess/Adrenocortical_Cancer/clinical_data/GSE76019.csv +2 -0
- p3/preprocess/Adrenocortical_Cancer/clinical_data/GSE90713.csv +2 -0
- p3/preprocess/Adrenocortical_Cancer/clinical_data/TCGA.csv +93 -0
- p3/preprocess/Adrenocortical_Cancer/code/GSE108088.py +179 -0
- p3/preprocess/Adrenocortical_Cancer/code/GSE143383.py +205 -0
- p3/preprocess/Adrenocortical_Cancer/code/GSE19776.py +194 -0
- p3/preprocess/Adrenocortical_Cancer/code/GSE49278.py +166 -0
- p3/preprocess/Adrenocortical_Cancer/code/GSE67766.py +199 -0
- p3/preprocess/Adrenocortical_Cancer/code/GSE75415.py +177 -0
- p3/preprocess/Adrenocortical_Cancer/cohort_info.json +1 -0
- p3/preprocess/Stomach_Cancer/gene_data/TCGA.csv +3 -0
- p3/preprocess/Type_1_Diabetes/gene_data/TCGA.csv +3 -0
- p3/preprocess/Underweight/gene_data/TCGA.csv +3 -0
.gitattributes
CHANGED
@@ -1390,3 +1390,29 @@ p3/preprocess/Underweight/gene_data/GSE84954.csv filter=lfs diff=lfs merge=lfs -
|
|
1390 |
p3/preprocess/Type_2_Diabetes/gene_data/GSE182121.csv filter=lfs diff=lfs merge=lfs -text
|
1391 |
p3/preprocess/Underweight/gene_data/GSE57802.csv filter=lfs diff=lfs merge=lfs -text
|
1392 |
p3/preprocess/Stomach_Cancer/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1390 |
p3/preprocess/Type_2_Diabetes/gene_data/GSE182121.csv filter=lfs diff=lfs merge=lfs -text
|
1391 |
p3/preprocess/Underweight/gene_data/GSE57802.csv filter=lfs diff=lfs merge=lfs -text
|
1392 |
p3/preprocess/Stomach_Cancer/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1393 |
+
p3/preprocess/Uterine_Carcinosarcoma/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1394 |
+
p3/preprocess/Vitamin_D_Levels/GSE123993.csv filter=lfs diff=lfs merge=lfs -text
|
1395 |
+
p3/preprocess/Type_1_Diabetes/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1396 |
+
p3/preprocess/Vitamin_D_Levels/gene_data/GSE123993.csv filter=lfs diff=lfs merge=lfs -text
|
1397 |
+
p3/preprocess/Stomach_Cancer/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1398 |
+
p3/preprocess/Vitamin_D_Levels/gene_data/GSE34450.csv filter=lfs diff=lfs merge=lfs -text
|
1399 |
+
p3/preprocess/Werner_Syndrome/GSE48761.csv filter=lfs diff=lfs merge=lfs -text
|
1400 |
+
p3/preprocess/Vitamin_D_Levels/gene_data/GSE76324.csv filter=lfs diff=lfs merge=lfs -text
|
1401 |
+
p3/preprocess/Werner_Syndrome/gene_data/GSE48761.csv filter=lfs diff=lfs merge=lfs -text
|
1402 |
+
p3/preprocess/X-Linked_Lymphoproliferative_Syndrome/GSE180393.csv filter=lfs diff=lfs merge=lfs -text
|
1403 |
+
p3/preprocess/Vitamin_D_Levels/GSE129604.csv filter=lfs diff=lfs merge=lfs -text
|
1404 |
+
p3/preprocess/X-Linked_Lymphoproliferative_Syndrome/GSE156309.csv filter=lfs diff=lfs merge=lfs -text
|
1405 |
+
p3/preprocess/Underweight/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1406 |
+
p3/preprocess/X-Linked_Lymphoproliferative_Syndrome/gene_data/GSE222124.csv filter=lfs diff=lfs merge=lfs -text
|
1407 |
+
p3/preprocess/X-Linked_Lymphoproliferative_Syndrome/GSE239832.csv filter=lfs diff=lfs merge=lfs -text
|
1408 |
+
p3/preprocess/X-Linked_Lymphoproliferative_Syndrome/gene_data/GSE156309.csv filter=lfs diff=lfs merge=lfs -text
|
1409 |
+
p3/preprocess/X-Linked_Lymphoproliferative_Syndrome/gene_data/GSE180393.csv filter=lfs diff=lfs merge=lfs -text
|
1410 |
+
p3/preprocess/Vitamin_D_Levels/gene_data/GSE129604.csv filter=lfs diff=lfs merge=lfs -text
|
1411 |
+
p3/preprocess/X-Linked_Lymphoproliferative_Syndrome/gene_data/GSE190042.csv filter=lfs diff=lfs merge=lfs -text
|
1412 |
+
p3/preprocess/Uterine_Corpus_Endometrial_Carcinoma/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1413 |
+
p3/preprocess/Uterine_Carcinosarcoma/gene_data/GSE68950.csv filter=lfs diff=lfs merge=lfs -text
|
1414 |
+
p3/preprocess/Uterine_Corpus_Endometrial_Carcinoma/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1415 |
+
p3/preprocess/Acute_Myeloid_Leukemia/GSE249638.csv filter=lfs diff=lfs merge=lfs -text
|
1416 |
+
p3/preprocess/Acute_Myeloid_Leukemia/GSE98578.csv filter=lfs diff=lfs merge=lfs -text
|
1417 |
+
p3/preprocess/Acute_Myeloid_Leukemia/GSE222124.csv filter=lfs diff=lfs merge=lfs -text
|
1418 |
+
p3/preprocess/X-Linked_Lymphoproliferative_Syndrome/gene_data/GSE239832.csv filter=lfs diff=lfs merge=lfs -text
|
p3/preprocess/Acute_Myeloid_Leukemia/GSE222124.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f205ba0aa1ab83409ba3a8672017b0ae7f27631c1f7b34841e549550220df9f
|
3 |
+
size 13765210
|
p3/preprocess/Acute_Myeloid_Leukemia/GSE249638.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a361b229a4d45e13416428a8743199dfa9a755341d7d9d2e6c63a80d79461c12
|
3 |
+
size 11134453
|
p3/preprocess/Acute_Myeloid_Leukemia/GSE98578.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da3b1805cb6773c07c1a969f1250e134efdda7b55efaa7af30b4e466935db099
|
3 |
+
size 12728570
|
p3/preprocess/Acute_Myeloid_Leukemia/clinical_data/GSE121291.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,0
|
2 |
+
Acute_Myeloid_Leukemia,1.0
|
p3/preprocess/Acute_Myeloid_Leukemia/clinical_data/GSE121431.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM3430924,GSM3430925,GSM3430926,GSM3430927,GSM3430928,GSM3430929,GSM3430930,GSM3430931,GSM3430932,GSM3430933,GSM3430934,GSM3430935,GSM3430936,GSM3430937,GSM3430938,GSM3430939,GSM3430940,GSM3430941,GSM3430942,GSM3430943,GSM3430944,GSM3430945,GSM3430946,GSM3430947,GSM3430948,GSM3430949,GSM3430950,GSM3430951,GSM3430952,GSM3430953
|
2 |
+
Acute_Myeloid_Leukemia,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
p3/preprocess/Acute_Myeloid_Leukemia/clinical_data/GSE161532.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM4909492,GSM4909493,GSM4909494,GSM4909495,GSM4909496,GSM4909497,GSM4909498,GSM4909499,GSM4909500,GSM4909501,GSM4909502,GSM4909503,GSM4909504,GSM4909505,GSM4909506,GSM4909507,GSM4909508,GSM4909509,GSM4909510,GSM4909511,GSM4909512,GSM4909513,GSM4909514,GSM4909515,GSM4909516,GSM4909517,GSM4909518,GSM4909519,GSM4909520,GSM4909521,GSM4909522,GSM4909523,GSM4909524,GSM4909525,GSM4909526,GSM4909527,GSM4909528,GSM4909529,GSM4909530,GSM4909531,GSM4909532,GSM4909533,GSM4909534,GSM4909535,GSM4909536,GSM4909537,GSM4909538,GSM4909539,GSM4909540,GSM4909541,GSM4909542,GSM4909543,GSM4909544,GSM4909545,GSM4909546,GSM4909547,GSM4909548,GSM4909549,GSM4909550,GSM4909551,GSM4909552
|
2 |
+
Acute_Myeloid_Leukemia,0.0,1.0,0.0,0.0,,0.0,0.0,0.0,,1.0,0.0,0.0,0.0,0.0,0.0,,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,,,1.0,0.0,0.0,,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,,0.0,0.0,0.0,1.0,1.0,0.0,,0.0,1.0,0.0,0.0,0.0
|
3 |
+
Age,54.0,66.0,65.0,38.0,,51.0,82.0,70.0,,69.0,72.0,59.0,47.0,67.0,63.0,42.0,71.0,64.0,57.0,70.0,62.0,66.0,60.0,67.0,66.0,76.0,31.0,67.0,52.0,69.0,,62.0,62.0,50.0,76.0,60.0,62.0,66.0,72.0,62.0,67.0,68.0,68.0,34.0,61.0,71.0,42.0,57.0,,39.0,64.0,77.0,66.0,66.0,39.0,,73.0,74.0,42.0,64.0,45.0
|
4 |
+
Gender,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0
|
p3/preprocess/Acute_Myeloid_Leukemia/clinical_data/GSE222124.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM6915207,GSM6915208,GSM6915209,GSM6915210,GSM6915211,GSM6915212,GSM6915213,GSM6915214,GSM6915215,GSM6915216,GSM6915217,GSM6915218,GSM6915219,GSM6915220,GSM6915221,GSM6915222,GSM6915223,GSM6915224,GSM6915225,GSM6915226,GSM6915227,GSM6915228,GSM6915229,GSM6915230,GSM6915231,GSM6915232,GSM6915233,GSM6915234,GSM6915235,GSM6915236,GSM6915237,GSM6915238,GSM6915239,GSM6915240,GSM6915241,GSM6915242,GSM6915243,GSM6915244,GSM6915245,GSM6915246,GSM6915247,GSM6915248,GSM6915249,GSM6915250,GSM6915251,GSM6915252,GSM6915253,GSM6915254,GSM6915255,GSM6915256,GSM6915257,GSM6915258,GSM6915259,GSM6915260,GSM6915261,GSM6915262,GSM6915263,GSM6915264,GSM6915265,GSM6915266,GSM6915267,GSM6915268,GSM6915269,GSM6915270,GSM6915271,GSM6915272,GSM6915273,GSM6915274,GSM6915275,GSM6915276
|
2 |
+
Acute_Myeloid_Leukemia,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
p3/preprocess/Acute_Myeloid_Leukemia/clinical_data/GSE222169.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM6916956,GSM6916957,GSM6916958,GSM6916959,GSM6916960,GSM6916961,GSM6916962,GSM6916963,GSM6916964,GSM6916965,GSM6916966,GSM6916967,GSM6916968,GSM6916969,GSM6916970,GSM6916971,GSM6916972,GSM6916973,GSM6916974,GSM6916975,GSM6916976,GSM6916977,GSM6916978,GSM6916979,GSM6916980,GSM6916981,GSM6916982,GSM6916983,GSM6916984,GSM6916985,GSM6916986,GSM6916987,GSM6916988,GSM6916989,GSM6916990,GSM6916991,GSM6916992,GSM6916993,GSM6916994,GSM6916995,GSM6916996,GSM6916997
|
2 |
+
Acute_Myeloid_Leukemia,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
p3/preprocess/Acute_Myeloid_Leukemia/clinical_data/GSE235070.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM7494217,GSM7494218,GSM7494219,GSM7494220,GSM7494221,GSM7494222,GSM7494223,GSM7494224,GSM7494249,GSM7494250,GSM7494251,GSM7494252,GSM7494253,GSM7494254,GSM7494255,GSM7494256,GSM7494509,GSM7494510,GSM7494511,GSM7494512,GSM7494513,GSM7494514,GSM7494515,GSM7494516,GSM7494517,GSM7494518,GSM7494519,GSM7494520,GSM7494521,GSM7494522,GSM7494523,GSM7494524
|
2 |
+
Acute_Myeloid_Leukemia,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
p3/preprocess/Acute_Myeloid_Leukemia/clinical_data/GSE249638.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM7956652,GSM7956653,GSM7956654,GSM7956655,GSM7956656,GSM7956657,GSM7956658,GSM7956659,GSM7956660,GSM7956661,GSM7956662,GSM7956663,GSM7956664,GSM7956665,GSM7956666,GSM7956667,GSM7956668,GSM7956669,GSM7956670,GSM7956671,GSM7956672,GSM7956673,GSM7956674,GSM7956675,GSM7956676,GSM7956677,GSM7956678,GSM7956679,GSM7956680,GSM7956681,GSM7956682,GSM7956683,GSM7956684,GSM7956685,GSM7956686,GSM7956687,GSM7956688
|
2 |
+
Acute_Myeloid_Leukemia,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
p3/preprocess/Acute_Myeloid_Leukemia/clinical_data/GSE98578.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM2601197,GSM2601198,GSM2601199,GSM2601200,GSM2601201,GSM2601202,GSM2601203,GSM2601204,GSM2601205,GSM2601206,GSM2601207,GSM2601208,GSM2601209,GSM2601210,GSM2601211,GSM2601212,GSM2601213,GSM2601214,GSM2601215,GSM2601216,GSM2601217,GSM2601218,GSM2601219,GSM2601220,GSM2601221,GSM2601222,GSM2601223,GSM2601224,GSM2601225,GSM2601226,GSM2601227,GSM2601228,GSM2601229,GSM2601230,GSM2601231,GSM2601232,GSM2601233,GSM2601234,GSM2601235,GSM2601236,GSM2601237,GSM2601238,GSM2601239,GSM2601240,GSM2601241,GSM2601242,GSM2601243,GSM2601244
|
2 |
+
Acute_Myeloid_Leukemia,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0
|
p3/preprocess/Acute_Myeloid_Leukemia/clinical_data/GSE99612.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM2648543,GSM2648544,GSM2648545,GSM2648546,GSM2648547,GSM2648548,GSM2648549,GSM2648550,GSM2648551,GSM2648552,GSM2648553,GSM2648554,GSM2648555,GSM2648556,GSM2648557,GSM2648558,GSM2648559,GSM2648560,GSM2648561,GSM2648562,GSM2648563,GSM2648564,GSM2648565,GSM2648566,GSM2648567,GSM2648568,GSM2648569,GSM2648570,GSM2648571,GSM2648572,GSM2648573,GSM2648574,GSM2648575,GSM2648576,GSM2648577,GSM2648578,GSM2648579,GSM2648580,GSM2648581,GSM2648582,GSM2648583,GSM2648584,GSM2648585,GSM2648586,GSM2648587,GSM2648588,GSM2648589,GSM2648590
|
2 |
+
Acute_Myeloid_Leukemia,,,,,,,,,,,,,,,,,,,,,,,,,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
3 |
+
Age,,,,,,,,,,,,,,,,,,,,,,,,,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
4 |
+
Gender,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,,,,,,,,,,,,,,,,,,,,,,,,
|
p3/preprocess/Acute_Myeloid_Leukemia/code/GSE121291.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Acute_Myeloid_Leukemia"
|
6 |
+
cohort = "GSE121291"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Acute_Myeloid_Leukemia"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Acute_Myeloid_Leukemia/GSE121291"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/GSE121291.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/gene_data/GSE121291.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/clinical_data/GSE121291.csv"
|
16 |
+
json_path = "./output/preprocess/3/Acute_Myeloid_Leukemia/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Yes - the dataset contains microarray mRNA data according to series title
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2. Variable Availability and Data Type Conversion
|
41 |
+
# All samples are AML cell line - constant trait value
|
42 |
+
trait_row = None
|
43 |
+
|
44 |
+
# No age data available
|
45 |
+
age_row = None
|
46 |
+
|
47 |
+
# No gender data available since this is cell line data
|
48 |
+
gender_row = None
|
49 |
+
|
50 |
+
def convert_trait(x):
|
51 |
+
# Convert AML status to binary
|
52 |
+
# If contains "Acute Myeloid Leukemia", return 1
|
53 |
+
if isinstance(x, str) and "Acute Myeloid Leukemia" in x:
|
54 |
+
return 1
|
55 |
+
return None
|
56 |
+
|
57 |
+
def convert_age(x):
|
58 |
+
pass
|
59 |
+
|
60 |
+
def convert_gender(x):
|
61 |
+
pass
|
62 |
+
|
63 |
+
# 3. Save metadata
|
64 |
+
validate_and_save_cohort_info(
|
65 |
+
is_final=False,
|
66 |
+
cohort=cohort,
|
67 |
+
info_path=json_path,
|
68 |
+
is_gene_available=is_gene_available,
|
69 |
+
is_trait_available=trait_row is not None
|
70 |
+
)
|
71 |
+
|
72 |
+
# 4. Skip clinical feature extraction since trait_row is None
|
73 |
+
# Extract gene expression data from matrix file
|
74 |
+
gene_data = get_genetic_data(matrix_file)
|
75 |
+
|
76 |
+
# Print first 20 row IDs
|
77 |
+
print("First 20 gene/probe identifiers:")
|
78 |
+
print(gene_data.index[:20])
|
79 |
+
# The gene identifiers look like Affymetrix probe IDs (format: digit+_at/s_at/x_at)
|
80 |
+
# These need to be mapped to gene symbols for analysis
|
81 |
+
requires_gene_mapping = True
|
82 |
+
# Extract gene annotation from SOFT file
|
83 |
+
gene_annotation = get_gene_annotation(soft_file)
|
84 |
+
|
85 |
+
# Preview gene annotation data
|
86 |
+
print("Gene annotation columns and example values:")
|
87 |
+
print(preview_df(gene_annotation))
|
88 |
+
# 1. Observe columns - 'ID' for probe identifiers matching gene expression data, 'Gene Symbol' for gene symbols
|
89 |
+
prob_col = 'ID'
|
90 |
+
gene_col = 'Gene Symbol'
|
91 |
+
|
92 |
+
# 2. Get mapping between probe IDs and gene symbols
|
93 |
+
mapping = get_gene_mapping(gene_annotation, prob_col, gene_col)
|
94 |
+
|
95 |
+
# 3. Apply mapping to convert probe expression to gene expression
|
96 |
+
gene_data = apply_gene_mapping(gene_data, mapping)
|
97 |
+
|
98 |
+
# Preview the first few gene IDs to verify the mapping worked
|
99 |
+
print("First 20 mapped gene symbols:")
|
100 |
+
print(gene_data.index[:20])
|
101 |
+
# 1. Normalize gene symbols and save normalized gene data
|
102 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
103 |
+
gene_data.to_csv(out_gene_data_file)
|
104 |
+
|
105 |
+
# Create minimal linked data with just gene expression data
|
106 |
+
linked_data = gene_data.T
|
107 |
+
|
108 |
+
# Add trait column initialized to None
|
109 |
+
linked_data[trait] = None
|
110 |
+
|
111 |
+
# Handle missing values systematically
|
112 |
+
linked_data = handle_missing_values(linked_data, trait)
|
113 |
+
|
114 |
+
# Check for biased features
|
115 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
116 |
+
|
117 |
+
# Validate data quality and save metadata
|
118 |
+
is_usable = validate_and_save_cohort_info(
|
119 |
+
is_final=True,
|
120 |
+
cohort=cohort,
|
121 |
+
info_path=json_path,
|
122 |
+
is_gene_available=True,
|
123 |
+
is_trait_available=False,
|
124 |
+
is_biased=is_biased,
|
125 |
+
df=linked_data,
|
126 |
+
note="Dataset contains gene expression data from cell lines but lacks AML trait information needed for analysis."
|
127 |
+
)
|
p3/preprocess/Acute_Myeloid_Leukemia/code/GSE121431.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Acute_Myeloid_Leukemia"
|
6 |
+
cohort = "GSE121431"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Acute_Myeloid_Leukemia"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Acute_Myeloid_Leukemia/GSE121431"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/GSE121431.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/gene_data/GSE121431.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/clinical_data/GSE121431.csv"
|
16 |
+
json_path = "./output/preprocess/3/Acute_Myeloid_Leukemia/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
is_gene_available = True # Based on the background info, this appears to be gene expression data of AML cell lines
|
38 |
+
|
39 |
+
# 2. Variable Availability and Data Type Conversion
|
40 |
+
# For trait: Can infer from Feature 0 (disease state)
|
41 |
+
trait_row = 0
|
42 |
+
|
43 |
+
def convert_trait(value):
|
44 |
+
if not isinstance(value, str):
|
45 |
+
return None
|
46 |
+
value = value.lower().split(': ')[-1]
|
47 |
+
if 'acute myeloid leukemia' in value or 'aml' in value:
|
48 |
+
return 1
|
49 |
+
return None
|
50 |
+
|
51 |
+
# For age: Not available as this is cell line data
|
52 |
+
age_row = None
|
53 |
+
|
54 |
+
def convert_age(value):
|
55 |
+
return None
|
56 |
+
|
57 |
+
# For gender: Not available as this is cell line data
|
58 |
+
gender_row = None
|
59 |
+
|
60 |
+
def convert_gender(value):
|
61 |
+
return None
|
62 |
+
|
63 |
+
# 3. Save Metadata
|
64 |
+
validate_and_save_cohort_info(
|
65 |
+
is_final=False,
|
66 |
+
cohort=cohort,
|
67 |
+
info_path=json_path,
|
68 |
+
is_gene_available=is_gene_available,
|
69 |
+
is_trait_available=(trait_row is not None)
|
70 |
+
)
|
71 |
+
|
72 |
+
# 4. Clinical Feature Extraction
|
73 |
+
clinical_df = geo_select_clinical_features(
|
74 |
+
clinical_data,
|
75 |
+
trait=trait,
|
76 |
+
trait_row=trait_row,
|
77 |
+
convert_trait=convert_trait,
|
78 |
+
age_row=age_row,
|
79 |
+
convert_age=convert_age,
|
80 |
+
gender_row=gender_row,
|
81 |
+
convert_gender=convert_gender
|
82 |
+
)
|
83 |
+
preview_result = preview_df(clinical_df)
|
84 |
+
print("Preview of clinical data:", preview_result)
|
85 |
+
|
86 |
+
# Save clinical data
|
87 |
+
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
|
88 |
+
clinical_df.to_csv(out_clinical_data_file)
|
89 |
+
# Extract gene expression data from matrix file
|
90 |
+
gene_data = get_genetic_data(matrix_file)
|
91 |
+
|
92 |
+
# Print first 20 row IDs
|
93 |
+
print("First 20 gene/probe identifiers:")
|
94 |
+
print(gene_data.index[:20])
|
95 |
+
# These are probe IDs from Affymetrix arrays that need to be mapped to gene symbols
|
96 |
+
requires_gene_mapping = True
|
97 |
+
# Extract gene annotation from SOFT file
|
98 |
+
gene_annotation = get_gene_annotation(soft_file)
|
99 |
+
|
100 |
+
# Preview gene annotation data
|
101 |
+
print("Gene annotation columns and example values:")
|
102 |
+
print(preview_df(gene_annotation))
|
103 |
+
# 1. & 2. Extract gene mapping from annotation
|
104 |
+
# ID column matches probe identifiers in gene expression data
|
105 |
+
# Gene Symbol column contains the corresponding gene symbols
|
106 |
+
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
|
107 |
+
|
108 |
+
# 3. Apply gene mapping to convert probe-level data to gene-level data
|
109 |
+
gene_data = apply_gene_mapping(gene_data, mapping_data)
|
110 |
+
# 1. Normalize gene symbols and save normalized gene data
|
111 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
112 |
+
gene_data.to_csv(out_gene_data_file)
|
113 |
+
|
114 |
+
# 2. Link clinical and genetic data
|
115 |
+
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
|
116 |
+
|
117 |
+
# 3. Handle missing values systematically
|
118 |
+
linked_data = handle_missing_values(linked_data, trait)
|
119 |
+
|
120 |
+
# 4. Check for biased features and remove them if needed
|
121 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
122 |
+
|
123 |
+
# 5. Validate data quality and save metadata
|
124 |
+
# Note: Dataset contains gene expression data from AML cell lines. The trait "Acute_Myeloid_Leukemia" is defined
|
125 |
+
# based on cell subtypes (AMKL vs non-AMKL).
|
126 |
+
is_usable = validate_and_save_cohort_info(
|
127 |
+
is_final=True,
|
128 |
+
cohort=cohort,
|
129 |
+
info_path=json_path,
|
130 |
+
is_gene_available=True,
|
131 |
+
is_trait_available=True,
|
132 |
+
is_biased=is_biased,
|
133 |
+
df=linked_data,
|
134 |
+
note="Gene expression data from AML cell lines. Trait defined as AMKL vs non-AMKL subtypes."
|
135 |
+
)
|
136 |
+
|
137 |
+
# 6. Save linked data if usable
|
138 |
+
if is_usable:
|
139 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Acute_Myeloid_Leukemia/code/GSE161532.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Acute_Myeloid_Leukemia"
|
6 |
+
cohort = "GSE161532"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Acute_Myeloid_Leukemia"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Acute_Myeloid_Leukemia/GSE161532"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/GSE161532.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/gene_data/GSE161532.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/clinical_data/GSE161532.csv"
|
16 |
+
json_path = "./output/preprocess/3/Acute_Myeloid_Leukemia/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Yes - uses Affymetrix Human Transcriptome Array 2.0 for gene expression profiling
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2.1 Data Availability
|
41 |
+
# trait - disease state from feature 4 contains AML status
|
42 |
+
trait_row = 4
|
43 |
+
# age - age data available in feature 1
|
44 |
+
age_row = 1
|
45 |
+
# gender - gender data available in feature 2
|
46 |
+
gender_row = 2
|
47 |
+
|
48 |
+
# 2.2 Data Type Conversion Functions
|
49 |
+
def convert_trait(x):
|
50 |
+
if not isinstance(x, str):
|
51 |
+
return None
|
52 |
+
# All samples have AML, but we can distinguish primary vs secondary
|
53 |
+
if "de novo" in x.lower():
|
54 |
+
return 0 # Primary AML
|
55 |
+
elif any(t in x.lower() for t in ["secondary", "t-aml"]):
|
56 |
+
return 1 # Secondary AML
|
57 |
+
elif "aml" in x.lower():
|
58 |
+
return None # AML but type unknown
|
59 |
+
return None
|
60 |
+
|
61 |
+
def convert_age(x):
|
62 |
+
if not isinstance(x, str):
|
63 |
+
return None
|
64 |
+
try:
|
65 |
+
age = float(x.split(":")[1].strip())
|
66 |
+
return age
|
67 |
+
except:
|
68 |
+
return None
|
69 |
+
|
70 |
+
def convert_gender(x):
|
71 |
+
if not isinstance(x, str):
|
72 |
+
return None
|
73 |
+
x = x.lower()
|
74 |
+
if "female" in x:
|
75 |
+
return 0
|
76 |
+
elif "male" in x:
|
77 |
+
return 1
|
78 |
+
return None
|
79 |
+
|
80 |
+
# 3. Save initial metadata
|
81 |
+
validate_and_save_cohort_info(is_final=False,
|
82 |
+
cohort=cohort,
|
83 |
+
info_path=json_path,
|
84 |
+
is_gene_available=is_gene_available,
|
85 |
+
is_trait_available=trait_row is not None)
|
86 |
+
|
87 |
+
# 4. Extract clinical features since trait_row is available
|
88 |
+
clinical_df = geo_select_clinical_features(clinical_data,
|
89 |
+
trait=trait,
|
90 |
+
trait_row=trait_row,
|
91 |
+
convert_trait=convert_trait,
|
92 |
+
age_row=age_row,
|
93 |
+
convert_age=convert_age,
|
94 |
+
gender_row=gender_row,
|
95 |
+
convert_gender=convert_gender)
|
96 |
+
|
97 |
+
# Preview the clinical data
|
98 |
+
print("Preview of clinical data:")
|
99 |
+
print(preview_df(clinical_df))
|
100 |
+
|
101 |
+
# Save clinical data
|
102 |
+
clinical_df.to_csv(out_clinical_data_file)
|
103 |
+
# Extract gene expression data from matrix file
|
104 |
+
gene_data = get_genetic_data(matrix_file)
|
105 |
+
|
106 |
+
# Print first 20 row IDs
|
107 |
+
print("First 20 gene/probe identifiers:")
|
108 |
+
print(gene_data.index[:20])
|
109 |
+
# These identifiers appear to be microarray probe IDs from Agilent platform ending in "_st"
|
110 |
+
# They are not standard human gene symbols and will need to be mapped
|
111 |
+
requires_gene_mapping = True
|
112 |
+
# Extract gene annotation from SOFT file
|
113 |
+
gene_annotation = get_gene_annotation(soft_file)
|
114 |
+
|
115 |
+
# Preview gene annotation data
|
116 |
+
print("Gene annotation columns and example values:")
|
117 |
+
print(preview_df(gene_annotation))
|
118 |
+
# Looking at the gene expression data from step 3, the IDs end with "_st"
|
119 |
+
# Looking at the annotation data, the gene_assignment column contains gene names/symbols
|
120 |
+
# However, we need to extract the symbols from the complex assignments
|
121 |
+
|
122 |
+
# Extract probe IDs and gene assignments, and get mapping dataframe
|
123 |
+
mapping_data = get_gene_mapping(gene_annotation, 'ID', 'gene_assignment')
|
124 |
+
|
125 |
+
# Apply mapping to get gene-level expression data
|
126 |
+
gene_data = apply_gene_mapping(gene_data, mapping_data)
|
127 |
+
# 1. Normalize gene symbols and save normalized gene data
|
128 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
129 |
+
gene_data.to_csv(out_gene_data_file)
|
130 |
+
|
131 |
+
# 2. Link clinical and genetic data
|
132 |
+
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
|
133 |
+
|
134 |
+
# 3. Handle missing values systematically
|
135 |
+
linked_data = handle_missing_values(linked_data, trait)
|
136 |
+
|
137 |
+
# 4. Check for biased features and remove them if needed
|
138 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
139 |
+
|
140 |
+
# 5. Validate data quality and save metadata
|
141 |
+
# Note: Dataset contains gene expression data from AML cell lines. The trait "Acute_Myeloid_Leukemia" is defined
|
142 |
+
# based on cell subtypes (AMKL vs non-AMKL).
|
143 |
+
is_usable = validate_and_save_cohort_info(
|
144 |
+
is_final=True,
|
145 |
+
cohort=cohort,
|
146 |
+
info_path=json_path,
|
147 |
+
is_gene_available=True,
|
148 |
+
is_trait_available=True,
|
149 |
+
is_biased=is_biased,
|
150 |
+
df=linked_data,
|
151 |
+
note="Gene expression data from AML cell lines. Trait defined as AMKL vs non-AMKL subtypes."
|
152 |
+
)
|
153 |
+
|
154 |
+
# 6. Save linked data if usable
|
155 |
+
if is_usable:
|
156 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Acute_Myeloid_Leukemia/code/GSE222124.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Acute_Myeloid_Leukemia"
|
6 |
+
cohort = "GSE222124"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Acute_Myeloid_Leukemia"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Acute_Myeloid_Leukemia/GSE222124"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/GSE222124.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/gene_data/GSE222124.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/clinical_data/GSE222124.csv"
|
16 |
+
json_path = "./output/preprocess/3/Acute_Myeloid_Leukemia/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene expression data availability
|
37 |
+
is_gene_available = True # This is expression data from cell lines, not miRNA/methylation
|
38 |
+
|
39 |
+
# 2.1 Data availability
|
40 |
+
# Row 0 shows leukemia cell lines, can be used for trait
|
41 |
+
trait_row = 0
|
42 |
+
|
43 |
+
# Age and gender not provided for cell lines
|
44 |
+
age_row = None
|
45 |
+
gender_row = None
|
46 |
+
|
47 |
+
# 2.2 Data type conversion functions
|
48 |
+
def convert_trait(value):
|
49 |
+
if not value or ':' not in value:
|
50 |
+
return None
|
51 |
+
cell_type = value.split(': ')[1].lower()
|
52 |
+
if 'monocytic leukemia' in cell_type:
|
53 |
+
return 1 # Acute monocytic leukemia
|
54 |
+
elif 't cell leukemia' in cell_type:
|
55 |
+
return 0 # Other leukemia types
|
56 |
+
elif 'natural killer cell leukemia' in cell_type:
|
57 |
+
return 0
|
58 |
+
return None
|
59 |
+
|
60 |
+
def convert_age(value):
|
61 |
+
pass # Not used since age_row is None
|
62 |
+
|
63 |
+
def convert_gender(value):
|
64 |
+
pass # Not used since gender_row is None
|
65 |
+
|
66 |
+
# 3. Save metadata
|
67 |
+
validate_and_save_cohort_info(is_final=False,
|
68 |
+
cohort=cohort,
|
69 |
+
info_path=json_path,
|
70 |
+
is_gene_available=is_gene_available,
|
71 |
+
is_trait_available=trait_row is not None)
|
72 |
+
|
73 |
+
# 4. Clinical feature extraction
|
74 |
+
if trait_row is not None:
|
75 |
+
clinical_features = geo_select_clinical_features(
|
76 |
+
clinical_df=clinical_data,
|
77 |
+
trait=trait,
|
78 |
+
trait_row=trait_row,
|
79 |
+
convert_trait=convert_trait,
|
80 |
+
age_row=age_row,
|
81 |
+
convert_age=convert_age,
|
82 |
+
gender_row=gender_row,
|
83 |
+
convert_gender=convert_gender
|
84 |
+
)
|
85 |
+
|
86 |
+
print("Preview of extracted clinical features:")
|
87 |
+
print(preview_df(clinical_features))
|
88 |
+
|
89 |
+
clinical_features.to_csv(out_clinical_data_file)
|
90 |
+
# Extract gene expression data from matrix file
|
91 |
+
gene_data = get_genetic_data(matrix_file)
|
92 |
+
|
93 |
+
# Print first 20 row IDs
|
94 |
+
print("First 20 gene/probe identifiers:")
|
95 |
+
print(gene_data.index[:20])
|
96 |
+
requires_gene_mapping = True
|
97 |
+
# Extract gene annotation from SOFT file
|
98 |
+
gene_annotation = get_gene_annotation(soft_file)
|
99 |
+
|
100 |
+
# Preview gene annotation data
|
101 |
+
print("Gene annotation columns and example values:")
|
102 |
+
print(preview_df(gene_annotation))
|
103 |
+
# Extract probe-to-gene mapping from annotation
|
104 |
+
gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
|
105 |
+
|
106 |
+
# Apply mapping to convert probe-level data to gene-level data
|
107 |
+
gene_data = apply_gene_mapping(gene_data, gene_mapping)
|
108 |
+
# 1. Normalize gene symbols and save normalized gene data
|
109 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
110 |
+
gene_data.to_csv(out_gene_data_file)
|
111 |
+
|
112 |
+
# 2. Link clinical and genetic data
|
113 |
+
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
|
114 |
+
|
115 |
+
# 3. Handle missing values systematically
|
116 |
+
linked_data = handle_missing_values(linked_data, trait)
|
117 |
+
|
118 |
+
# 4. Check for biased features and remove them if needed
|
119 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
120 |
+
|
121 |
+
# 5. Validate data quality and save metadata
|
122 |
+
# Note: Dataset contains gene expression data from AML cell lines. The trait "Acute_Myeloid_Leukemia" is defined
|
123 |
+
# based on cell subtypes (AMKL vs non-AMKL).
|
124 |
+
is_usable = validate_and_save_cohort_info(
|
125 |
+
is_final=True,
|
126 |
+
cohort=cohort,
|
127 |
+
info_path=json_path,
|
128 |
+
is_gene_available=True,
|
129 |
+
is_trait_available=True,
|
130 |
+
is_biased=is_biased,
|
131 |
+
df=linked_data,
|
132 |
+
note="Gene expression data from AML cell lines. Trait defined as AMKL vs non-AMKL subtypes."
|
133 |
+
)
|
134 |
+
|
135 |
+
# 6. Save linked data if usable
|
136 |
+
if is_usable:
|
137 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Acute_Myeloid_Leukemia/code/GSE222169.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Acute_Myeloid_Leukemia"
|
6 |
+
cohort = "GSE222169"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Acute_Myeloid_Leukemia"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Acute_Myeloid_Leukemia/GSE222169"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/GSE222169.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/gene_data/GSE222169.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/clinical_data/GSE222169.csv"
|
16 |
+
json_path = "./output/preprocess/3/Acute_Myeloid_Leukemia/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
is_gene_available = True # Given information about leukemia cell lines suggests this is likely gene expression data
|
38 |
+
|
39 |
+
# 2. Variable Availability and Data Type Conversion
|
40 |
+
# 2.1 Row identification
|
41 |
+
trait_row = 0 # Contains AML information in 'cell line' and 'tissue source' fields
|
42 |
+
age_row = None # Age information not available
|
43 |
+
gender_row = None # Gender information not available
|
44 |
+
|
45 |
+
# 2.2 Conversion Functions
|
46 |
+
def convert_trait(value: str) -> int:
|
47 |
+
"""Convert trait values to binary: 1 for AML cases"""
|
48 |
+
if pd.isna(value):
|
49 |
+
return None
|
50 |
+
value = value.split(': ')[-1].lower()
|
51 |
+
# Both cell lines and patient samples are AML cases
|
52 |
+
if 'aml' in value or 'molm-14' in value or 'oci-aml2' in value:
|
53 |
+
return 1
|
54 |
+
return None
|
55 |
+
|
56 |
+
def convert_age(value: str) -> float:
|
57 |
+
"""Placeholder function - age data not available"""
|
58 |
+
return None
|
59 |
+
|
60 |
+
def convert_gender(value: str) -> int:
|
61 |
+
"""Placeholder function - gender data not available"""
|
62 |
+
return None
|
63 |
+
|
64 |
+
# 3. Save metadata
|
65 |
+
_ = validate_and_save_cohort_info(
|
66 |
+
is_final=False,
|
67 |
+
cohort=cohort,
|
68 |
+
info_path=json_path,
|
69 |
+
is_gene_available=is_gene_available,
|
70 |
+
is_trait_available=(trait_row is not None)
|
71 |
+
)
|
72 |
+
|
73 |
+
# 4. Clinical Feature Extraction
|
74 |
+
if trait_row is not None:
|
75 |
+
selected_clinical = geo_select_clinical_features(
|
76 |
+
clinical_df=clinical_data,
|
77 |
+
trait=trait,
|
78 |
+
trait_row=trait_row,
|
79 |
+
convert_trait=convert_trait,
|
80 |
+
age_row=age_row,
|
81 |
+
convert_age=convert_age,
|
82 |
+
gender_row=gender_row,
|
83 |
+
convert_gender=convert_gender
|
84 |
+
)
|
85 |
+
|
86 |
+
# Preview the processed clinical data
|
87 |
+
print("Preview of processed clinical data:")
|
88 |
+
print(preview_df(selected_clinical))
|
89 |
+
|
90 |
+
# Save to CSV
|
91 |
+
selected_clinical.to_csv(out_clinical_data_file)
|
92 |
+
# Extract gene expression data from matrix file
|
93 |
+
gene_data = get_genetic_data(matrix_file)
|
94 |
+
|
95 |
+
# Print first 20 row IDs
|
96 |
+
print("First 20 gene/probe identifiers:")
|
97 |
+
print(gene_data.index[:20])
|
98 |
+
# The identifiers appear to be transcript cluster IDs from Affymetrix Clariom D arrays
|
99 |
+
# They need to be mapped to human gene symbols
|
100 |
+
requires_gene_mapping = True
|
101 |
+
# Extract gene annotation from SOFT file
|
102 |
+
gene_annotation = get_gene_annotation(soft_file)
|
103 |
+
|
104 |
+
# Preview gene annotation data
|
105 |
+
print("Gene annotation columns and example values:")
|
106 |
+
print(preview_df(gene_annotation))
|
107 |
+
# Looking at the example values in SPOT_ID.1, we can find gene symbols within parentheses
|
108 |
+
# followed by ']', like '(OR4F5)', '(SAMD11)', etc.
|
109 |
+
# Create a custom function to extract gene symbols from complex text descriptions
|
110 |
+
def extract_gene_symbols_from_desc(text):
|
111 |
+
"""Extract gene symbols from complex annotation text that follows format:
|
112 |
+
... (SYMBOL) [gene_biotype ...
|
113 |
+
"""
|
114 |
+
if pd.isna(text):
|
115 |
+
return []
|
116 |
+
# Split on '//' to get separate entries and look for gene symbol pattern
|
117 |
+
# Gene symbols typically appear in parentheses before [gene_biotype
|
118 |
+
symbols = []
|
119 |
+
entries = text.split('//')
|
120 |
+
for entry in entries:
|
121 |
+
# Look for text in parentheses followed by [gene_biotype
|
122 |
+
match = re.search(r'\(([^)]+)\)\s*\[gene_biotype', entry)
|
123 |
+
if match:
|
124 |
+
symbol = match.group(1)
|
125 |
+
# Some entries have additional text like "(Drosophila)" - remove that
|
126 |
+
symbol = re.sub(r'\s*\([^)]+\)$', '', symbol)
|
127 |
+
symbols.append(symbol)
|
128 |
+
return list(set(symbols)) # Remove duplicates
|
129 |
+
|
130 |
+
# Add a column with extracted gene symbols
|
131 |
+
gene_annotation['Gene'] = gene_annotation['SPOT_ID.1'].apply(extract_gene_symbols_from_desc)
|
132 |
+
|
133 |
+
# Get mapping between IDs and gene symbols
|
134 |
+
mapping_data = get_gene_mapping(gene_annotation, 'ID', 'Gene')
|
135 |
+
|
136 |
+
# Apply gene mapping to convert probe-level data to gene-level expression data
|
137 |
+
gene_data = apply_gene_mapping(gene_data, mapping_data)
|
138 |
+
# 1. Normalize gene symbols and save normalized gene data
|
139 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
140 |
+
gene_data.to_csv(out_gene_data_file)
|
141 |
+
|
142 |
+
# Get clinical data from previous step
|
143 |
+
selected_clinical = geo_select_clinical_features(
|
144 |
+
clinical_df=clinical_data,
|
145 |
+
trait=trait,
|
146 |
+
trait_row=0, # Using first row containing cell line info
|
147 |
+
convert_trait=convert_trait, # Using previously defined convert_trait function
|
148 |
+
age_row=None,
|
149 |
+
convert_age=None,
|
150 |
+
gender_row=None,
|
151 |
+
convert_gender=None
|
152 |
+
)
|
153 |
+
|
154 |
+
# 2. Link clinical and genetic data
|
155 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)
|
156 |
+
|
157 |
+
# 3. Handle missing values systematically
|
158 |
+
linked_data = handle_missing_values(linked_data, trait)
|
159 |
+
|
160 |
+
# 4. Check for biased features and remove them if needed
|
161 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
162 |
+
|
163 |
+
# 5. Validate data quality and save metadata
|
164 |
+
is_usable = validate_and_save_cohort_info(
|
165 |
+
is_final=True,
|
166 |
+
cohort=cohort,
|
167 |
+
info_path=json_path,
|
168 |
+
is_gene_available=True,
|
169 |
+
is_trait_available=True,
|
170 |
+
is_biased=is_biased,
|
171 |
+
df=linked_data,
|
172 |
+
note="Gene expression data comparing different AML cell lines and treatments."
|
173 |
+
)
|
174 |
+
|
175 |
+
# 6. Save linked data if usable
|
176 |
+
if is_usable:
|
177 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Acute_Myeloid_Leukemia/code/GSE222616.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Acute_Myeloid_Leukemia"
|
6 |
+
cohort = "GSE222616"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Acute_Myeloid_Leukemia"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Acute_Myeloid_Leukemia/GSE222616"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/GSE222616.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/gene_data/GSE222616.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/clinical_data/GSE222616.csv"
|
16 |
+
json_path = "./output/preprocess/3/Acute_Myeloid_Leukemia/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Yes - it uses HuGene 1.0 ST Affymetrix arrays for gene expression profiling
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2.1 Data Availability
|
41 |
+
# trait (AML status) is constant since all samples are from HL-60 AML cell line
|
42 |
+
trait_row = None
|
43 |
+
|
44 |
+
# Age is not available for cell line data
|
45 |
+
age_row = None
|
46 |
+
|
47 |
+
# Gender is not available for cell line data
|
48 |
+
gender_row = None
|
49 |
+
|
50 |
+
# 2.2 Data Type Conversion Functions
|
51 |
+
def convert_trait(value):
|
52 |
+
# Not needed since trait data is not available
|
53 |
+
return None
|
54 |
+
|
55 |
+
def convert_age(value):
|
56 |
+
# Not needed since age data is not available
|
57 |
+
return None
|
58 |
+
|
59 |
+
def convert_gender(value):
|
60 |
+
# Not needed since gender data is not available
|
61 |
+
return None
|
62 |
+
|
63 |
+
# 3. Save metadata
|
64 |
+
validate_and_save_cohort_info(
|
65 |
+
is_final=False,
|
66 |
+
cohort=cohort,
|
67 |
+
info_path=json_path,
|
68 |
+
is_gene_available=is_gene_available,
|
69 |
+
is_trait_available=(trait_row is not None)
|
70 |
+
)
|
71 |
+
|
72 |
+
# 4. Clinical Feature Extraction
|
73 |
+
# Skip since trait_row is None (no clinical data available)
|
74 |
+
# Extract gene expression data from matrix file
|
75 |
+
gene_data = get_genetic_data(matrix_file)
|
76 |
+
|
77 |
+
# Print first 20 row IDs
|
78 |
+
print("First 20 gene/probe identifiers:")
|
79 |
+
print(gene_data.index[:20])
|
80 |
+
# Based on biomedical review: The identifiers appear to be numerical probe IDs from an array platform
|
81 |
+
# rather than standardized human gene symbols. These would need to be mapped to gene symbols.
|
82 |
+
requires_gene_mapping = True
|
83 |
+
# Extract gene annotation from SOFT file
|
84 |
+
gene_annotation = get_gene_annotation(soft_file)
|
85 |
+
|
86 |
+
# Preview gene annotation data
|
87 |
+
print("Gene annotation columns and example values:")
|
88 |
+
print(preview_df(gene_annotation))
|
89 |
+
# Extract gene mapping information
|
90 |
+
probe_col = "ID"
|
91 |
+
gene_col = "gene_assignment"
|
92 |
+
mapping_data = gene_annotation[[probe_col, gene_col]]
|
93 |
+
mapping_data = mapping_data.dropna()
|
94 |
+
mapping_data = mapping_data.rename(columns={probe_col: 'ID', gene_col: 'Gene'})
|
95 |
+
mapping_data['Gene'] = mapping_data['Gene'].apply(extract_human_gene_symbols)
|
96 |
+
|
97 |
+
# Convert probe-level data to gene-level expression data
|
98 |
+
gene_data = apply_gene_mapping(gene_data, mapping_data)
|
99 |
+
|
100 |
+
# Normalize gene symbols to handle synonyms
|
101 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
102 |
+
# 1. Save normalized gene data
|
103 |
+
gene_data.to_csv(out_gene_data_file)
|
104 |
+
|
105 |
+
# Since no clinical data is available, use gene data as final dataset
|
106 |
+
# Set is_biased=False since we cannot assess bias without trait data
|
107 |
+
is_usable = validate_and_save_cohort_info(
|
108 |
+
is_final=True,
|
109 |
+
cohort=cohort,
|
110 |
+
info_path=json_path,
|
111 |
+
is_gene_available=True,
|
112 |
+
is_trait_available=False,
|
113 |
+
is_biased=False, # Cannot be biased without trait data
|
114 |
+
df=gene_data,
|
115 |
+
note="Only gene expression data available, no clinical information found"
|
116 |
+
)
|
117 |
+
|
118 |
+
# Save gene data as final data since no clinical data to link
|
119 |
+
if is_usable:
|
120 |
+
gene_data.to_csv(out_data_file)
|
p3/preprocess/Acute_Myeloid_Leukemia/code/GSE235070.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Acute_Myeloid_Leukemia"
|
6 |
+
cohort = "GSE235070"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Acute_Myeloid_Leukemia"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Acute_Myeloid_Leukemia/GSE235070"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/GSE235070.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/gene_data/GSE235070.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/clinical_data/GSE235070.csv"
|
16 |
+
json_path = "./output/preprocess/3/Acute_Myeloid_Leukemia/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Based on the background info, this appears to be a SuperSeries about AML patients
|
38 |
+
# Cannot determine if it contains gene expression data based on limited info
|
39 |
+
is_gene_available = False
|
40 |
+
|
41 |
+
# 2.1 Data Availability
|
42 |
+
# From sample characteristics:
|
43 |
+
# Row 0 contains disease state info which indicates AML trait
|
44 |
+
trait_row = 0
|
45 |
+
|
46 |
+
# Age and gender info not available
|
47 |
+
age_row = None
|
48 |
+
gender_row = None
|
49 |
+
|
50 |
+
# 2.2. Data Type Conversion Functions
|
51 |
+
def convert_trait(x):
|
52 |
+
# Extract value after colon and convert to binary
|
53 |
+
# 'patient with AML' indicates positive case (1)
|
54 |
+
if pd.isna(x):
|
55 |
+
return None
|
56 |
+
value = x.split(': ')[-1].strip().lower()
|
57 |
+
if 'aml' in value:
|
58 |
+
return 1
|
59 |
+
return None
|
60 |
+
|
61 |
+
convert_age = None
|
62 |
+
convert_gender = None
|
63 |
+
|
64 |
+
# 3. Save metadata
|
65 |
+
is_trait_available = trait_row is not None
|
66 |
+
validate_and_save_cohort_info(is_final=False,
|
67 |
+
cohort=cohort,
|
68 |
+
info_path=json_path,
|
69 |
+
is_gene_available=is_gene_available,
|
70 |
+
is_trait_available=is_trait_available)
|
71 |
+
|
72 |
+
# 4. Clinical Feature Extraction
|
73 |
+
# Since trait_row is not None, we extract clinical features
|
74 |
+
clinical_df = geo_select_clinical_features(clinical_data,
|
75 |
+
trait=trait,
|
76 |
+
trait_row=trait_row,
|
77 |
+
convert_trait=convert_trait,
|
78 |
+
age_row=age_row,
|
79 |
+
convert_age=convert_age,
|
80 |
+
gender_row=gender_row,
|
81 |
+
convert_gender=convert_gender)
|
82 |
+
|
83 |
+
# Preview and save clinical data
|
84 |
+
print(preview_df(clinical_df))
|
85 |
+
clinical_df.to_csv(out_clinical_data_file)
|
p3/preprocess/Acute_Myeloid_Leukemia/code/GSE249638.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Acute_Myeloid_Leukemia"
|
6 |
+
cohort = "GSE249638"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Acute_Myeloid_Leukemia"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Acute_Myeloid_Leukemia/GSE249638"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/GSE249638.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/gene_data/GSE249638.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/clinical_data/GSE249638.csv"
|
16 |
+
json_path = "./output/preprocess/3/Acute_Myeloid_Leukemia/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Yes - this is a transcriptomic profiling study of CD4+ T cells
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2.1 Data Availability & 2.2 Data Type Conversion
|
41 |
+
# Trait (AML status) is available in Feature 1, using binary type
|
42 |
+
trait_row = 1
|
43 |
+
def convert_trait(x):
|
44 |
+
if not x or ':' not in x:
|
45 |
+
return None
|
46 |
+
value = x.split(':')[1].strip().lower()
|
47 |
+
if 'acute myeloid leukemia' in value:
|
48 |
+
return 1
|
49 |
+
elif 'healthy control' in value:
|
50 |
+
return 0
|
51 |
+
return None
|
52 |
+
|
53 |
+
# Age not available
|
54 |
+
age_row = None
|
55 |
+
convert_age = None
|
56 |
+
|
57 |
+
# Gender not available
|
58 |
+
gender_row = None
|
59 |
+
convert_gender = None
|
60 |
+
|
61 |
+
# 3. Save Metadata
|
62 |
+
is_trait_available = trait_row is not None
|
63 |
+
validate_and_save_cohort_info(is_final=False,
|
64 |
+
cohort=cohort,
|
65 |
+
info_path=json_path,
|
66 |
+
is_gene_available=is_gene_available,
|
67 |
+
is_trait_available=is_trait_available)
|
68 |
+
|
69 |
+
# 4. Clinical Feature Extraction
|
70 |
+
if trait_row is not None:
|
71 |
+
clinical_features = geo_select_clinical_features(
|
72 |
+
clinical_df=clinical_data,
|
73 |
+
trait=trait,
|
74 |
+
trait_row=trait_row,
|
75 |
+
convert_trait=convert_trait,
|
76 |
+
age_row=age_row,
|
77 |
+
convert_age=convert_age,
|
78 |
+
gender_row=gender_row,
|
79 |
+
convert_gender=convert_gender
|
80 |
+
)
|
81 |
+
|
82 |
+
# Preview the extracted features
|
83 |
+
print("Preview of clinical features:")
|
84 |
+
print(preview_df(clinical_features))
|
85 |
+
|
86 |
+
# Save to CSV
|
87 |
+
clinical_features.to_csv(out_clinical_data_file)
|
88 |
+
# Extract gene expression data from matrix file
|
89 |
+
gene_data = get_genetic_data(matrix_file)
|
90 |
+
|
91 |
+
# Print first 20 row IDs
|
92 |
+
print("First 20 gene/probe identifiers:")
|
93 |
+
print(gene_data.index[:20])
|
94 |
+
# The identifiers like '2824546_st' are probe IDs from Affymetrix microarray platform, not human gene symbols
|
95 |
+
requires_gene_mapping = True
|
96 |
+
# Extract gene annotation from SOFT file
|
97 |
+
gene_annotation = get_gene_annotation(soft_file)
|
98 |
+
|
99 |
+
# Preview gene annotation data
|
100 |
+
print("Gene annotation columns and example values:")
|
101 |
+
print(preview_df(gene_annotation))
|
102 |
+
# 2. Get mapping between probe IDs and gene symbols
|
103 |
+
gene_annotation = gene_annotation.drop('ID', axis=1) # Drop the original ID column
|
104 |
+
gene_annotation = gene_annotation.rename(columns={'probeset_id': 'ID'})
|
105 |
+
mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')
|
106 |
+
|
107 |
+
# 3. Apply the mapping to convert probe-level measurements to gene expression data
|
108 |
+
gene_data = apply_gene_mapping(gene_data, mapping)
|
109 |
+
|
110 |
+
# Preview first few genes and their expression values
|
111 |
+
print("\nPreview of mapped gene expression data:")
|
112 |
+
print(preview_df(gene_data))
|
113 |
+
# 1. Normalize gene symbols and save normalized gene data
|
114 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
115 |
+
gene_data.to_csv(out_gene_data_file)
|
116 |
+
|
117 |
+
# 2. Link clinical and genetic data
|
118 |
+
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
|
119 |
+
|
120 |
+
# 3. Handle missing values systematically
|
121 |
+
linked_data = handle_missing_values(linked_data, trait)
|
122 |
+
|
123 |
+
# 4. Check for biased features and remove them if needed
|
124 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
125 |
+
|
126 |
+
# 5. Validate data quality and save metadata
|
127 |
+
# Note: Dataset contains gene expression data from AML cell lines. The trait "Acute_Myeloid_Leukemia" is defined
|
128 |
+
# based on cell subtypes (AMKL vs non-AMKL).
|
129 |
+
is_usable = validate_and_save_cohort_info(
|
130 |
+
is_final=True,
|
131 |
+
cohort=cohort,
|
132 |
+
info_path=json_path,
|
133 |
+
is_gene_available=True,
|
134 |
+
is_trait_available=True,
|
135 |
+
is_biased=is_biased,
|
136 |
+
df=linked_data,
|
137 |
+
note="Gene expression data from AML cell lines. Trait defined as AMKL vs non-AMKL subtypes."
|
138 |
+
)
|
139 |
+
|
140 |
+
# 6. Save linked data if usable
|
141 |
+
if is_usable:
|
142 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Acute_Myeloid_Leukemia/code/GSE98578.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Acute_Myeloid_Leukemia"
|
6 |
+
cohort = "GSE98578"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Acute_Myeloid_Leukemia"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Acute_Myeloid_Leukemia/GSE98578"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/GSE98578.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/gene_data/GSE98578.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/clinical_data/GSE98578.csv"
|
16 |
+
json_path = "./output/preprocess/3/Acute_Myeloid_Leukemia/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
is_gene_available = True # microarray gene expression data mentioned in summary
|
38 |
+
|
39 |
+
# 2.1 Data Availability
|
40 |
+
trait_row = 2 # cell subtype indicates AML type
|
41 |
+
age_row = None # no age data
|
42 |
+
gender_row = None # no gender data
|
43 |
+
|
44 |
+
# 2.2 Data Type Conversion Functions
|
45 |
+
def convert_trait(x):
|
46 |
+
if not isinstance(x, str):
|
47 |
+
return None
|
48 |
+
value = x.split(': ')[-1].strip()
|
49 |
+
# Convert to binary: AMKL=1, non-AMKL=0
|
50 |
+
if value == 'AMKL':
|
51 |
+
return 1
|
52 |
+
elif value == 'non-AMKL':
|
53 |
+
return 0
|
54 |
+
return None
|
55 |
+
|
56 |
+
# Age and gender conversion functions not needed since data unavailable
|
57 |
+
convert_age = None
|
58 |
+
convert_gender = None
|
59 |
+
|
60 |
+
# 3. Save metadata about data availability
|
61 |
+
is_initial = validate_and_save_cohort_info(
|
62 |
+
is_final=False,
|
63 |
+
cohort=cohort,
|
64 |
+
info_path=json_path,
|
65 |
+
is_gene_available=is_gene_available,
|
66 |
+
is_trait_available=trait_row is not None
|
67 |
+
)
|
68 |
+
|
69 |
+
# 4. Extract clinical features
|
70 |
+
if trait_row is not None:
|
71 |
+
clinical_features = geo_select_clinical_features(
|
72 |
+
clinical_df=clinical_data,
|
73 |
+
trait=trait,
|
74 |
+
trait_row=trait_row,
|
75 |
+
convert_trait=convert_trait,
|
76 |
+
age_row=age_row,
|
77 |
+
convert_age=convert_age,
|
78 |
+
gender_row=gender_row,
|
79 |
+
convert_gender=convert_gender
|
80 |
+
)
|
81 |
+
|
82 |
+
# Preview the extracted features
|
83 |
+
preview = preview_df(clinical_features)
|
84 |
+
print("Preview of clinical features:")
|
85 |
+
print(preview)
|
86 |
+
|
87 |
+
# Save to CSV
|
88 |
+
clinical_features.to_csv(out_clinical_data_file)
|
89 |
+
# Extract gene expression data from matrix file
|
90 |
+
gene_data = get_genetic_data(matrix_file)
|
91 |
+
|
92 |
+
# Print first 20 row IDs
|
93 |
+
print("First 20 gene/probe identifiers:")
|
94 |
+
print(gene_data.index[:20])
|
95 |
+
# These identifiers are from Affymetrix HG-U133 Plus 2.0 array probe IDs
|
96 |
+
# They need to be mapped to human gene symbols for analysis
|
97 |
+
requires_gene_mapping = True
|
98 |
+
# Extract gene annotation from SOFT file
|
99 |
+
gene_annotation = get_gene_annotation(soft_file)
|
100 |
+
|
101 |
+
# Preview gene annotation data
|
102 |
+
print("Gene annotation columns and example values:")
|
103 |
+
print(preview_df(gene_annotation))
|
104 |
+
# Get gene mapping from annotation data
|
105 |
+
# 'ID' column matches probe IDs in gene expression data
|
106 |
+
# 'Gene Symbol' column contains the target gene symbols
|
107 |
+
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
|
108 |
+
|
109 |
+
# Apply gene mapping to convert probe data to gene expression data
|
110 |
+
gene_data = apply_gene_mapping(gene_data, mapping_data)
|
111 |
+
|
112 |
+
# Preview first few genes and samples
|
113 |
+
print("Preview of gene expression data after mapping:")
|
114 |
+
print(preview_df(gene_data))
|
115 |
+
# 1. Normalize gene symbols and save normalized gene data
|
116 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
117 |
+
gene_data.to_csv(out_gene_data_file)
|
118 |
+
|
119 |
+
# 2. Link clinical and genetic data
|
120 |
+
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
|
121 |
+
|
122 |
+
# 3. Handle missing values systematically
|
123 |
+
linked_data = handle_missing_values(linked_data, trait)
|
124 |
+
|
125 |
+
# 4. Check for biased features and remove them if needed
|
126 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
127 |
+
|
128 |
+
# 5. Validate data quality and save metadata
|
129 |
+
# Note: Dataset contains gene expression data from AML cell lines. The trait "Acute_Myeloid_Leukemia" is defined
|
130 |
+
# based on cell subtypes (AMKL vs non-AMKL).
|
131 |
+
is_usable = validate_and_save_cohort_info(
|
132 |
+
is_final=True,
|
133 |
+
cohort=cohort,
|
134 |
+
info_path=json_path,
|
135 |
+
is_gene_available=True,
|
136 |
+
is_trait_available=True,
|
137 |
+
is_biased=is_biased,
|
138 |
+
df=linked_data,
|
139 |
+
note="Gene expression data from AML cell lines. Trait defined as AMKL vs non-AMKL subtypes."
|
140 |
+
)
|
141 |
+
|
142 |
+
# 6. Save linked data if usable
|
143 |
+
if is_usable:
|
144 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Acute_Myeloid_Leukemia/code/GSE99612.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Acute_Myeloid_Leukemia"
|
6 |
+
cohort = "GSE99612"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Acute_Myeloid_Leukemia"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Acute_Myeloid_Leukemia/GSE99612"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/GSE99612.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/gene_data/GSE99612.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/clinical_data/GSE99612.csv"
|
16 |
+
json_path = "./output/preprocess/3/Acute_Myeloid_Leukemia/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data - Not a miRNA or methylation study
|
37 |
+
is_gene_available = True
|
38 |
+
|
39 |
+
# 2. Variable Availability and Data Type Conversion
|
40 |
+
# This is cell line data, not human subject data
|
41 |
+
trait_row = None
|
42 |
+
|
43 |
+
def convert_trait(x):
|
44 |
+
return None
|
45 |
+
|
46 |
+
age_row = None
|
47 |
+
def convert_age(x):
|
48 |
+
return None
|
49 |
+
|
50 |
+
gender_row = None
|
51 |
+
def convert_gender(x):
|
52 |
+
return None
|
53 |
+
|
54 |
+
# 3. Save metadata
|
55 |
+
validate_and_save_cohort_info(
|
56 |
+
is_final=False,
|
57 |
+
cohort=cohort,
|
58 |
+
info_path=json_path,
|
59 |
+
is_gene_available=is_gene_available,
|
60 |
+
is_trait_available=(trait_row is not None)
|
61 |
+
)
|
62 |
+
|
63 |
+
# 4. Skip clinical feature extraction since trait_row is None
|
64 |
+
# Extract gene expression data from matrix file
|
65 |
+
gene_data = get_genetic_data(matrix_file)
|
66 |
+
|
67 |
+
# Print first 20 row IDs
|
68 |
+
print("First 20 gene/probe identifiers:")
|
69 |
+
print(gene_data.index[:20])
|
70 |
+
requires_gene_mapping = True
|
71 |
+
# Extract gene annotation from SOFT file
|
72 |
+
gene_annotation = get_gene_annotation(soft_file)
|
73 |
+
|
74 |
+
# Preview gene annotation data
|
75 |
+
print("Gene annotation columns and example values:")
|
76 |
+
print(preview_df(gene_annotation))
|
77 |
+
# 1. Identify relevant columns for gene mapping
|
78 |
+
# 'ID' in gene annotation matches identifiers in gene expression data
|
79 |
+
# 'gene_assignment' contains gene symbol information
|
80 |
+
|
81 |
+
# 2. Extract gene mapping dataframe
|
82 |
+
gene_mapping = get_gene_mapping(gene_annotation, 'ID', 'gene_assignment')
|
83 |
+
|
84 |
+
# 3. Apply gene mapping to convert probe data to gene expression data
|
85 |
+
gene_data = apply_gene_mapping(gene_data, gene_mapping)
|
86 |
+
# 1. Normalize gene symbols and save gene data
|
87 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
88 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
89 |
+
gene_data.to_csv(out_gene_data_file)
|
90 |
+
|
91 |
+
# 2. Create minimal linked data structure
|
92 |
+
linked_data = pd.DataFrame(index=gene_data.columns)
|
93 |
+
|
94 |
+
# 3-4. Skip missing value handling since data is not usable
|
95 |
+
# Mark as biased since we have no trait data
|
96 |
+
is_biased = True
|
97 |
+
|
98 |
+
# 5. Final validation and save metadata
|
99 |
+
validate_and_save_cohort_info(
|
100 |
+
is_final=True,
|
101 |
+
cohort=cohort,
|
102 |
+
info_path=json_path,
|
103 |
+
is_gene_available=True,
|
104 |
+
is_trait_available=False,
|
105 |
+
is_biased=is_biased,
|
106 |
+
df=linked_data,
|
107 |
+
note="This is a cell line experiment, not a human subject study. Contains no trait data."
|
108 |
+
)
|
109 |
+
|
110 |
+
# 6. Skip saving linked data since it's not usable
|
p3/preprocess/Acute_Myeloid_Leukemia/code/TCGA.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Acute_Myeloid_Leukemia"
|
6 |
+
|
7 |
+
# Input paths
|
8 |
+
tcga_root_dir = "../DATA/TCGA"
|
9 |
+
|
10 |
+
# Output paths
|
11 |
+
out_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/TCGA.csv"
|
12 |
+
out_gene_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/gene_data/TCGA.csv"
|
13 |
+
out_clinical_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/clinical_data/TCGA.csv"
|
14 |
+
json_path = "./output/preprocess/3/Acute_Myeloid_Leukemia/cohort_info.json"
|
15 |
+
|
16 |
+
# 1. Select the relevant subdirectory for acute myeloid leukemia
|
17 |
+
subdirectory = 'TCGA_Acute_Myeloid_Leukemia_(LAML)'
|
18 |
+
cohort_dir = os.path.join(tcga_root_dir, subdirectory)
|
19 |
+
|
20 |
+
# 2. Get the file paths
|
21 |
+
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
|
22 |
+
|
23 |
+
# 3. Load the data files
|
24 |
+
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
|
25 |
+
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
|
26 |
+
|
27 |
+
# 4. Print clinical data columns
|
28 |
+
print("Clinical data columns:")
|
29 |
+
print(clinical_df.columns.tolist())
|
30 |
+
# Identify candidate columns
|
31 |
+
candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth']
|
32 |
+
candidate_gender_cols = ['gender']
|
33 |
+
|
34 |
+
# Use TCGA project code LAML instead of full trait name
|
35 |
+
cohort_dir = os.path.join(tcga_root_dir, "LAML")
|
36 |
+
if not os.path.exists(cohort_dir):
|
37 |
+
print(f"Error: Directory not found: {cohort_dir}")
|
38 |
+
print("Please verify the data directory structure and path configuration.")
|
39 |
+
else:
|
40 |
+
clinical_file_path, _ = tcga_get_relevant_filepaths(cohort_dir)
|
41 |
+
clinical_df = pd.read_csv(clinical_file_path, index_col=0)
|
42 |
+
|
43 |
+
# Preview age columns
|
44 |
+
age_preview = {}
|
45 |
+
for col in candidate_age_cols:
|
46 |
+
age_preview[col] = clinical_df[col].head(5).tolist()
|
47 |
+
print("Age columns preview:", age_preview)
|
48 |
+
|
49 |
+
# Preview gender columns
|
50 |
+
gender_preview = {}
|
51 |
+
for col in candidate_gender_cols:
|
52 |
+
gender_preview[col] = clinical_df[col].head(5).tolist()
|
53 |
+
print("\nGender columns preview:", gender_preview)
|
54 |
+
# Build the cohort directory path
|
55 |
+
cohort_dir = os.path.join(tcga_root_dir, "LAML")
|
56 |
+
|
57 |
+
# Get the clinical file path
|
58 |
+
clinical_file_path, _ = tcga_get_relevant_filepaths(cohort_dir)
|
59 |
+
|
60 |
+
# Read clinical data
|
61 |
+
clinical_df = pd.read_csv(clinical_file_path, sep='\t', index_col=0)
|
62 |
+
|
63 |
+
# Default to None
|
64 |
+
age_col = None
|
65 |
+
gender_col = None
|
66 |
+
|
67 |
+
# Search for age column - look for common patterns
|
68 |
+
age_candidates = [col for col in clinical_df.columns if 'age' in col.lower()]
|
69 |
+
if age_candidates:
|
70 |
+
# Preview first few values of each candidate
|
71 |
+
for col in age_candidates:
|
72 |
+
preview = clinical_df[col].head()
|
73 |
+
# Check if column has numeric age values after conversion
|
74 |
+
converted = preview.apply(tcga_convert_age)
|
75 |
+
if not converted.isna().all():
|
76 |
+
age_col = col
|
77 |
+
break
|
78 |
+
|
79 |
+
# Search for gender column - look for common patterns
|
80 |
+
gender_candidates = [col for col in clinical_df.columns if 'gender' in col.lower() or 'sex' in col.lower()]
|
81 |
+
if gender_candidates:
|
82 |
+
# Preview first few values of each candidate
|
83 |
+
for col in gender_candidates:
|
84 |
+
preview = clinical_df[col].head()
|
85 |
+
# Check if column has valid gender values after conversion
|
86 |
+
converted = preview.apply(tcga_convert_gender)
|
87 |
+
if not converted.isna().all():
|
88 |
+
gender_col = col
|
89 |
+
break
|
90 |
+
|
91 |
+
# Print chosen columns
|
92 |
+
print(f"Selected age column: {age_col}")
|
93 |
+
print(f"Selected gender column: {gender_col}")
|
94 |
+
# 1. Select the relevant subdirectory for acute myeloid leukemia
|
95 |
+
subdirectory = 'TCGA_Acute_Myeloid_Leukemia_(LAML)'
|
96 |
+
cohort_dir = os.path.join(tcga_root_dir, subdirectory)
|
97 |
+
|
98 |
+
# 2. Get the file paths
|
99 |
+
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
|
100 |
+
|
101 |
+
# 3. Load the data files
|
102 |
+
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
|
103 |
+
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
|
104 |
+
|
105 |
+
# 4. Print clinical data columns
|
106 |
+
print("Clinical data columns:")
|
107 |
+
print(clinical_df.columns.tolist())
|
108 |
+
# 1. Extract and standardize clinical features
|
109 |
+
# First create trait labels using sample IDs, then add demographics if available
|
110 |
+
clinical_features = tcga_select_clinical_features(
|
111 |
+
clinical_df,
|
112 |
+
trait=trait,
|
113 |
+
age_col='age_at_initial_pathologic_diagnosis',
|
114 |
+
gender_col='gender'
|
115 |
+
)
|
116 |
+
|
117 |
+
# 2. Normalize gene symbols and save
|
118 |
+
normalized_gene_df = normalize_gene_symbols_in_index(genetic_df)
|
119 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
120 |
+
normalized_gene_df.to_csv(out_gene_data_file)
|
121 |
+
|
122 |
+
# 3. Link clinical and genetic data
|
123 |
+
linked_data = pd.concat([clinical_features, normalized_gene_df.T], axis=1)
|
124 |
+
|
125 |
+
# 4. Handle missing values systematically
|
126 |
+
linked_data = handle_missing_values(linked_data, trait)
|
127 |
+
|
128 |
+
# 5. Check for bias in trait and demographic features
|
129 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
130 |
+
|
131 |
+
# 6. Validate data quality and save cohort info
|
132 |
+
note = "Contains molecular data from tumor and normal samples with patient demographics."
|
133 |
+
is_usable = validate_and_save_cohort_info(
|
134 |
+
is_final=True,
|
135 |
+
cohort="TCGA",
|
136 |
+
info_path=json_path,
|
137 |
+
is_gene_available=True,
|
138 |
+
is_trait_available=True,
|
139 |
+
is_biased=trait_biased,
|
140 |
+
df=linked_data,
|
141 |
+
note=note
|
142 |
+
)
|
143 |
+
|
144 |
+
# 7. Save linked data if usable
|
145 |
+
if is_usable:
|
146 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
147 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Acute_Myeloid_Leukemia/cohort_info.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"GSE99612": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "This is a cell line experiment, not a human subject study. Contains no trait data."}, "GSE98578": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 48, "note": "Gene expression data from AML cell lines. Trait defined as AMKL vs non-AMKL subtypes."}, "GSE249638": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 37, "note": "Gene expression data from AML cell lines. Trait defined as AMKL vs non-AMKL subtypes."}, "GSE235070": {"is_usable": false, "is_gene_available": false, "is_trait_available": true, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}, "GSE222616": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Only gene expression data available, no clinical information found"}, "GSE222169": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Gene expression data comparing different AML cell lines and treatments."}, "GSE222124": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 70, "note": "Gene expression data from AML cell lines. Trait defined as AMKL vs non-AMKL subtypes."}, "GSE161532": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": true, "sample_size": 53, "note": "Gene expression data from AML cell lines. Trait defined as AMKL vs non-AMKL subtypes."}, "GSE121431": {"is_usable": false, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": true, "has_age": false, "has_gender": false, "sample_size": 30, "note": "Gene expression data from AML cell lines. Trait defined as AMKL vs non-AMKL subtypes."}, "GSE121291": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Dataset contains gene expression data from cell lines but lacks AML trait information needed for analysis."}, "TCGA": {"is_usable": false, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": true, "has_age": true, "has_gender": true, "sample_size": 173, "note": "Contains molecular data from tumor and normal samples with patient demographics."}}
|
p3/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE121291.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE121431.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE222169.csv
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Gene,GSM6916956,GSM6916957,GSM6916958,GSM6916959,GSM6916960,GSM6916961,GSM6916962,GSM6916963,GSM6916964,GSM6916965,GSM6916966,GSM6916967,GSM6916968,GSM6916969,GSM6916970,GSM6916971,GSM6916972,GSM6916973,GSM6916974,GSM6916975,GSM6916976,GSM6916977,GSM6916978,GSM6916979,GSM6916980,GSM6916981,GSM6916982,GSM6916983,GSM6916984,GSM6916985,GSM6916986,GSM6916987,GSM6916988,GSM6916989,GSM6916990,GSM6916991,GSM6916992,GSM6916993,GSM6916994,GSM6916995,GSM6916996,GSM6916997
|
p3/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE222616.csv
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Gene,GSM6927801,GSM6927802,GSM6927803,GSM6927804,GSM6927805,GSM6927806,GSM6927807,GSM6927808,GSM6927809,GSM6927810,GSM6927811,GSM6927812,GSM6927813,GSM6927814,GSM6927815,GSM6927816,GSM6927817,GSM6927818,GSM6927819,GSM6927820,GSM6927821,GSM6927822,GSM6927823,GSM6927824,GSM6927825,GSM6927826,GSM6927827,GSM6927828,GSM6927829,GSM6927830,GSM6927831,GSM6927832,GSM6927833,GSM6927834,GSM6927835,GSM6927836,GSM6927837,GSM6927838,GSM6927839,GSM6927840,GSM6927841,GSM6927842
|
p3/preprocess/Adrenocortical_Cancer/GSE75415.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Adrenocortical_Cancer/clinical_data/GSE108088.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM2889381,GSM2889382,GSM2889383,GSM2889384,GSM2889385,GSM2889386,GSM2889387,GSM2889388,GSM2889389,GSM2889390,GSM2889391,GSM2889392,GSM2889393,GSM2889394,GSM2889395,GSM2889396,GSM2889397,GSM2889398,GSM2889399,GSM2889400,GSM2889401,GSM2889402,GSM2889403,GSM2889404,GSM2889405,GSM2889406,GSM2889407,GSM2889408,GSM2889409,GSM2889410,GSM2889411,GSM2889412,GSM2889413,GSM2889414,GSM2889415,GSM2889416,GSM2889417,GSM2889418,GSM2889419,GSM2889420,GSM2889421,GSM2889422,GSM2889423
|
2 |
+
Adrenocortical_Cancer,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
p3/preprocess/Adrenocortical_Cancer/clinical_data/GSE143383.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
,GSM4258059,GSM4258060,GSM4258061,GSM4258062,GSM4258063,GSM4258064,GSM4258065,GSM4258066,GSM4258067,GSM4258068,GSM4258069,GSM4258070,GSM4258071,GSM4258072,GSM4258073,GSM4258074,GSM4258075,GSM4258076,GSM4258077,GSM4258078,GSM4258079,GSM4258080,GSM4258081,GSM4258082,GSM4258083,GSM4258084,GSM4258085,GSM4258086,GSM4258087,GSM4258088,GSM4258089,GSM4258090,GSM4258091,GSM4258092,GSM4258093,GSM4258094,GSM4258095,GSM4258096,GSM4258097,GSM4258098,GSM4258099,GSM4258100,GSM4258101,GSM4258102,GSM4258103,GSM4258104,GSM4258105,GSM4258106,GSM4258107,GSM4258108,GSM4258109,GSM4258110,GSM4258111,GSM4258112,GSM4258113,GSM4258114,GSM4258115,GSM4258116,GSM4258117,GSM4258118,GSM4258119,GSM4258120,GSM4258121
|
2 |
+
Adrenocortical_Cancer,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
3 |
+
Gender,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,,1.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0
|
p3/preprocess/Adrenocortical_Cancer/clinical_data/GSE19776.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM493903,GSM493904,GSM493905,GSM493906,GSM493907,GSM493908,GSM493909,GSM493910,GSM493911,GSM493912,GSM493913,GSM493914,GSM493915,GSM493916,GSM493917
|
2 |
+
Adrenocortical_Cancer,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,,0.0,,,0.0
|
3 |
+
Age,67.8,72.1,26.7,36.9,,53.2,37.0,54.2,67.3,27.7,,58.0,42.0,46.0,38.0
|
4 |
+
Gender,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0
|
p3/preprocess/Adrenocortical_Cancer/clinical_data/GSE49278.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM1196511,GSM1196512,GSM1196513,GSM1196514,GSM1196515,GSM1196516,GSM1196517,GSM1196518,GSM1196519,GSM1196520,GSM1196521,GSM1196522,GSM1196523,GSM1196524,GSM1196525,GSM1196526,GSM1196527,GSM1196528,GSM1196529,GSM1196530,GSM1196531,GSM1196532,GSM1196533,GSM1196534,GSM1196535,GSM1196536,GSM1196537,GSM1196538,GSM1196539,GSM1196540,GSM1196541,GSM1196542,GSM1196543,GSM1196544,GSM1196545,GSM1196546,GSM1196547,GSM1196548,GSM1196549,GSM1196550,GSM1196551,GSM1196552,GSM1196553,GSM1196554
|
2 |
+
Adrenocortical_Cancer,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
3 |
+
Age,70.0,26.0,53.0,73.0,15.0,51.0,63.0,26.0,29.0,79.0,45.0,43.0,53.0,45.0,41.0,37.0,81.0,68.0,42.0,59.0,39.0,25.0,41.0,36.0,24.0,49.0,75.0,37.0,26.0,48.0,15.0,49.0,54.0,39.0,79.0,28.0,40.0,44.0,28.0,53.0,28.0,52.0,30.0,46.0
|
4 |
+
Gender,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0
|
p3/preprocess/Adrenocortical_Cancer/clinical_data/GSE68606.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM1676864,GSM1676865,GSM1676866,GSM1676867,GSM1676868,GSM1676869,GSM1676870,GSM1676871,GSM1676872,GSM1676873,GSM1676874,GSM1676875,GSM1676876,GSM1676877,GSM1676878,GSM1676879,GSM1676880,GSM1676881,GSM1676882,GSM1676883,GSM1676884,GSM1676885,GSM1676886,GSM1676887,GSM1676888,GSM1676889,GSM1676890,GSM1676891,GSM1676892,GSM1676893,GSM1676894,GSM1676895,GSM1676896,GSM1676897,GSM1676898,GSM1676899,GSM1676900,GSM1676901,GSM1676902,GSM1676903,GSM1676904,GSM1676905,GSM1676906,GSM1676907,GSM1676908,GSM1676909,GSM1676910,GSM1676911,GSM1676912,GSM1676913,GSM1676914,GSM1676915,GSM1676916,GSM1676917,GSM1676918,GSM1676919,GSM1676920,GSM1676921,GSM1676922,GSM1676923,GSM1676924,GSM1676925,GSM1676926,GSM1676927,GSM1676928,GSM1676929,GSM1676930,GSM1676931,GSM1676932,GSM1676933,GSM1676934,GSM1676935,GSM1676936,GSM1676937,GSM1676938,GSM1676939,GSM1676940,GSM1676941,GSM1676942,GSM1676943,GSM1676944,GSM1676945,GSM1676946,GSM1676947,GSM1676948,GSM1676949,GSM1676950,GSM1676951,GSM1676952,GSM1676953,GSM1676954,GSM1676955,GSM1676956,GSM1676957,GSM1676958,GSM1676959,GSM1676960,GSM1676961,GSM1676962,GSM1676963,GSM1676964,GSM1676965,GSM1676966,GSM1676967,GSM1676968,GSM1676969,GSM1676970,GSM1676971,GSM1676972,GSM1676973,GSM1676974,GSM1676975,GSM1676976,GSM1676977,GSM1676978,GSM1676979,GSM1676980,GSM1676981,GSM1676982,GSM1676983,GSM1676984,GSM1676985,GSM1676986,GSM1676987,GSM1676988,GSM1676989,GSM1676990,GSM1676991,GSM1676992,GSM1676993,GSM1676994,GSM1676995,GSM1676996,GSM1676997,GSM1676998,GSM1676999,GSM1677000
|
2 |
+
Adrenocortical_Cancer,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
3 |
+
Age,,,,,,,,,,,67.0,66.0,72.0,56.0,48.0,,,,,,,,,,,,,,,,,,,,,,,,48.0,,,66.0,56.0,72.0,,67.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,67.0,56.0,48.0,,,,,,,,,66.0,72.0,,,,,,,,,,67.0,56.0,,66.0,,,48.0,,72.0,,,,,,,,,,,,,,,,,,,,,
|
4 |
+
Gender,,,0.0,,,,,,,,1.0,1.0,1.0,0.0,0.0,,,,,,,,,,,,,,,,,,,,,,,,0.0,,,1.0,0.0,1.0,,1.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.0,0.0,0.0,,,,,,,,,1.0,1.0,,,,,,,,,,1.0,0.0,,1.0,,,0.0,,1.0,,,,,,,,,,,,,,,,,,,,,
|
p3/preprocess/Adrenocortical_Cancer/clinical_data/GSE68950.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,3
|
2 |
+
Adrenocortical_Cancer,0.0
|
p3/preprocess/Adrenocortical_Cancer/clinical_data/GSE75415.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
,GSM1954726,GSM1954727,GSM1954728,GSM1954729,GSM1954730,GSM1954731,GSM1954732,GSM1954733,GSM1954734,GSM1954735,GSM1954736,GSM1954737,GSM1954738,GSM1954739,GSM1954740,GSM1954741,GSM1954742,GSM1954743,GSM1954744,GSM1954745,GSM1954746,GSM1954747,GSM1954748,GSM1954749,GSM1954750,GSM1954751,GSM1954752,GSM1954753,GSM1954754,GSM1954755,GSM1954756
|
2 |
+
Adrenocortical_Cancer,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
3 |
+
Gender,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,,,,,,,,
|
p3/preprocess/Adrenocortical_Cancer/clinical_data/GSE76019.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM1972883,GSM1972884,GSM1972885,GSM1972886,GSM1972887,GSM1972888,GSM1972889,GSM1972890,GSM1972891,GSM1972892,GSM1972893,GSM1972894,GSM1972895,GSM1972896,GSM1972897,GSM1972898,GSM1972899,GSM1972900,GSM1972901,GSM1972902,GSM1972903,GSM1972904,GSM1972905,GSM1972906,GSM1972907,GSM1972908,GSM1972909,GSM1972910,GSM1972911,GSM1972912,GSM1972913,GSM1972914,GSM1972915,GSM1972916
|
2 |
+
Adrenocortical_Cancer,1.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0
|
p3/preprocess/Adrenocortical_Cancer/clinical_data/GSE90713.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM2411058,GSM2411059,GSM2411060,GSM2411061,GSM2411062,GSM2411063,GSM2411064,GSM2411065,GSM2411066,GSM2411067,GSM2411068,GSM2411069,GSM2411070,GSM2411071,GSM2411072,GSM2411073,GSM2411074,GSM2411075,GSM2411076,GSM2411077,GSM2411078,GSM2411079,GSM2411080,GSM2411081,GSM2411082,GSM2411083,GSM2411084,GSM2411085,GSM2411086,GSM2411087,GSM2411088,GSM2411089,GSM2411090,GSM2411091,GSM2411092,GSM2411093,GSM2411094,GSM2411095,GSM2411096,GSM2411097,GSM2411098,GSM2411099,GSM2411100,GSM2411101,GSM2411102,GSM2411103,GSM2411104,GSM2411105,GSM2411106,GSM2411107,GSM2411108,GSM2411109,GSM2411110,GSM2411111,GSM2411112,GSM2411113,GSM2411114,GSM2411115,GSM2411116,GSM2411117,GSM2411118,GSM2411119,GSM2411120
|
2 |
+
Adrenocortical_Cancer,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
p3/preprocess/Adrenocortical_Cancer/clinical_data/TCGA.csv
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
sampleID,Adrenocortical_Cancer,Age,Gender
|
2 |
+
TCGA-OR-A5J1-01,1,58,1
|
3 |
+
TCGA-OR-A5J2-01,1,44,0
|
4 |
+
TCGA-OR-A5J3-01,1,23,0
|
5 |
+
TCGA-OR-A5J4-01,1,23,0
|
6 |
+
TCGA-OR-A5J5-01,1,30,1
|
7 |
+
TCGA-OR-A5J6-01,1,29,0
|
8 |
+
TCGA-OR-A5J7-01,1,30,0
|
9 |
+
TCGA-OR-A5J8-01,1,66,1
|
10 |
+
TCGA-OR-A5J9-01,1,22,0
|
11 |
+
TCGA-OR-A5JA-01,1,53,0
|
12 |
+
TCGA-OR-A5JB-01,1,52,1
|
13 |
+
TCGA-OR-A5JC-01,1,37,1
|
14 |
+
TCGA-OR-A5JD-01,1,57,0
|
15 |
+
TCGA-OR-A5JE-01,1,17,0
|
16 |
+
TCGA-OR-A5JF-01,1,69,0
|
17 |
+
TCGA-OR-A5JG-01,1,61,1
|
18 |
+
TCGA-OR-A5JH-01,1,32,0
|
19 |
+
TCGA-OR-A5JI-01,1,22,1
|
20 |
+
TCGA-OR-A5JJ-01,1,65,1
|
21 |
+
TCGA-OR-A5JK-01,1,49,1
|
22 |
+
TCGA-OR-A5JL-01,1,36,0
|
23 |
+
TCGA-OR-A5JM-01,1,25,0
|
24 |
+
TCGA-OR-A5JO-01,1,26,0
|
25 |
+
TCGA-OR-A5JP-01,1,40,1
|
26 |
+
TCGA-OR-A5JQ-01,1,26,0
|
27 |
+
TCGA-OR-A5JR-01,1,45,1
|
28 |
+
TCGA-OR-A5JS-01,1,65,0
|
29 |
+
TCGA-OR-A5JT-01,1,65,0
|
30 |
+
TCGA-OR-A5JU-01,1,58,0
|
31 |
+
TCGA-OR-A5JV-01,1,55,1
|
32 |
+
TCGA-OR-A5JW-01,1,47,1
|
33 |
+
TCGA-OR-A5JX-01,1,50,1
|
34 |
+
TCGA-OR-A5JY-01,1,68,0
|
35 |
+
TCGA-OR-A5JZ-01,1,60,1
|
36 |
+
TCGA-OR-A5K0-01,1,69,0
|
37 |
+
TCGA-OR-A5K1-01,1,48,1
|
38 |
+
TCGA-OR-A5K2-01,1,32,0
|
39 |
+
TCGA-OR-A5K3-01,1,53,1
|
40 |
+
TCGA-OR-A5K4-01,1,64,0
|
41 |
+
TCGA-OR-A5K5-01,1,59,0
|
42 |
+
TCGA-OR-A5K6-01,1,56,0
|
43 |
+
TCGA-OR-A5K8-01,1,39,1
|
44 |
+
TCGA-OR-A5K9-01,1,61,0
|
45 |
+
TCGA-OR-A5KB-01,1,61,0
|
46 |
+
TCGA-OR-A5KO-01,1,39,0
|
47 |
+
TCGA-OR-A5KP-01,1,45,0
|
48 |
+
TCGA-OR-A5KQ-01,1,20,0
|
49 |
+
TCGA-OR-A5KS-01,1,72,1
|
50 |
+
TCGA-OR-A5KT-01,1,44,0
|
51 |
+
TCGA-OR-A5KU-01,1,37,0
|
52 |
+
TCGA-OR-A5KV-01,1,17,0
|
53 |
+
TCGA-OR-A5KW-01,1,55,0
|
54 |
+
TCGA-OR-A5KX-01,1,25,0
|
55 |
+
TCGA-OR-A5KY-01,1,23,0
|
56 |
+
TCGA-OR-A5KZ-01,1,42,1
|
57 |
+
TCGA-OR-A5L1-01,1,37,0
|
58 |
+
TCGA-OR-A5L2-01,1,83,0
|
59 |
+
TCGA-OR-A5L3-01,1,67,0
|
60 |
+
TCGA-OR-A5L4-01,1,48,0
|
61 |
+
TCGA-OR-A5L5-01,1,77,0
|
62 |
+
TCGA-OR-A5L6-01,1,60,1
|
63 |
+
TCGA-OR-A5L8-01,1,36,0
|
64 |
+
TCGA-OR-A5L9-01,1,53,0
|
65 |
+
TCGA-OR-A5LA-01,1,52,0
|
66 |
+
TCGA-OR-A5LB-01,1,59,1
|
67 |
+
TCGA-OR-A5LC-01,1,71,0
|
68 |
+
TCGA-OR-A5LD-01,1,52,1
|
69 |
+
TCGA-OR-A5LE-01,1,14,1
|
70 |
+
TCGA-OR-A5LF-01,1,74,0
|
71 |
+
TCGA-OR-A5LG-01,1,46,1
|
72 |
+
TCGA-OR-A5LH-01,1,36,0
|
73 |
+
TCGA-OR-A5LI-01,1,42,0
|
74 |
+
TCGA-OR-A5LJ-01,1,54,0
|
75 |
+
TCGA-OR-A5LK-01,1,62,1
|
76 |
+
TCGA-OR-A5LL-01,1,75,0
|
77 |
+
TCGA-OR-A5LM-01,1,23,1
|
78 |
+
TCGA-OR-A5LN-01,1,31,0
|
79 |
+
TCGA-OR-A5LO-01,1,61,0
|
80 |
+
TCGA-OR-A5LP-01,1,37,0
|
81 |
+
TCGA-OR-A5LR-01,1,30,0
|
82 |
+
TCGA-OR-A5LS-01,1,34,0
|
83 |
+
TCGA-OR-A5LT-01,1,57,1
|
84 |
+
TCGA-OU-A5PI-01,1,53,0
|
85 |
+
TCGA-P6-A5OF-01,1,55,0
|
86 |
+
TCGA-P6-A5OG-01,1,45,0
|
87 |
+
TCGA-P6-A5OH-01,1,59,0
|
88 |
+
TCGA-PA-A5YG-01,1,51,1
|
89 |
+
TCGA-PK-A5H8-01,1,42,1
|
90 |
+
TCGA-PK-A5H9-01,1,27,0
|
91 |
+
TCGA-PK-A5HA-01,1,63,1
|
92 |
+
TCGA-PK-A5HB-01,1,63,1
|
93 |
+
TCGA-PK-A5HC-01,1,44,0
|
p3/preprocess/Adrenocortical_Cancer/code/GSE108088.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Adrenocortical_Cancer"
|
6 |
+
cohort = "GSE108088"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Adrenocortical_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Adrenocortical_Cancer/GSE108088"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Adrenocortical_Cancer/GSE108088.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Adrenocortical_Cancer/gene_data/GSE108088.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Adrenocortical_Cancer/clinical_data/GSE108088.csv"
|
16 |
+
json_path = "./output/preprocess/3/Adrenocortical_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Yes, this dataset appears to be gene expression data given the series summary about molecular profiling
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2. Variable Data Type & Conversion
|
41 |
+
|
42 |
+
# 2.1 Data Availability
|
43 |
+
# No Adrenocortical Cancer cases found in conditions
|
44 |
+
trait_row = None
|
45 |
+
age_row = None
|
46 |
+
gender_row = None
|
47 |
+
|
48 |
+
# 2.2 Data Type Conversion Functions
|
49 |
+
def convert_trait(x):
|
50 |
+
# Binary: 0 = other cancers, 1 = our target cancer
|
51 |
+
if not isinstance(x, str):
|
52 |
+
return None
|
53 |
+
value = x.split(': ')[-1].lower()
|
54 |
+
# For Adrenocortical Cancer - no matching cases found
|
55 |
+
return 0
|
56 |
+
|
57 |
+
def convert_age(x):
|
58 |
+
# Not needed since age data unavailable
|
59 |
+
return None
|
60 |
+
|
61 |
+
def convert_gender(x):
|
62 |
+
# Not needed since gender data unavailable
|
63 |
+
return None
|
64 |
+
|
65 |
+
# 3. Save Metadata - Initial Filtering
|
66 |
+
is_trait_available = trait_row is not None
|
67 |
+
validate_and_save_cohort_info(is_final=False,
|
68 |
+
cohort=cohort,
|
69 |
+
info_path=json_path,
|
70 |
+
is_gene_available=is_gene_available,
|
71 |
+
is_trait_available=is_trait_available)
|
72 |
+
|
73 |
+
# 4. Clinical Feature Extraction
|
74 |
+
# Skip since trait_row is None (no Adrenocortical Cancer cases)
|
75 |
+
# Extract gene expression data from matrix file
|
76 |
+
gene_data = get_genetic_data(matrix_file)
|
77 |
+
|
78 |
+
# Print first 20 row IDs and shape of data to help debug
|
79 |
+
print("Shape of gene expression data:", gene_data.shape)
|
80 |
+
print("\nFirst few rows of data:")
|
81 |
+
print(gene_data.head())
|
82 |
+
print("\nFirst 20 gene/probe identifiers:")
|
83 |
+
print(gene_data.index[:20])
|
84 |
+
|
85 |
+
# Inspect a snippet of raw file to verify identifier format
|
86 |
+
import gzip
|
87 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
88 |
+
lines = []
|
89 |
+
for i, line in enumerate(f):
|
90 |
+
if "!series_matrix_table_begin" in line:
|
91 |
+
# Get the next 5 lines after the marker
|
92 |
+
for _ in range(5):
|
93 |
+
lines.append(next(f).strip())
|
94 |
+
break
|
95 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
96 |
+
for line in lines:
|
97 |
+
print(line)
|
98 |
+
# Review gene identifiers
|
99 |
+
# The identifiers like "1007_s_at", "1053_at" are Affymetrix probe IDs from microarray data
|
100 |
+
# These need to be mapped to official gene symbols before analysis
|
101 |
+
requires_gene_mapping = True
|
102 |
+
# Get file paths using library function
|
103 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
104 |
+
|
105 |
+
# Extract gene annotation from SOFT file and get meaningful data
|
106 |
+
gene_annotation = get_gene_annotation(soft_file)
|
107 |
+
|
108 |
+
# Preview gene annotation data
|
109 |
+
print("Gene annotation shape:", gene_annotation.shape)
|
110 |
+
print("\nGene annotation preview:")
|
111 |
+
print(preview_df(gene_annotation))
|
112 |
+
|
113 |
+
print("\nNumber of non-null values in each column:")
|
114 |
+
print(gene_annotation.count())
|
115 |
+
|
116 |
+
# Print example rows showing the mapping information columns
|
117 |
+
print("\nSample mapping columns ('ID' and 'Gene Symbol'):")
|
118 |
+
print(gene_annotation[['ID', 'Gene Symbol']].head().to_string())
|
119 |
+
|
120 |
+
print("\nNote: Gene mapping will use:")
|
121 |
+
print("'ID' column: Probe identifiers")
|
122 |
+
print("'Gene Symbol' column: Contains gene symbol information")
|
123 |
+
# Get gene mapping from annotation data
|
124 |
+
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
|
125 |
+
|
126 |
+
# Apply mapping to convert probe data to gene data
|
127 |
+
gene_data = apply_gene_mapping(gene_data, mapping_data)
|
128 |
+
|
129 |
+
# Print info about the mapped gene data
|
130 |
+
print("Gene expression data shape after mapping:", gene_data.shape)
|
131 |
+
print("\nFirst few rows of mapped gene data:")
|
132 |
+
print(gene_data.head())
|
133 |
+
print("\nFirst few gene symbols:")
|
134 |
+
print(gene_data.index[:10])
|
135 |
+
# 1. Normalize gene symbols
|
136 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
137 |
+
|
138 |
+
# Save normalized gene data
|
139 |
+
gene_data.to_csv(out_gene_data_file)
|
140 |
+
|
141 |
+
# 2. Link clinical and genetic data
|
142 |
+
try:
|
143 |
+
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
|
144 |
+
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
|
145 |
+
|
146 |
+
# 3. Handle missing values
|
147 |
+
linked_data = handle_missing_values(linked_data, trait)
|
148 |
+
|
149 |
+
# 4. Determine if features are biased
|
150 |
+
is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
151 |
+
|
152 |
+
# 5. Validate and save cohort info
|
153 |
+
is_usable = validate_and_save_cohort_info(
|
154 |
+
is_final=True,
|
155 |
+
cohort=cohort,
|
156 |
+
info_path=json_path,
|
157 |
+
is_gene_available=True,
|
158 |
+
is_trait_available=True,
|
159 |
+
is_biased=is_trait_biased,
|
160 |
+
df=linked_data,
|
161 |
+
note="Gene expression data successfully mapped and linked with clinical features"
|
162 |
+
)
|
163 |
+
|
164 |
+
# 6. Save linked data if usable
|
165 |
+
if is_usable:
|
166 |
+
linked_data.to_csv(out_data_file)
|
167 |
+
|
168 |
+
except Exception as e:
|
169 |
+
print(f"Error in data linking and processing: {str(e)}")
|
170 |
+
is_usable = validate_and_save_cohort_info(
|
171 |
+
is_final=True,
|
172 |
+
cohort=cohort,
|
173 |
+
info_path=json_path,
|
174 |
+
is_gene_available=True,
|
175 |
+
is_trait_available=True,
|
176 |
+
is_biased=True,
|
177 |
+
df=pd.DataFrame(),
|
178 |
+
note=f"Data processing failed: {str(e)}"
|
179 |
+
)
|
p3/preprocess/Adrenocortical_Cancer/code/GSE143383.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Adrenocortical_Cancer"
|
6 |
+
cohort = "GSE143383"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Adrenocortical_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Adrenocortical_Cancer/GSE143383"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Adrenocortical_Cancer/GSE143383.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Adrenocortical_Cancer/gene_data/GSE143383.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Adrenocortical_Cancer/clinical_data/GSE143383.csv"
|
16 |
+
json_path = "./output/preprocess/3/Adrenocortical_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Yes, it uses Affymetrix PrimeView platform for gene expression profiling
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2.1 Data Availability
|
41 |
+
# For trait - all samples are adrenocortical tumor samples per study design
|
42 |
+
trait_row = 0
|
43 |
+
|
44 |
+
# For gender - present in key 0
|
45 |
+
gender_row = 0
|
46 |
+
|
47 |
+
# For age - not available
|
48 |
+
age_row = None
|
49 |
+
|
50 |
+
# 2.2 Data Type Conversion Functions
|
51 |
+
def convert_trait(x):
|
52 |
+
# All samples are tumor samples
|
53 |
+
return 1
|
54 |
+
|
55 |
+
def convert_gender(x):
|
56 |
+
if not isinstance(x, str):
|
57 |
+
return None
|
58 |
+
x = x.lower().split(': ')[1] if ': ' in x else x.lower()
|
59 |
+
if x == 'm' or x == 'male':
|
60 |
+
return 1
|
61 |
+
elif x == 'f' or x == 'female':
|
62 |
+
return 0
|
63 |
+
return None
|
64 |
+
|
65 |
+
def convert_age(x):
|
66 |
+
# Not needed as age data is not available
|
67 |
+
return None
|
68 |
+
|
69 |
+
# 3. Save Metadata
|
70 |
+
is_trait_available = (trait_row is not None)
|
71 |
+
|
72 |
+
# Initial validation and save metadata
|
73 |
+
is_usable = validate_and_save_cohort_info(
|
74 |
+
is_final=False,
|
75 |
+
cohort=cohort,
|
76 |
+
info_path=json_path,
|
77 |
+
is_gene_available=is_gene_available,
|
78 |
+
is_trait_available=is_trait_available
|
79 |
+
)
|
80 |
+
|
81 |
+
# 4. Extract Clinical Features
|
82 |
+
if trait_row is not None:
|
83 |
+
clinical_features = geo_select_clinical_features(
|
84 |
+
clinical_df=clinical_data,
|
85 |
+
trait=trait,
|
86 |
+
trait_row=trait_row,
|
87 |
+
convert_trait=convert_trait,
|
88 |
+
age_row=age_row,
|
89 |
+
convert_age=convert_age,
|
90 |
+
gender_row=gender_row,
|
91 |
+
convert_gender=convert_gender
|
92 |
+
)
|
93 |
+
|
94 |
+
# Preview the extracted features
|
95 |
+
print("Preview of clinical features:")
|
96 |
+
print(preview_df(clinical_features))
|
97 |
+
|
98 |
+
# Save clinical data
|
99 |
+
clinical_features.to_csv(out_clinical_data_file)
|
100 |
+
# Extract gene expression data from matrix file
|
101 |
+
gene_data = get_genetic_data(matrix_file)
|
102 |
+
|
103 |
+
# Print first 20 row IDs and shape of data to help debug
|
104 |
+
print("Shape of gene expression data:", gene_data.shape)
|
105 |
+
print("\nFirst few rows of data:")
|
106 |
+
print(gene_data.head())
|
107 |
+
print("\nFirst 20 gene/probe identifiers:")
|
108 |
+
print(gene_data.index[:20])
|
109 |
+
|
110 |
+
# Inspect a snippet of raw file to verify identifier format
|
111 |
+
import gzip
|
112 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
113 |
+
lines = []
|
114 |
+
for i, line in enumerate(f):
|
115 |
+
if "!series_matrix_table_begin" in line:
|
116 |
+
# Get the next 5 lines after the marker
|
117 |
+
for _ in range(5):
|
118 |
+
lines.append(next(f).strip())
|
119 |
+
break
|
120 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
121 |
+
for line in lines:
|
122 |
+
print(line)
|
123 |
+
# Looking at the ID format (e.g., "11715100_at", "11715101_s_at"), these are Affymetrix probe IDs
|
124 |
+
# from a microarray platform, not standard human gene symbols.
|
125 |
+
# They need to be mapped to HGNC gene symbols for standardization across studies.
|
126 |
+
requires_gene_mapping = True
|
127 |
+
# Get file paths using library function
|
128 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
129 |
+
|
130 |
+
# Extract gene annotation from SOFT file and get meaningful data
|
131 |
+
gene_annotation = get_gene_annotation(soft_file)
|
132 |
+
|
133 |
+
# Preview gene annotation data
|
134 |
+
print("Gene annotation shape:", gene_annotation.shape)
|
135 |
+
print("\nGene annotation preview:")
|
136 |
+
print(preview_df(gene_annotation))
|
137 |
+
|
138 |
+
print("\nNumber of non-null values in each column:")
|
139 |
+
print(gene_annotation.count())
|
140 |
+
|
141 |
+
# Print example rows showing the mapping information columns
|
142 |
+
print("\nSample mapping columns ('ID' and 'Gene Symbol'):")
|
143 |
+
print(gene_annotation[['ID', 'Gene Symbol']].head().to_string())
|
144 |
+
|
145 |
+
print("\nNote: Gene mapping will use:")
|
146 |
+
print("'ID' column: Probe identifiers")
|
147 |
+
print("'Gene Symbol' column: Contains gene symbol information")
|
148 |
+
# Get mapping between probe IDs and gene symbols
|
149 |
+
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
|
150 |
+
|
151 |
+
# Apply gene mapping to convert probe-level data to gene-level data
|
152 |
+
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_data)
|
153 |
+
|
154 |
+
# Save genetic data
|
155 |
+
gene_data.to_csv(out_gene_data_file)
|
156 |
+
|
157 |
+
# Print gene data shape and preview
|
158 |
+
print("\nGene expression data shape after mapping:", gene_data.shape)
|
159 |
+
print("\nPreview of gene expression data:")
|
160 |
+
print(preview_df(gene_data))
|
161 |
+
# 1. Normalize gene symbols
|
162 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
163 |
+
|
164 |
+
# Save normalized gene data
|
165 |
+
gene_data.to_csv(out_gene_data_file)
|
166 |
+
|
167 |
+
# 2. Link clinical and genetic data
|
168 |
+
try:
|
169 |
+
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
|
170 |
+
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
|
171 |
+
|
172 |
+
# 3. Handle missing values
|
173 |
+
linked_data = handle_missing_values(linked_data, trait)
|
174 |
+
|
175 |
+
# 4. Determine if features are biased
|
176 |
+
is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
177 |
+
|
178 |
+
# 5. Validate and save cohort info
|
179 |
+
is_usable = validate_and_save_cohort_info(
|
180 |
+
is_final=True,
|
181 |
+
cohort=cohort,
|
182 |
+
info_path=json_path,
|
183 |
+
is_gene_available=True,
|
184 |
+
is_trait_available=True,
|
185 |
+
is_biased=is_trait_biased,
|
186 |
+
df=linked_data,
|
187 |
+
note="Gene expression data successfully mapped and linked with clinical features"
|
188 |
+
)
|
189 |
+
|
190 |
+
# 6. Save linked data if usable
|
191 |
+
if is_usable:
|
192 |
+
linked_data.to_csv(out_data_file)
|
193 |
+
|
194 |
+
except Exception as e:
|
195 |
+
print(f"Error in data linking and processing: {str(e)}")
|
196 |
+
is_usable = validate_and_save_cohort_info(
|
197 |
+
is_final=True,
|
198 |
+
cohort=cohort,
|
199 |
+
info_path=json_path,
|
200 |
+
is_gene_available=True,
|
201 |
+
is_trait_available=True,
|
202 |
+
is_biased=True,
|
203 |
+
df=pd.DataFrame(),
|
204 |
+
note=f"Data processing failed: {str(e)}"
|
205 |
+
)
|
p3/preprocess/Adrenocortical_Cancer/code/GSE19776.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Adrenocortical_Cancer"
|
6 |
+
cohort = "GSE19776"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Adrenocortical_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Adrenocortical_Cancer/GSE19776"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Adrenocortical_Cancer/GSE19776.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Adrenocortical_Cancer/gene_data/GSE19776.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Adrenocortical_Cancer/clinical_data/GSE19776.csv"
|
16 |
+
json_path = "./output/preprocess/3/Adrenocortical_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Based on series title and extensive disease/tumor grade info, this appears to be a gene expression study
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2.1 Data Availability
|
41 |
+
# Trait (cancer stage) available in Feature 1 - extent of disease
|
42 |
+
trait_row = 1
|
43 |
+
|
44 |
+
# Age available in Feature 5
|
45 |
+
age_row = 5
|
46 |
+
|
47 |
+
# Gender available in Feature 4
|
48 |
+
gender_row = 4
|
49 |
+
|
50 |
+
# 2.2 Data Type Conversion Functions
|
51 |
+
def convert_trait(val: str) -> int:
|
52 |
+
"""Convert extent of disease to binary (0=localized, 1=advanced)"""
|
53 |
+
if not val or 'Unknown' in val:
|
54 |
+
return None
|
55 |
+
val = val.split(': ')[1].strip()
|
56 |
+
if val == 'Localized':
|
57 |
+
return 0
|
58 |
+
elif val in ['Regional', 'Metastatic']:
|
59 |
+
return 1
|
60 |
+
return None
|
61 |
+
|
62 |
+
def convert_age(val: str) -> float:
|
63 |
+
"""Convert age to float"""
|
64 |
+
if not val or 'Unknown' in val:
|
65 |
+
return None
|
66 |
+
try:
|
67 |
+
return float(val.split(': ')[1])
|
68 |
+
except:
|
69 |
+
return None
|
70 |
+
|
71 |
+
def convert_gender(val: str) -> int:
|
72 |
+
"""Convert gender to binary (0=F, 1=M)"""
|
73 |
+
if not val:
|
74 |
+
return None
|
75 |
+
val = val.split(': ')[1].strip()
|
76 |
+
if val == 'F':
|
77 |
+
return 0
|
78 |
+
elif val == 'M':
|
79 |
+
return 1
|
80 |
+
return None
|
81 |
+
|
82 |
+
# 3. Save Metadata
|
83 |
+
validate_and_save_cohort_info(
|
84 |
+
is_final=False,
|
85 |
+
cohort=cohort,
|
86 |
+
info_path=json_path,
|
87 |
+
is_gene_available=is_gene_available,
|
88 |
+
is_trait_available=trait_row is not None
|
89 |
+
)
|
90 |
+
|
91 |
+
# 4. Extract Clinical Features
|
92 |
+
selected_clinical = geo_select_clinical_features(
|
93 |
+
clinical_df=clinical_data,
|
94 |
+
trait=trait,
|
95 |
+
trait_row=trait_row,
|
96 |
+
convert_trait=convert_trait,
|
97 |
+
age_row=age_row,
|
98 |
+
convert_age=convert_age,
|
99 |
+
gender_row=gender_row,
|
100 |
+
convert_gender=convert_gender
|
101 |
+
)
|
102 |
+
|
103 |
+
print("Preview of selected clinical features:")
|
104 |
+
print(preview_df(selected_clinical))
|
105 |
+
|
106 |
+
# Save clinical data
|
107 |
+
selected_clinical.to_csv(out_clinical_data_file)
|
108 |
+
# Extract gene expression data from matrix file
|
109 |
+
gene_data = get_genetic_data(matrix_file)
|
110 |
+
|
111 |
+
# Print first 20 row IDs and shape of data to help debug
|
112 |
+
print("Shape of gene expression data:", gene_data.shape)
|
113 |
+
print("\nFirst few rows of data:")
|
114 |
+
print(gene_data.head())
|
115 |
+
print("\nFirst 20 gene/probe identifiers:")
|
116 |
+
print(gene_data.index[:20])
|
117 |
+
|
118 |
+
# Inspect a snippet of raw file to verify identifier format
|
119 |
+
import gzip
|
120 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
121 |
+
lines = []
|
122 |
+
for i, line in enumerate(f):
|
123 |
+
if "!series_matrix_table_begin" in line:
|
124 |
+
# Get the next 5 lines after the marker
|
125 |
+
for _ in range(5):
|
126 |
+
lines.append(next(f).strip())
|
127 |
+
break
|
128 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
129 |
+
for line in lines:
|
130 |
+
print(line)
|
131 |
+
# Looking at the data, we see numeric IDs (3,4,5,8,9 etc) being used as identifiers
|
132 |
+
# These are not standard human gene symbols, which are typically alphanumeric (e.g. TP53, BRCA1)
|
133 |
+
# Therefore mapping will be required to convert these IDs to gene symbols
|
134 |
+
|
135 |
+
requires_gene_mapping = True
|
136 |
+
# Get file paths using library function
|
137 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
138 |
+
|
139 |
+
# Extract gene annotation from SOFT file and get meaningful data
|
140 |
+
gene_annotation = get_gene_annotation(soft_file)
|
141 |
+
|
142 |
+
# Preview gene annotation data
|
143 |
+
print("Gene annotation shape:", gene_annotation.shape)
|
144 |
+
print("\nGene annotation preview:")
|
145 |
+
print(preview_df(gene_annotation))
|
146 |
+
|
147 |
+
print("\nNumber of non-null values in each column:")
|
148 |
+
print(gene_annotation.count())
|
149 |
+
|
150 |
+
# Print example rows showing the mapping information columns
|
151 |
+
print("\nSample mapping columns ('ID' and 'Gene Symbol'):")
|
152 |
+
print(gene_annotation[['ID', 'Gene Symbol']].head().to_string())
|
153 |
+
|
154 |
+
print("\nNote: Gene mapping will use:")
|
155 |
+
print("'ID' column: Probe identifiers")
|
156 |
+
print("'Gene Symbol' column: Contains gene symbol information")
|
157 |
+
# Get probe-to-gene mapping from annotation data
|
158 |
+
mapping_df = gene_annotation[['ID', 'Gene Symbol']].copy()
|
159 |
+
mapping_df = mapping_df.rename(columns={'Gene Symbol': 'Gene'})
|
160 |
+
|
161 |
+
# Convert IDs to string type and remove any leading/trailing whitespace
|
162 |
+
mapping_df['ID'] = mapping_df['ID'].astype(str).str.strip()
|
163 |
+
gene_data.index = gene_data.index.str.strip()
|
164 |
+
|
165 |
+
# Filter annotation data to match numeric probe IDs only
|
166 |
+
mapping_df = mapping_df[mapping_df['ID'].str.match(r'^\d+$')]
|
167 |
+
|
168 |
+
# Apply mapping to convert probe-level data to gene expression data
|
169 |
+
# Note: Each probe's expression will be divided among its target genes, then summed per gene
|
170 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
171 |
+
|
172 |
+
# Normalize gene symbols before saving
|
173 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
174 |
+
|
175 |
+
print("Shape after mapping probes to genes:", gene_data.shape)
|
176 |
+
print("\nFirst few rows of gene expression data:")
|
177 |
+
print(gene_data.head())
|
178 |
+
|
179 |
+
# Save gene expression data
|
180 |
+
gene_data.to_csv(out_gene_data_file)
|
181 |
+
# Skip data linking since gene mapping failed
|
182 |
+
linked_data = pd.DataFrame() # Empty dataframe since no valid gene data
|
183 |
+
|
184 |
+
# Validate and save cohort info indicating the data is not usable
|
185 |
+
is_usable = validate_and_save_cohort_info(
|
186 |
+
is_final=True,
|
187 |
+
cohort=cohort,
|
188 |
+
info_path=json_path,
|
189 |
+
is_gene_available=False, # Set to False since gene mapping failed
|
190 |
+
is_trait_available=True, # Clinical data was successfully extracted
|
191 |
+
is_biased=True, # No valid data to analyze
|
192 |
+
df=linked_data,
|
193 |
+
note="Gene mapping failed - numeric probe IDs in expression data did not match Affymetrix IDs in annotation"
|
194 |
+
)
|
p3/preprocess/Adrenocortical_Cancer/code/GSE49278.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Adrenocortical_Cancer"
|
6 |
+
cohort = "GSE49278"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Adrenocortical_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Adrenocortical_Cancer/GSE49278"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Adrenocortical_Cancer/GSE49278.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Adrenocortical_Cancer/gene_data/GSE49278.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Adrenocortical_Cancer/clinical_data/GSE49278.csv"
|
16 |
+
json_path = "./output/preprocess/3/Adrenocortical_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Yes - Affymetrix Human Gene 2.0 ST Array data mentioned in background info
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2. Variable Availability and Row Identification
|
41 |
+
trait_row = 2 # Cell type row contains ACC info
|
42 |
+
age_row = 0 # Age data available
|
43 |
+
gender_row = 1 # Gender data available
|
44 |
+
|
45 |
+
# 2.2 Data Type Conversion Functions
|
46 |
+
def convert_trait(value: str) -> int:
|
47 |
+
"""Convert cell type to binary where ACC=1"""
|
48 |
+
if pd.isna(value):
|
49 |
+
return None
|
50 |
+
value = value.split(': ')[-1].strip().lower()
|
51 |
+
if 'adrenocortical carcinoma' in value:
|
52 |
+
return 1
|
53 |
+
return None
|
54 |
+
|
55 |
+
def convert_age(value: str) -> float:
|
56 |
+
"""Convert age to continuous numeric value"""
|
57 |
+
if pd.isna(value):
|
58 |
+
return None
|
59 |
+
value = value.split(': ')[-1].strip()
|
60 |
+
try:
|
61 |
+
return float(value)
|
62 |
+
except:
|
63 |
+
return None
|
64 |
+
|
65 |
+
def convert_gender(value: str) -> int:
|
66 |
+
"""Convert gender to binary where F=0, M=1"""
|
67 |
+
if pd.isna(value):
|
68 |
+
return None
|
69 |
+
value = value.split(': ')[-1].strip().upper()
|
70 |
+
if value == 'F':
|
71 |
+
return 0
|
72 |
+
elif value == 'M':
|
73 |
+
return 1
|
74 |
+
return None
|
75 |
+
|
76 |
+
# 3. Save initial metadata
|
77 |
+
is_trait_available = trait_row is not None
|
78 |
+
_ = validate_and_save_cohort_info(is_final=False,
|
79 |
+
cohort=cohort,
|
80 |
+
info_path=json_path,
|
81 |
+
is_gene_available=is_gene_available,
|
82 |
+
is_trait_available=is_trait_available)
|
83 |
+
|
84 |
+
# 4. Extract clinical features
|
85 |
+
if trait_row is not None:
|
86 |
+
clinical_features = geo_select_clinical_features(
|
87 |
+
clinical_data,
|
88 |
+
trait=trait,
|
89 |
+
trait_row=trait_row,
|
90 |
+
convert_trait=convert_trait,
|
91 |
+
age_row=age_row,
|
92 |
+
convert_age=convert_age,
|
93 |
+
gender_row=gender_row,
|
94 |
+
convert_gender=convert_gender
|
95 |
+
)
|
96 |
+
|
97 |
+
# Preview the extracted features
|
98 |
+
print("Preview of extracted clinical features:")
|
99 |
+
print(preview_df(clinical_features))
|
100 |
+
|
101 |
+
# Save to CSV
|
102 |
+
clinical_features.to_csv(out_clinical_data_file)
|
103 |
+
# Extract gene expression data from matrix file
|
104 |
+
gene_data = get_genetic_data(matrix_file)
|
105 |
+
|
106 |
+
# Print first 20 row IDs and shape of data to help debug
|
107 |
+
print("Shape of gene expression data:", gene_data.shape)
|
108 |
+
print("\nFirst few rows of data:")
|
109 |
+
print(gene_data.head())
|
110 |
+
print("\nFirst 20 gene/probe identifiers:")
|
111 |
+
print(gene_data.index[:20])
|
112 |
+
|
113 |
+
# Inspect a snippet of raw file to verify identifier format
|
114 |
+
import gzip
|
115 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
116 |
+
lines = []
|
117 |
+
for i, line in enumerate(f):
|
118 |
+
if "!series_matrix_table_begin" in line:
|
119 |
+
# Get the next 5 lines after the marker
|
120 |
+
for _ in range(5):
|
121 |
+
lines.append(next(f).strip())
|
122 |
+
break
|
123 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
124 |
+
for line in lines:
|
125 |
+
print(line)
|
126 |
+
# The identifiers appear to be numeric probe IDs (16650001, etc)
|
127 |
+
# which are not human gene symbols and will need to be mapped
|
128 |
+
requires_gene_mapping = True
|
129 |
+
# Get file paths using library function
|
130 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
131 |
+
|
132 |
+
# First inspect the SOFT file contents to understand the annotation format
|
133 |
+
import gzip
|
134 |
+
print("Inspecting SOFT file for gene mapping information:")
|
135 |
+
pattern = None
|
136 |
+
with gzip.open(soft_file, 'rt') as f:
|
137 |
+
for i, line in enumerate(f):
|
138 |
+
if i < 100: # Check first 100 lines
|
139 |
+
if "gene_assignment" in line or "gene_symbol" in line:
|
140 |
+
print(f"\nFound gene mapping pattern in line: {line.strip()}")
|
141 |
+
pattern = line
|
142 |
+
elif "transcript_id" in line or "mrna_assignment" in line:
|
143 |
+
print(f"\nFound alternative mapping pattern in line: {line.strip()}")
|
144 |
+
pattern = line
|
145 |
+
else:
|
146 |
+
break
|
147 |
+
|
148 |
+
# Based on file inspection, extract gene annotation with appropriate prefixes
|
149 |
+
gene_annotation = get_gene_annotation(soft_file, prefixes=['#', '!platform_table_begin', '!platform_table_end'])
|
150 |
+
|
151 |
+
# Preview gene annotation data structure
|
152 |
+
print("\nGene annotation shape:", gene_annotation.shape)
|
153 |
+
print("\nAvailable columns:")
|
154 |
+
print(gene_annotation.columns.tolist())
|
155 |
+
|
156 |
+
# Display a few rows of relevant mapping columns
|
157 |
+
mapping_cols = [col for col in gene_annotation.columns if 'gene' in col.lower()
|
158 |
+
or 'symbol' in col.lower()
|
159 |
+
or 'transcript' in col.lower()
|
160 |
+
or col == 'ID']
|
161 |
+
if mapping_cols:
|
162 |
+
print("\nPreview of mapping-related columns:")
|
163 |
+
print(gene_annotation[mapping_cols].head())
|
164 |
+
else:
|
165 |
+
print("\nNo obvious gene mapping columns found. Displaying first row:")
|
166 |
+
print(gene_annotation.iloc[0])
|
p3/preprocess/Adrenocortical_Cancer/code/GSE67766.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Adrenocortical_Cancer"
|
6 |
+
cohort = "GSE67766"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Adrenocortical_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Adrenocortical_Cancer/GSE67766"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Adrenocortical_Cancer/GSE67766.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Adrenocortical_Cancer/gene_data/GSE67766.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Adrenocortical_Cancer/clinical_data/GSE67766.csv"
|
16 |
+
json_path = "./output/preprocess/3/Adrenocortical_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# First extract background info and subseries info
|
22 |
+
background_info, _ = get_background_and_clinical_data(matrix_file,
|
23 |
+
prefixes_a=['!Series_title', '!Series_summary',
|
24 |
+
'!Series_overall_design', '!Series_type',
|
25 |
+
'!Series_relation'],
|
26 |
+
prefixes_b=None)
|
27 |
+
|
28 |
+
print("Initial Dataset Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nChecking for subseries...\n")
|
31 |
+
|
32 |
+
# If SuperSeries, get the constituent series accession
|
33 |
+
subseries = None
|
34 |
+
if 'SuperSeries' in background_info:
|
35 |
+
for line in background_info.split('\n'):
|
36 |
+
if '!Series_relation\t' in line:
|
37 |
+
matches = re.finditer(r'GSE\d+', line)
|
38 |
+
for match in matches:
|
39 |
+
potential_subseries = match.group(0)
|
40 |
+
if potential_subseries != cohort: # Skip if it's the SuperSeries ID
|
41 |
+
subseries_dir = os.path.join(in_trait_dir, potential_subseries)
|
42 |
+
if os.path.exists(subseries_dir):
|
43 |
+
print(f"Found valid subseries: {potential_subseries}")
|
44 |
+
subseries = potential_subseries
|
45 |
+
break
|
46 |
+
|
47 |
+
# If subseries found, update directory path and get new files
|
48 |
+
if subseries:
|
49 |
+
in_cohort_dir = os.path.join(in_trait_dir, subseries)
|
50 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
51 |
+
print(f"\nUsing subseries data from: {in_cohort_dir}\n")
|
52 |
+
else:
|
53 |
+
print("\nNo valid subseries found, using original data\n")
|
54 |
+
|
55 |
+
# Extract background info and clinical data from final files
|
56 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
57 |
+
|
58 |
+
# Get unique values per clinical feature
|
59 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
60 |
+
|
61 |
+
# Print final dataset information
|
62 |
+
print("Final Dataset Information:")
|
63 |
+
print(f"{background_info}\n")
|
64 |
+
|
65 |
+
print("Sample Characteristics:")
|
66 |
+
for feature, values in sample_characteristics.items():
|
67 |
+
print(f"Feature: {feature}")
|
68 |
+
print(f"Values: {values}\n")
|
69 |
+
# 1. Gene Expression Data Availability
|
70 |
+
# Based on !Series_type, which includes "Expression profiling by array" and "Expression profiling by high throughput sequencing"
|
71 |
+
# this dataset likely contains gene expression data
|
72 |
+
is_gene_available = True
|
73 |
+
|
74 |
+
# 2.1 Data Availability
|
75 |
+
# Looking at sample characteristics:
|
76 |
+
# Row 0 shows "cell line: SW-13" - this indicates cell line data, not clinical samples
|
77 |
+
# No rows for trait, age or gender found
|
78 |
+
trait_row = None
|
79 |
+
age_row = None
|
80 |
+
gender_row = None
|
81 |
+
|
82 |
+
# 2.2 Data Type Conversion Functions
|
83 |
+
# Although not used since data is unavailable, define placeholder functions
|
84 |
+
def convert_trait(x):
|
85 |
+
if x is None or pd.isna(x):
|
86 |
+
return None
|
87 |
+
value = str(x).split(':')[-1].strip()
|
88 |
+
# Binary conversion would go here
|
89 |
+
return None
|
90 |
+
|
91 |
+
def convert_age(x):
|
92 |
+
if x is None or pd.isna(x):
|
93 |
+
return None
|
94 |
+
value = str(x).split(':')[-1].strip()
|
95 |
+
# Numeric conversion would go here
|
96 |
+
return None
|
97 |
+
|
98 |
+
def convert_gender(x):
|
99 |
+
if x is None or pd.isna(x):
|
100 |
+
return None
|
101 |
+
value = str(x).split(':')[-1].strip().lower()
|
102 |
+
# Gender binary conversion would go here
|
103 |
+
return None
|
104 |
+
|
105 |
+
# 3. Save Metadata
|
106 |
+
# trait_row is None so is_trait_available is False
|
107 |
+
validate_and_save_cohort_info(is_final=False,
|
108 |
+
cohort=cohort,
|
109 |
+
info_path=json_path,
|
110 |
+
is_gene_available=is_gene_available,
|
111 |
+
is_trait_available=False)
|
112 |
+
|
113 |
+
# 4. Clinical Feature Extraction
|
114 |
+
# Skip since trait_row is None
|
115 |
+
# Extract gene expression data from matrix file
|
116 |
+
gene_data = get_genetic_data(matrix_file)
|
117 |
+
|
118 |
+
# Print first 20 row IDs and shape of data to help debug
|
119 |
+
print("Shape of gene expression data:", gene_data.shape)
|
120 |
+
print("\nFirst few rows of data:")
|
121 |
+
print(gene_data.head())
|
122 |
+
print("\nFirst 20 gene/probe identifiers:")
|
123 |
+
print(gene_data.index[:20])
|
124 |
+
|
125 |
+
# Inspect a snippet of raw file to verify identifier format
|
126 |
+
import gzip
|
127 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
128 |
+
lines = []
|
129 |
+
for i, line in enumerate(f):
|
130 |
+
if "!series_matrix_table_begin" in line:
|
131 |
+
# Get the next 5 lines after the marker
|
132 |
+
for _ in range(5):
|
133 |
+
lines.append(next(f).strip())
|
134 |
+
break
|
135 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
136 |
+
for line in lines:
|
137 |
+
print(line)
|
138 |
+
# Looking at the identifiers starting with "ILMN_", these are Illumina probe IDs
|
139 |
+
# They need to be mapped to official gene symbols to be interpretable in analysis
|
140 |
+
requires_gene_mapping = True
|
141 |
+
# Get file paths using library function
|
142 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
143 |
+
|
144 |
+
# Extract gene annotation from SOFT file and get meaningful data
|
145 |
+
gene_annotation = get_gene_annotation(soft_file)
|
146 |
+
|
147 |
+
# Preview gene annotation data
|
148 |
+
print("Gene annotation shape:", gene_annotation.shape)
|
149 |
+
print("\nGene annotation preview:")
|
150 |
+
print(preview_df(gene_annotation))
|
151 |
+
|
152 |
+
print("\nNumber of non-null values in each column:")
|
153 |
+
print(gene_annotation.count())
|
154 |
+
|
155 |
+
# Print example rows showing the mapping information columns
|
156 |
+
print("\nSample mapping columns ('ID' and 'Symbol'):")
|
157 |
+
print("\nFirst 5 rows:")
|
158 |
+
print(gene_annotation[['ID', 'Symbol']].head().to_string())
|
159 |
+
|
160 |
+
print("\nNote: Gene mapping will use:")
|
161 |
+
print("'ID' column: Probe identifiers")
|
162 |
+
print("'Symbol' column: Contains gene symbol information")
|
163 |
+
# 1. Based on previous output:
|
164 |
+
# Gene expression data uses 'ILMN_*' identifiers as index
|
165 |
+
# Gene annotation data has matching IDs in 'ID' column and gene symbols in 'Symbol' column
|
166 |
+
|
167 |
+
# 2. Extract mapping between probe IDs and gene symbols
|
168 |
+
mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
|
169 |
+
|
170 |
+
# 3. Apply gene mapping to convert probe-level measurements to gene expression
|
171 |
+
gene_data = apply_gene_mapping(gene_data, mapping)
|
172 |
+
|
173 |
+
# Print info about the mapping results
|
174 |
+
print("Shape of probe-level data:", gene_data.shape)
|
175 |
+
print("\nShape after mapping to genes:", gene_data.shape)
|
176 |
+
print("\nFirst few rows of gene expression data:")
|
177 |
+
print(gene_data.head())
|
178 |
+
print("\nFirst few gene symbols:")
|
179 |
+
print(gene_data.index[:10])
|
180 |
+
# 1. Normalize and save gene expression data
|
181 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
182 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
183 |
+
gene_data.to_csv(out_gene_data_file)
|
184 |
+
|
185 |
+
# 2-4. Skip clinical data linking and bias checking since no clinical data exists
|
186 |
+
|
187 |
+
# 5. Update cohort info to reflect dataset is not usable due to lack of trait data
|
188 |
+
validate_and_save_cohort_info(
|
189 |
+
is_final=True,
|
190 |
+
cohort=cohort,
|
191 |
+
info_path=json_path,
|
192 |
+
is_gene_available=True,
|
193 |
+
is_trait_available=False,
|
194 |
+
is_biased=True, # Cell line data is considered biased for human trait analysis
|
195 |
+
df=gene_data, # Provide gene expression data
|
196 |
+
note="Dataset contains only cell line data (SW-13) without clinical information"
|
197 |
+
)
|
198 |
+
|
199 |
+
# 6. Skip saving linked data since dataset is not usable for trait analysis
|
p3/preprocess/Adrenocortical_Cancer/code/GSE75415.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Adrenocortical_Cancer"
|
6 |
+
cohort = "GSE75415"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Adrenocortical_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Adrenocortical_Cancer/GSE75415"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Adrenocortical_Cancer/GSE75415.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Adrenocortical_Cancer/gene_data/GSE75415.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Adrenocortical_Cancer/clinical_data/GSE75415.csv"
|
16 |
+
json_path = "./output/preprocess/3/Adrenocortical_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene expression data availability - "Gene expression profiling" in title suggests gene data
|
37 |
+
is_gene_available = True
|
38 |
+
|
39 |
+
# 2.1. Identify feature rows from sample characteristics
|
40 |
+
trait_row = 1 # "histologic type" indicates tumor/normal status
|
41 |
+
age_row = None # Age not available in sample characteristics
|
42 |
+
gender_row = 0 # Gender data available
|
43 |
+
|
44 |
+
# 2.2. Data type conversion functions
|
45 |
+
def convert_trait(val: str) -> int:
|
46 |
+
"""Convert histologic type to binary: 1 for tumor (carcinoma/adenoma), 0 for normal"""
|
47 |
+
if not val or 'unknown' in val.lower():
|
48 |
+
return None
|
49 |
+
val = val.lower().split(': ')[-1]
|
50 |
+
if 'normal' in val:
|
51 |
+
return 0
|
52 |
+
elif 'carcinoma' in val or 'adenoma' in val:
|
53 |
+
return 1
|
54 |
+
return None
|
55 |
+
|
56 |
+
def convert_gender(val: str) -> int:
|
57 |
+
"""Convert gender to binary: 0 for female, 1 for male"""
|
58 |
+
if not val or 'unknown' in val.lower():
|
59 |
+
return None
|
60 |
+
val = val.lower().split(': ')[-1]
|
61 |
+
if 'female' in val:
|
62 |
+
return 0
|
63 |
+
elif 'male' in val:
|
64 |
+
return 1
|
65 |
+
return None
|
66 |
+
|
67 |
+
# 3. Save metadata about data availability
|
68 |
+
validate_and_save_cohort_info(is_final=False,
|
69 |
+
cohort=cohort,
|
70 |
+
info_path=json_path,
|
71 |
+
is_gene_available=is_gene_available,
|
72 |
+
is_trait_available=trait_row is not None)
|
73 |
+
|
74 |
+
# 4. Extract clinical features since trait_row is not None
|
75 |
+
clinical_df = geo_select_clinical_features(clinical_data,
|
76 |
+
trait=trait,
|
77 |
+
trait_row=trait_row,
|
78 |
+
convert_trait=convert_trait,
|
79 |
+
gender_row=gender_row,
|
80 |
+
convert_gender=convert_gender)
|
81 |
+
|
82 |
+
# Preview and save clinical data
|
83 |
+
print("Clinical data preview:")
|
84 |
+
print(preview_df(clinical_df))
|
85 |
+
clinical_df.to_csv(out_clinical_data_file)
|
86 |
+
# Extract gene expression data from matrix file
|
87 |
+
gene_data = get_genetic_data(matrix_file)
|
88 |
+
|
89 |
+
# Print first 20 row IDs and shape of data to help debug
|
90 |
+
print("Shape of gene expression data:", gene_data.shape)
|
91 |
+
print("\nFirst few rows of data:")
|
92 |
+
print(gene_data.head())
|
93 |
+
print("\nFirst 20 gene/probe identifiers:")
|
94 |
+
print(gene_data.index[:20])
|
95 |
+
|
96 |
+
# Inspect a snippet of raw file to verify identifier format
|
97 |
+
import gzip
|
98 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
99 |
+
lines = []
|
100 |
+
for i, line in enumerate(f):
|
101 |
+
if "!series_matrix_table_begin" in line:
|
102 |
+
# Get the next 5 lines after the marker
|
103 |
+
for _ in range(5):
|
104 |
+
lines.append(next(f).strip())
|
105 |
+
break
|
106 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
107 |
+
for line in lines:
|
108 |
+
print(line)
|
109 |
+
# Looking at the identifiers like '1007_s_at', '1053_at', etc. these appear to be
|
110 |
+
# Affymetrix probe IDs rather than standard gene symbols
|
111 |
+
# They will need to be mapped to HGNC gene symbols
|
112 |
+
requires_gene_mapping = True
|
113 |
+
# Get file paths using library function
|
114 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
115 |
+
|
116 |
+
# Extract gene annotation from SOFT file and get meaningful data
|
117 |
+
gene_annotation = get_gene_annotation(soft_file)
|
118 |
+
|
119 |
+
# Preview gene annotation data
|
120 |
+
print("Gene annotation shape:", gene_annotation.shape)
|
121 |
+
print("\nGene annotation preview:")
|
122 |
+
print(preview_df(gene_annotation))
|
123 |
+
|
124 |
+
print("\nNumber of non-null values in each column:")
|
125 |
+
print(gene_annotation.count())
|
126 |
+
|
127 |
+
# Print example rows showing the mapping information columns
|
128 |
+
print("\nSample mapping columns ('ID' and 'Gene Symbol'):")
|
129 |
+
print("\nFirst 5 rows:")
|
130 |
+
print(gene_annotation[['ID', 'Gene Symbol']].head().to_string())
|
131 |
+
|
132 |
+
print("\nNote: Gene mapping will use:")
|
133 |
+
print("'ID' column: Probe identifiers")
|
134 |
+
print("'Gene Symbol' column: Contains gene symbol information")
|
135 |
+
# Extract mapping between probe IDs and gene symbols from annotation data
|
136 |
+
mapping_data = get_gene_mapping(gene_annotation, 'ID', 'Gene Symbol')
|
137 |
+
|
138 |
+
# Convert probe-level measurements to gene expression data using the mapping
|
139 |
+
gene_data = apply_gene_mapping(gene_data, mapping_data)
|
140 |
+
|
141 |
+
# Preview the mapped gene expression data
|
142 |
+
print("Gene expression data after mapping:")
|
143 |
+
print("Shape:", gene_data.shape)
|
144 |
+
print("\nFirst few rows:")
|
145 |
+
print(gene_data.head())
|
146 |
+
# 1. Load clinical data and save normalized gene data
|
147 |
+
selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0)
|
148 |
+
gene_data.index = gene_data.index.str.replace('-mRNA', '')
|
149 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
150 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
151 |
+
gene_data.to_csv(out_gene_data_file)
|
152 |
+
|
153 |
+
# 2. Link clinical and genetic data
|
154 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)
|
155 |
+
|
156 |
+
# 3. Handle missing values
|
157 |
+
linked_data = handle_missing_values(linked_data, trait)
|
158 |
+
|
159 |
+
# 4. Check for biased features and remove them if needed
|
160 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
161 |
+
|
162 |
+
# 5. Validate and save cohort info
|
163 |
+
is_usable = validate_and_save_cohort_info(
|
164 |
+
is_final=True,
|
165 |
+
cohort=cohort,
|
166 |
+
info_path=json_path,
|
167 |
+
is_gene_available=True,
|
168 |
+
is_trait_available=True,
|
169 |
+
is_biased=is_biased,
|
170 |
+
df=linked_data,
|
171 |
+
note="Study examining gene expression changes in adipose tissue under different protein diets during energy restriction"
|
172 |
+
)
|
173 |
+
|
174 |
+
# 6. Save linked data if usable
|
175 |
+
if is_usable:
|
176 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
177 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Adrenocortical_Cancer/cohort_info.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"GSE90713": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 63, "note": "Study examining gene expression changes in adipose tissue under different protein diets during energy restriction"}, "GSE76019": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 34, "note": "Study examining gene expression changes in adipose tissue under different protein diets during energy restriction"}, "GSE75415": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": true, "sample_size": 30, "note": "Study examining gene expression changes in adipose tissue under different protein diets during energy restriction"}, "GSE68950": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Data from Sanger cell line Affymetrix gene expression project examining cancer cell lines"}, "GSE68606": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": true, "sample_size": 137, "note": "Study examining gene expression changes in adipose tissue under different protein diets during energy restriction"}, "GSE67766": {"is_usable": false, "is_gene_available": true, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Dataset contains only cell line data (SW-13) without clinical information"}, "GSE19776": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Gene mapping failed - numeric probe IDs in expression data did not match Affymetrix IDs in annotation"}, "GSE143383": {"is_usable": false, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": true, "has_age": false, "has_gender": true, "sample_size": 63, "note": "Gene expression data successfully mapped and linked with clinical features"}, "GSE108088": {"is_usable": false, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": true, "has_age": false, "has_gender": false, "sample_size": 43, "note": "Gene expression data successfully mapped and linked with clinical features"}, "TCGA": {"is_usable": false, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": true, "has_age": true, "has_gender": true, "sample_size": 79, "note": "Contains molecular data from tumor and normal samples with patient demographics."}}
|
p3/preprocess/Stomach_Cancer/gene_data/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a95276d0194fd38e5ad18bb68f1441609b7e74e6ccf13b13a02d8c6e998fa39
|
3 |
+
size 134880596
|
p3/preprocess/Type_1_Diabetes/gene_data/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1af91f3f70de4ff46a0012ce0656136fa7cb77931fc4a8b729666b6f55c84ee0
|
3 |
+
size 55211577
|
p3/preprocess/Underweight/gene_data/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1af91f3f70de4ff46a0012ce0656136fa7cb77931fc4a8b729666b6f55c84ee0
|
3 |
+
size 55211577
|