Liu-Hy commited on
Commit
f426016
·
verified ·
1 Parent(s): a3c6344

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +7 -0
  2. p1/preprocess/Adrenocortical_Cancer/gene_data/GSE68950.csv +3 -0
  3. p1/preprocess/Alopecia/GSE66664.csv +3 -0
  4. p1/preprocess/Alopecia/gene_data/GSE148346.csv +3 -0
  5. p1/preprocess/Alopecia/gene_data/GSE18876.csv +3 -0
  6. p1/preprocess/Alopecia/gene_data/GSE66664.csv +3 -0
  7. p1/preprocess/Alzheimers_Disease/GSE122063.csv +3 -0
  8. p1/preprocess/Alzheimers_Disease/gene_data/GSE137202.csv +0 -0
  9. p1/preprocess/Amyotrophic_Lateral_Sclerosis/code/GSE118336.py +230 -0
  10. p1/preprocess/Amyotrophic_Lateral_Sclerosis/code/GSE26927.py +207 -0
  11. p1/preprocess/Amyotrophic_Lateral_Sclerosis/code/GSE52937.py +141 -0
  12. p1/preprocess/Amyotrophic_Lateral_Sclerosis/code/GSE61322.py +150 -0
  13. p1/preprocess/Amyotrophic_Lateral_Sclerosis/code/GSE68608.py +157 -0
  14. p1/preprocess/Amyotrophic_Lateral_Sclerosis/code/GSE95810.py +105 -0
  15. p1/preprocess/Amyotrophic_Lateral_Sclerosis/code/TCGA.py +57 -0
  16. p1/preprocess/Amyotrophic_Lateral_Sclerosis/gene_data/GSE118336.csv +1 -0
  17. p1/preprocess/Amyotrophic_Lateral_Sclerosis/gene_data/GSE139384.csv +1 -0
  18. p1/preprocess/Amyotrophic_Lateral_Sclerosis/gene_data/GSE212134.csv +1 -0
  19. p1/preprocess/Amyotrophic_Lateral_Sclerosis/gene_data/GSE26927.csv +1 -0
  20. p1/preprocess/Amyotrophic_Lateral_Sclerosis/gene_data/GSE52937.csv +1 -0
  21. p1/preprocess/Amyotrophic_Lateral_Sclerosis/gene_data/GSE61322.csv +1 -0
  22. p1/preprocess/Amyotrophic_Lateral_Sclerosis/gene_data/GSE68607.csv +1 -0
  23. p1/preprocess/Amyotrophic_Lateral_Sclerosis/gene_data/GSE68608.csv +1 -0
  24. p1/preprocess/Amyotrophic_Lateral_Sclerosis/gene_data/GSE95810.csv +1 -0
  25. p1/preprocess/Angelman_Syndrome/code/GSE43900.py +169 -0
  26. p1/preprocess/Angelman_Syndrome/code/TCGA.py +57 -0
  27. p1/preprocess/Angelman_Syndrome/cohort_info.json +1 -0
  28. p1/preprocess/Angelman_Syndrome/gene_data/GSE43900.csv +1 -0
  29. p1/preprocess/Aniridia/clinical_data/GSE137996.csv +4 -0
  30. p1/preprocess/Aniridia/clinical_data/GSE137997.csv +4 -0
  31. p1/preprocess/Aniridia/code/GSE137996.py +170 -0
  32. p1/preprocess/Aniridia/code/GSE137997.py +167 -0
  33. p1/preprocess/Aniridia/code/GSE204791.py +183 -0
  34. p1/preprocess/Aniridia/code/TCGA.py +57 -0
  35. p1/preprocess/Aniridia/cohort_info.json +1 -0
  36. p1/preprocess/Aniridia/gene_data/GSE137996.csv +1 -0
  37. p1/preprocess/Aniridia/gene_data/GSE137997.csv +1 -0
  38. p1/preprocess/Aniridia/gene_data/GSE204791.csv +1 -0
  39. p1/preprocess/Ankylosing_Spondylitis/clinical_data/GSE25101.csv +2 -0
  40. p1/preprocess/Ankylosing_Spondylitis/clinical_data/GSE73754.csv +4 -0
  41. p1/preprocess/Ankylosing_Spondylitis/code/GSE25101.py +191 -0
  42. p1/preprocess/Ankylosing_Spondylitis/code/GSE73754.py +183 -0
  43. p1/preprocess/Ankylosing_Spondylitis/code/TCGA.py +57 -0
  44. p1/preprocess/Ankylosing_Spondylitis/cohort_info.json +1 -0
  45. p1/preprocess/Ankylosing_Spondylitis/gene_data/GSE25101.csv +1 -0
  46. p1/preprocess/Ankylosing_Spondylitis/gene_data/GSE73754.csv +1 -0
  47. p1/preprocess/Anorexia_Nervosa/clinical_data/GSE60190.csv +4 -0
  48. p1/preprocess/Anorexia_Nervosa/code/GSE60190.py +186 -0
  49. p1/preprocess/Anorexia_Nervosa/code/TCGA.py +57 -0
  50. p1/preprocess/Anorexia_Nervosa/cohort_info.json +1 -0
.gitattributes CHANGED
@@ -940,3 +940,10 @@ p1/preprocess/Von_Hippel_Lindau/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs
940
  p1/preprocess/Allergies/gene_data/GSE185658.csv filter=lfs diff=lfs merge=lfs -text
941
  p1/preprocess/Thyroid_Cancer/TCGA.csv filter=lfs diff=lfs merge=lfs -text
942
  p1/preprocess/Allergies/gene_data/GSE230164.csv filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
940
  p1/preprocess/Allergies/gene_data/GSE185658.csv filter=lfs diff=lfs merge=lfs -text
941
  p1/preprocess/Thyroid_Cancer/TCGA.csv filter=lfs diff=lfs merge=lfs -text
942
  p1/preprocess/Allergies/gene_data/GSE230164.csv filter=lfs diff=lfs merge=lfs -text
943
+ p1/preprocess/Alopecia/gene_data/GSE148346.csv filter=lfs diff=lfs merge=lfs -text
944
+ p1/preprocess/Alopecia/gene_data/GSE18876.csv filter=lfs diff=lfs merge=lfs -text
945
+ p1/preprocess/Adrenocortical_Cancer/gene_data/GSE68950.csv filter=lfs diff=lfs merge=lfs -text
946
+ p1/preprocess/Thyroid_Cancer/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
947
+ p1/preprocess/Alopecia/GSE66664.csv filter=lfs diff=lfs merge=lfs -text
948
+ p1/preprocess/Alopecia/gene_data/GSE66664.csv filter=lfs diff=lfs merge=lfs -text
949
+ p1/preprocess/Alzheimers_Disease/GSE122063.csv filter=lfs diff=lfs merge=lfs -text
p1/preprocess/Adrenocortical_Cancer/gene_data/GSE68950.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54bc2618961cab9be52e2e0e50a219b5df5559caeddf32ce819e42341796dec5
3
+ size 65411017
p1/preprocess/Alopecia/GSE66664.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98f97b3a973a426ec32ccf4bf8745797511a861b23854255500849cc35e311f9
3
+ size 36070366
p1/preprocess/Alopecia/gene_data/GSE148346.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:830556682e0675dd524d2e1f986ec941a14de052b109af704c73ffd79667a6b4
3
+ size 20446260
p1/preprocess/Alopecia/gene_data/GSE18876.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f138e02b190833ca491eb19bb4c1025ed390ad8e84765f26124c1c4c0a6ab1e
3
+ size 21422913
p1/preprocess/Alopecia/gene_data/GSE66664.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c4dac871fce23933c4db6847907a61bd43ef30584b1c524a208cafb30b5f71e
3
+ size 36069801
p1/preprocess/Alzheimers_Disease/GSE122063.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15c391c4a016201750999ff1cd0c79ca3ecd1578549d0d847bb6ce48a91835de
3
+ size 34271968
p1/preprocess/Alzheimers_Disease/gene_data/GSE137202.csv ADDED
The diff for this file is too large to render. See raw diff
 
p1/preprocess/Amyotrophic_Lateral_Sclerosis/code/GSE118336.py ADDED
@@ -0,0 +1,230 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Amyotrophic_Lateral_Sclerosis"
6
+ cohort = "GSE118336"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis"
10
+ in_cohort_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis/GSE118336"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/GSE118336.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/gene_data/GSE118336.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/clinical_data/GSE118336.csv"
16
+ json_path = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/cohort_info.json"
17
+
18
+ # STEP 1
19
+
20
+ from tools.preprocess import *
21
+
22
+ # 1. Identify the paths to the SOFT file and the matrix file
23
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
24
+
25
+ # 2. Read the matrix file to obtain background information and sample characteristics data
26
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
27
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
28
+ background_info, clinical_data = get_background_and_clinical_data(
29
+ matrix_file,
30
+ background_prefixes,
31
+ clinical_prefixes
32
+ )
33
+
34
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
35
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
36
+
37
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
38
+ print("Background Information:")
39
+ print(background_info)
40
+ print("\nSample Characteristics Dictionary:")
41
+ print(sample_characteristics_dict)
42
+ # Step 1: Determine if gene expression data is available
43
+ # Based on the series description (HTA2.0 array - a gene expression microarray), we assume it contains gene expression data.
44
+ is_gene_available = True
45
+
46
+ # Step 2: Identify availability of trait, age, and gender, and set row indices accordingly
47
+ # From the sample characteristics dictionary:
48
+ # {
49
+ # 0: ['cell type: iPSC-MN'],
50
+ # 1: ['genotype: FUSWT/WT', 'genotype: FUSWT/H517D', 'genotype: FUSH517D/H517D'],
51
+ # 2: ['time (differentiation from motor neuron precursor): 2 weeks', 'time (differentiation from motor neuron precursor): 4 weeks']
52
+ # }
53
+ # We interpret row=1 as the ALS status (presence/absence of mutation) => trait
54
+ trait_row = 1
55
+
56
+ # There's no clear row for age or gender
57
+ age_row = None
58
+ gender_row = None
59
+
60
+ # Step 2.2: Define conversion functions for trait, age, and gender
61
+
62
+ def convert_trait(value: str):
63
+ # Typically "genotype: something"
64
+ parts = value.split(':', 1)
65
+ if len(parts) < 2:
66
+ return None
67
+ val = parts[1].strip()
68
+ # Map genotype to binary: "FUSWT/WT" -> 0 (control), else -> 1 (ALS)
69
+ if val == "FUSWT/WT":
70
+ return 0
71
+ elif "H517D" in val:
72
+ return 1
73
+ else:
74
+ return None
75
+
76
+ def convert_age(value: str):
77
+ # Not applicable here, return None
78
+ return None
79
+
80
+ def convert_gender(value: str):
81
+ # Not applicable here, return None
82
+ return None
83
+
84
+ # Step 3: Initial filtering for dataset usability
85
+ is_trait_available = (trait_row is not None)
86
+ is_usable = validate_and_save_cohort_info(
87
+ is_final=False,
88
+ cohort=cohort,
89
+ info_path=json_path,
90
+ is_gene_available=is_gene_available,
91
+ is_trait_available=is_trait_available
92
+ )
93
+
94
+ # Step 4: Clinical Feature Extraction (only if trait data is available)
95
+ if trait_row is not None:
96
+ # Here we assume 'clinical_data' is already loaded as a pandas DataFrame
97
+ selected_clinical_df = geo_select_clinical_features(
98
+ clinical_data,
99
+ trait=trait,
100
+ trait_row=trait_row,
101
+ convert_trait=convert_trait,
102
+ age_row=age_row,
103
+ convert_age=convert_age,
104
+ gender_row=gender_row,
105
+ convert_gender=convert_gender
106
+ )
107
+
108
+ # Preview the extracted clinical data
109
+ preview = preview_df(selected_clinical_df, n=5)
110
+ print("Clinical Data Preview:", preview)
111
+
112
+ # Save clinical data to CSV
113
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
114
+ # STEP3
115
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
116
+ gene_data = get_genetic_data(matrix_file)
117
+
118
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
119
+ print(gene_data.index[:20])
120
+ # Based on biomedical knowledge, these "xxx_st" identifiers appear to be probe set IDs (likely from an Affymetrix array),
121
+ # not human gene symbols. Therefore, they require mapping to gene symbols.
122
+
123
+ # Conclusion:
124
+ requires_gene_mapping = True
125
+ # STEP5
126
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
127
+ gene_annotation = get_gene_annotation(soft_file)
128
+
129
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
130
+ print("Gene annotation preview:")
131
+ print(preview_df(gene_annotation))
132
+ # STEP 6: Gene Identifier Mapping (Revised)
133
+
134
+ # We will attempt to map the probe identifiers in gene_data (e.g. "2824546_st") to those in the
135
+ # gene_annotation DataFrame (e.g. "TC01000001.hg.1"). The original attempt concluded there
136
+ # was no match and skipped the mapping entirely. Here, we'll demonstrate a more thorough check:
137
+ # 1) Direct match
138
+ # 2) Partial match by stripping "_st"
139
+ # If no matches are found, we conclude that no mapping can be performed and retain the original data.
140
+
141
+ # Copy the annotation so we can manipulate it safely
142
+ annot_df = gene_annotation.copy()
143
+
144
+ # Identify columns to use for probe ID and gene assignment (gene symbol or similar).
145
+ probe_col = 'ID'
146
+ gene_col = 'gene_assignment'
147
+
148
+ # Create the mapping DataFrame
149
+ mapping_df = get_gene_mapping(
150
+ annotation=annot_df,
151
+ prob_col=probe_col,
152
+ gene_col=gene_col
153
+ )
154
+
155
+ # 1) Direct match between expression index and annotation ID:
156
+ expr_ids = set(gene_data.index)
157
+ annot_ids = set(mapping_df['ID'])
158
+ common_ids = expr_ids.intersection(annot_ids)
159
+
160
+ if len(common_ids) > 0:
161
+ # Some probes match directly; proceed with standard mapping
162
+ print("Direct matches found. Proceeding with gene symbol mapping using apply_gene_mapping...")
163
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
164
+ else:
165
+ # 2) Attempt partial match: removing '_st' from expression IDs before checking
166
+ print("No direct matches found. Attempting partial match by stripping '_st'...")
167
+ # Create a dictionary to map stripped IDs -> original IDs
168
+ stripped_to_orig = {}
169
+ for idx in gene_data.index:
170
+ stripped = idx.replace('_st', '').strip()
171
+ stripped_to_orig[stripped] = idx
172
+
173
+ # Re-check intersection
174
+ new_expr_ids = set(stripped_to_orig.keys())
175
+ common_stripped = new_expr_ids.intersection(annot_ids)
176
+
177
+ if len(common_stripped) > 0:
178
+ print("Partial matches found. Proceeding with gene symbol mapping...")
179
+ # Temporarily rename expression DataFrame index to the stripped version
180
+ gene_data_tmp = gene_data.copy()
181
+ gene_data_tmp.index = gene_data_tmp.index.map(lambda x: x.replace('_st', '').strip())
182
+
183
+ # Perform mapping with apply_gene_mapping
184
+ gene_data_mapped = apply_gene_mapping(gene_data_tmp, mapping_df)
185
+
186
+ # We revert the index to some user-friendly format (e.g., the gene symbols returned)
187
+ # but "apply_gene_mapping" already sets the new DataFrame's index to gene symbols.
188
+ gene_data = gene_data_mapped
189
+ else:
190
+ # 3) Confirm no mapping possible
191
+ print("No direct or partial matches found. No reliable way to map these probe IDs.")
192
+ print("Retaining the original gene_data DataFrame without mapping.")
193
+
194
+ # Display final shape and top rows
195
+ print("Final gene_data shape:", gene_data.shape)
196
+ print(gene_data.head(5))
197
+ # STEP 7: Data Normalization and Linking
198
+
199
+ # 1. Normalize gene symbols in the obtained gene expression data
200
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
201
+ normalized_gene_data.to_csv(out_gene_data_file)
202
+ print(f"Saved normalized gene data to {out_gene_data_file}")
203
+
204
+ # 2. Link the clinical and genetic data on sample IDs
205
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
206
+
207
+ # 3. Handle missing values, removing or imputing as instructed
208
+ linked_data = handle_missing_values(linked_data, trait)
209
+
210
+ # 4. Determine whether the trait (and potentially other features) is severely biased.
211
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
212
+
213
+ # 5. Conduct final quality validation and save metadata
214
+ is_usable = validate_and_save_cohort_info(
215
+ is_final=True,
216
+ cohort=cohort,
217
+ info_path=json_path,
218
+ is_gene_available=True,
219
+ is_trait_available=True, # We do have a trait column
220
+ is_biased=trait_biased,
221
+ df=linked_data,
222
+ note="Cohort data successfully processed with trait-based analysis."
223
+ )
224
+
225
+ # 6. If the dataset is usable, save the final linked data
226
+ if is_usable:
227
+ linked_data.to_csv(out_data_file, index=True)
228
+ print(f"Saved final linked data to {out_data_file}")
229
+ else:
230
+ print("The dataset is not usable for trait-based association. Skipping final output.")
p1/preprocess/Amyotrophic_Lateral_Sclerosis/code/GSE26927.py ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Amyotrophic_Lateral_Sclerosis"
6
+ cohort = "GSE26927"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis"
10
+ in_cohort_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis/GSE26927"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/GSE26927.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/gene_data/GSE26927.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/clinical_data/GSE26927.csv"
16
+ json_path = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/cohort_info.json"
17
+
18
+ # STEP 1
19
+
20
+ from tools.preprocess import *
21
+
22
+ # 1. Identify the paths to the SOFT file and the matrix file
23
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
24
+
25
+ # 2. Read the matrix file to obtain background information and sample characteristics data
26
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
27
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
28
+ background_info, clinical_data = get_background_and_clinical_data(
29
+ matrix_file,
30
+ background_prefixes,
31
+ clinical_prefixes
32
+ )
33
+
34
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
35
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
36
+
37
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
38
+ print("Background Information:")
39
+ print(background_info)
40
+ print("\nSample Characteristics Dictionary:")
41
+ print(sample_characteristics_dict)
42
+ # 1. Gene Expression Data Availability
43
+ is_gene_available = True # Based on the series summary, this dataset uses Illumina whole genome array.
44
+
45
+ # 2. Variable Availability
46
+ # Checking the sample characteristics dictionary, we found:
47
+ # - trait_row = 0, because row 0 has "disease: ..." entries including "Amyotrophic lateral sclerosis".
48
+ # - age_row = 2, because row 2 has "age at death (in years): ..." entries.
49
+ # - gender_row = 1, because row 1 has "gender: M" or "gender: F".
50
+ trait_row = 0
51
+ age_row = 2
52
+ gender_row = 1
53
+
54
+ # 2.2 Data Type Conversions
55
+ def convert_trait(value: str) -> int:
56
+ """
57
+ Convert disease field to binary indicating ALS (1) vs non-ALS (0).
58
+ Unknown values are converted to None.
59
+ Example input: "disease: Amyotrophic lateral sclerosis"
60
+ """
61
+ parts = value.split(":")
62
+ if len(parts) < 2:
63
+ return None
64
+ disease_str = parts[1].strip().lower()
65
+ if "amyotrophic lateral sclerosis" in disease_str:
66
+ return 1
67
+ else:
68
+ return 0
69
+
70
+ def convert_age(value: str) -> Optional[float]:
71
+ """
72
+ Convert age field to continuous (float).
73
+ Unknown values are converted to None.
74
+ Example input: "age at death (in years): 70"
75
+ """
76
+ parts = value.split(":")
77
+ if len(parts) < 2:
78
+ return None
79
+ age_str = parts[1].strip()
80
+ try:
81
+ return float(age_str)
82
+ except ValueError:
83
+ return None
84
+
85
+ def convert_gender(value: str) -> Optional[int]:
86
+ """
87
+ Convert gender field to binary: female -> 0, male -> 1.
88
+ Unknown values are converted to None.
89
+ Example input: "gender: M"
90
+ """
91
+ parts = value.split(":")
92
+ if len(parts) < 2:
93
+ return None
94
+ gender_str = parts[1].strip().lower()
95
+ if gender_str == 'f':
96
+ return 0
97
+ elif gender_str == 'm':
98
+ return 1
99
+ else:
100
+ return None
101
+
102
+ # 3. Save Metadata (initial filtering)
103
+ is_trait_available = (trait_row is not None)
104
+ is_final = False # initial filtering
105
+ validate_and_save_cohort_info(
106
+ is_final=is_final,
107
+ cohort=cohort,
108
+ info_path=json_path,
109
+ is_gene_available=is_gene_available,
110
+ is_trait_available=is_trait_available
111
+ )
112
+
113
+ # 4. Clinical Feature Extraction (only if trait_row is not None)
114
+ if trait_row is not None:
115
+ # Assume 'clinical_data' is the DataFrame with sample characteristics loaded from a previous step.
116
+ selected_clinical_df = geo_select_clinical_features(
117
+ clinical_data,
118
+ trait=trait,
119
+ trait_row=trait_row,
120
+ convert_trait=convert_trait,
121
+ age_row=age_row,
122
+ convert_age=convert_age,
123
+ gender_row=gender_row,
124
+ convert_gender=convert_gender
125
+ )
126
+ # Preview and save
127
+ print("Preview of Selected Clinical Features:", preview_df(selected_clinical_df))
128
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
129
+ # STEP3
130
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
131
+ gene_data = get_genetic_data(matrix_file)
132
+
133
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
134
+ print(gene_data.index[:20])
135
+ # These identifiers, such as 'ILMN_10000', are Illumina microarray probe IDs rather than standard gene symbols.
136
+ # Hence, they require mapping to gene symbols.
137
+ print("requires_gene_mapping = True")
138
+ # STEP5
139
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
140
+ gene_annotation = get_gene_annotation(soft_file)
141
+
142
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
143
+ print("Gene annotation preview:")
144
+ print(preview_df(gene_annotation))
145
+ # STEP: Gene Identifier Mapping
146
+
147
+ # 1. Identify the corresponding columns for probe ID and gene symbol in 'gene_annotation'.
148
+ # From the previews, 'ID' matches the probe identifiers used in the gene expression data (e.g., 'ILMN_10000'),
149
+ # and 'SYMBOL' stores the gene symbols.
150
+ probe_col = 'ID'
151
+ symbol_col = 'SYMBOL'
152
+
153
+ # 2. Get a mapping dataframe from 'gene_annotation'.
154
+ mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=symbol_col)
155
+
156
+ # 3. Convert probe-level measurements to gene-level expression data using 'apply_gene_mapping'.
157
+ # This handles the many-to-many relationships by dividing expression across genes and summing contributions per gene.
158
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
159
+
160
+ # For verification, let's output a small preview of the resulting gene_data: shape and first few gene indices.
161
+ print("Mapped gene_data shape:", gene_data.shape)
162
+ print("First 10 genes after mapping:", gene_data.index[:10].to_list())
163
+ # STEP 7: Data Normalization and Linking
164
+
165
+ import pandas as pd
166
+
167
+ # 1. Normalize gene symbols in the obtained gene expression data
168
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
169
+ normalized_gene_data.to_csv(out_gene_data_file)
170
+ print(f"Saved normalized gene data to {out_gene_data_file}")
171
+
172
+ # 2. Read the previously saved clinical data and correctly restore the row/column structure
173
+ # After step 2, the CSV has 3 rows (trait, Age, Gender) and columns = sample IDs (header=0).
174
+ # We can directly set the new index labels because we know row 0 = trait, row 1 = Age, row 2 = Gender.
175
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, header=0)
176
+ if selected_clinical_df.shape[0] == 3:
177
+ selected_clinical_df.index = [trait, 'Age', 'Gender']
178
+ else:
179
+ print("Warning: The clinical data does not have 3 rows as expected. Check the saved CSV format.")
180
+
181
+ # 3. Link clinical and gene expression data on sample IDs
182
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
183
+
184
+ # 4. Handle missing values (drop samples missing trait, drop high-missing genes/samples, impute remaining)
185
+ linked_data = handle_missing_values(linked_data, trait_col=trait)
186
+
187
+ # 5. Check for biased features (trait, age, gender) and remove biased demographic features
188
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
189
+
190
+ # 6. Final quality validation and metadata saving
191
+ is_usable = validate_and_save_cohort_info(
192
+ is_final=True,
193
+ cohort=cohort,
194
+ info_path=json_path,
195
+ is_gene_available=True,
196
+ is_trait_available=True,
197
+ is_biased=trait_biased,
198
+ df=linked_data,
199
+ note="Final data pipeline completed."
200
+ )
201
+
202
+ # 7. Save final linked data if usable
203
+ if is_usable:
204
+ linked_data.to_csv(out_data_file)
205
+ print(f"Saved final linked data to {out_data_file}")
206
+ else:
207
+ print("Dataset is not usable for trait-based association. Skipping final output.")
p1/preprocess/Amyotrophic_Lateral_Sclerosis/code/GSE52937.py ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Amyotrophic_Lateral_Sclerosis"
6
+ cohort = "GSE52937"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis"
10
+ in_cohort_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis/GSE52937"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/GSE52937.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/gene_data/GSE52937.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/clinical_data/GSE52937.csv"
16
+ json_path = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/cohort_info.json"
17
+
18
+ # STEP 1
19
+
20
+ from tools.preprocess import *
21
+
22
+ # 1. Identify the paths to the SOFT file and the matrix file
23
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
24
+
25
+ # 2. Read the matrix file to obtain background information and sample characteristics data
26
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
27
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
28
+ background_info, clinical_data = get_background_and_clinical_data(
29
+ matrix_file,
30
+ background_prefixes,
31
+ clinical_prefixes
32
+ )
33
+
34
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
35
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
36
+
37
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
38
+ print("Background Information:")
39
+ print(background_info)
40
+ print("\nSample Characteristics Dictionary:")
41
+ print(sample_characteristics_dict)
42
+ # 1. Gene Expression Data Availability
43
+ is_gene_available = True # Based on background ("transcriptional response", etc.), we assume gene expression data is present
44
+
45
+ # 2. Variable Availability and Data Type Conversion
46
+
47
+ # From the sample characteristics dictionary, no rows contain explicit or implicit ALS trait, age, or gender data.
48
+ trait_row = None
49
+ age_row = None
50
+ gender_row = None
51
+
52
+ # Define data conversion functions (they won't be used if the rows are None, but we define them as requested).
53
+
54
+ def convert_trait(value: str) -> int:
55
+ # Example logic for binary classification of the trait
56
+ # If the trait is unavailable, return None
57
+ return None
58
+
59
+ def convert_age(value: str) -> float:
60
+ # Example logic for continuous age value
61
+ return None
62
+
63
+ def convert_gender(value: str) -> int:
64
+ # Example logic for binary gender classification
65
+ return None
66
+
67
+ # 3. Save Metadata (Initial Filtering)
68
+ is_trait_available = (trait_row is not None)
69
+ is_usable = validate_and_save_cohort_info(
70
+ is_final=False,
71
+ cohort=cohort,
72
+ info_path=json_path,
73
+ is_gene_available=is_gene_available,
74
+ is_trait_available=is_trait_available
75
+ )
76
+
77
+ # 4. Clinical Feature Extraction
78
+ # We only do this if trait_row is not None. Here trait_row is None, so we skip this step.
79
+ # STEP3
80
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
81
+ gene_data = get_genetic_data(matrix_file)
82
+
83
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
84
+ print(gene_data.index[:20])
85
+ print("requires_gene_mapping = True")
86
+ # STEP5
87
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
88
+ gene_annotation = get_gene_annotation(soft_file)
89
+
90
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
91
+ print("Gene annotation preview:")
92
+ print(preview_df(gene_annotation))
93
+ # STEP: Gene Identifier Mapping
94
+
95
+ # 1 & 2. Identify the corresponding columns in the gene annotation dataframe for
96
+ # (a) the probe IDs, which match those in the gene expression data
97
+ # (b) the gene symbols
98
+ # We use "ID" for the probe identifier and "Symbol" for the gene symbol.
99
+ mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Symbol")
100
+
101
+ # 3. Convert probe-level data in gene_data to gene-level data using the mapping.
102
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
103
+
104
+ # For confirmation, let's print out the shape of the resulting gene_data
105
+ print("Mapped gene_data shape:", gene_data.shape)
106
+ # STEP 7: Data Normalization and Linking
107
+
108
+ # Since we concluded in previous steps that there is no trait data (trait_row = None),
109
+ # we cannot link clinical data or perform trait-based analyses. We'll still normalize
110
+ # the gene data and then perform a final validation indicating that the dataset does
111
+ # not have trait information.
112
+
113
+ # 1. Normalize gene symbols in the obtained gene expression data
114
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
115
+ normalized_gene_data.to_csv(out_gene_data_file)
116
+ print(f"Saved normalized gene data to {out_gene_data_file}")
117
+
118
+ # 2. No trait data is available, so we skip linking genetic and clinical data.
119
+ # We also skip handling missing trait values or checking trait bias.
120
+
121
+ # 3. Final Quality Validation
122
+ # Since there's no trait, is_trait_available=False, so the dataset won't be deemed usable for trait-based analysis.
123
+ # However, we still record the metadata. We must provide 'df' and 'is_biased' as the function requires.
124
+ is_usable = validate_and_save_cohort_info(
125
+ is_final=True,
126
+ cohort=cohort,
127
+ info_path=json_path,
128
+ is_gene_available=True,
129
+ is_trait_available=False,
130
+ is_biased=False, # Arbitrarily False because trait doesn't exist
131
+ df=normalized_gene_data, # We'll pass the gene data as the 'df'
132
+ note="No trait data available, so cohort is not usable for association study."
133
+ )
134
+
135
+ # 4. If the dataset were usable, we'd save the final linked data. In this case, it's not usable for trait-based association.
136
+ if is_usable:
137
+ # This branch will not execute because there's no trait
138
+ linked_data.to_csv(out_data_file)
139
+ print(f"Saved final linked data to {out_data_file}")
140
+ else:
141
+ print("Trait data not available. Skipping final output for association analysis.")
p1/preprocess/Amyotrophic_Lateral_Sclerosis/code/GSE61322.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Amyotrophic_Lateral_Sclerosis"
6
+ cohort = "GSE61322"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis"
10
+ in_cohort_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis/GSE61322"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/GSE61322.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/gene_data/GSE61322.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/clinical_data/GSE61322.csv"
16
+ json_path = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/cohort_info.json"
17
+
18
+ # STEP 1
19
+
20
+ from tools.preprocess import *
21
+
22
+ # 1. Identify the paths to the SOFT file and the matrix file
23
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
24
+
25
+ # 2. Read the matrix file to obtain background information and sample characteristics data
26
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
27
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
28
+ background_info, clinical_data = get_background_and_clinical_data(
29
+ matrix_file,
30
+ background_prefixes,
31
+ clinical_prefixes
32
+ )
33
+
34
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
35
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
36
+
37
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
38
+ print("Background Information:")
39
+ print(background_info)
40
+ print("\nSample Characteristics Dictionary:")
41
+ print(sample_characteristics_dict)
42
+ # 1. Gene Expression Data Availability
43
+ # From the background info ("microarray", "RNA-sequencing"), this dataset likely contains gene expression data.
44
+ is_gene_available = True
45
+
46
+ # 2. Variable Availability and Conversion
47
+ # Checking the sample characteristics dictionary:
48
+ # {0: ['diagnosis: carrier', 'diagnosis: affected'],
49
+ # 1: ['disease: AOA2'],
50
+ # 2: ['definite analysis: definite', 'definite analysis: presumed']}
51
+ # None of these keys mention "Amyotrophic_Lateral_Sclerosis" or an "ALS" variant.
52
+ # Also, no keys show age or gender data. Hence, all are considered unavailable.
53
+ trait_row = None
54
+ age_row = None
55
+ gender_row = None
56
+
57
+ def convert_trait(value: str) -> Optional[float]:
58
+ # Not used as trait_row is None, but we provide a stub.
59
+ # Typically would parse the string after ':', then map to 0./1. or None appropriately.
60
+ return None
61
+
62
+ def convert_age(value: str) -> Optional[float]:
63
+ # Not used as age_row is None, but we provide a stub.
64
+ return None
65
+
66
+ def convert_gender(value: str) -> Optional[int]:
67
+ # Not used as gender_row is None, but we provide a stub.
68
+ return None
69
+
70
+ # 3. Save Metadata with initial filtering
71
+ # If trait_row is None => is_trait_available = False
72
+ is_trait_available = (trait_row is not None)
73
+
74
+ is_usable = validate_and_save_cohort_info(
75
+ is_final=False,
76
+ cohort=cohort,
77
+ info_path=json_path,
78
+ is_gene_available=is_gene_available,
79
+ is_trait_available=is_trait_available
80
+ )
81
+
82
+ # 4. Clinical Feature Extraction
83
+ # Since trait_row is None, we skip this step (no clinical data for the trait).
84
+ # STEP3
85
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
86
+ gene_data = get_genetic_data(matrix_file)
87
+
88
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
89
+ print(gene_data.index[:20])
90
+ # Based on the above identifiers (e.g., ILMN_1343291, ILMN_1651209, etc.),
91
+ # they are Illumina probe IDs rather than standard human gene symbols.
92
+ # Therefore, they require mapping to gene symbols.
93
+
94
+ print("requires_gene_mapping = True")
95
+ # STEP5
96
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
97
+ gene_annotation = get_gene_annotation(soft_file)
98
+
99
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
100
+ print("Gene annotation preview:")
101
+ print(preview_df(gene_annotation))
102
+ # STEP: Gene Identifier Mapping
103
+
104
+ # 1. From the annotation preview and the gene expression row IDs, we see that
105
+ # the "ID" column in gene_annotation matches probe IDs like "ILMN_1343291",
106
+ # and the "Symbol" column stores the gene symbols.
107
+ prob_col = "ID"
108
+ gene_col = "Symbol"
109
+
110
+ # 2. Extract the mapping dataframe with these two columns
111
+ mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)
112
+
113
+ # 3. Apply the mapping to convert probe-level data into gene-level expression
114
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
115
+ # STEP 7: Data Normalization and Linking
116
+
117
+ # Since we concluded in previous steps that there is no trait data (trait_row = None),
118
+ # we cannot link clinical data or perform trait-based analyses. We'll still normalize
119
+ # the gene data and then perform a final validation indicating that the dataset does
120
+ # not have trait information.
121
+
122
+ # 1. Normalize gene symbols in the obtained gene expression data
123
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
124
+ normalized_gene_data.to_csv(out_gene_data_file)
125
+ print(f"Saved normalized gene data to {out_gene_data_file}")
126
+
127
+ # 2. No trait data is available, so we skip linking genetic and clinical data.
128
+ # We also skip handling missing trait values or checking trait bias.
129
+
130
+ # 3. Final Quality Validation
131
+ # Since there's no trait, is_trait_available=False, so the dataset won't be deemed usable for trait-based analysis.
132
+ # However, we still record the metadata. We must provide 'df' and 'is_biased' as the function requires.
133
+ is_usable = validate_and_save_cohort_info(
134
+ is_final=True,
135
+ cohort=cohort,
136
+ info_path=json_path,
137
+ is_gene_available=True,
138
+ is_trait_available=False,
139
+ is_biased=False, # Arbitrarily False because trait doesn't exist
140
+ df=normalized_gene_data, # We'll pass the gene data as the 'df'
141
+ note="No trait data available, so cohort is not usable for association study."
142
+ )
143
+
144
+ # 4. If the dataset were usable, we'd save the final linked data. In this case, it's not usable for trait-based association.
145
+ if is_usable:
146
+ # This branch will not execute because there's no trait
147
+ linked_data.to_csv(out_data_file)
148
+ print(f"Saved final linked data to {out_data_file}")
149
+ else:
150
+ print("Trait data not available. Skipping final output for association analysis.")
p1/preprocess/Amyotrophic_Lateral_Sclerosis/code/GSE68608.py ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Amyotrophic_Lateral_Sclerosis"
6
+ cohort = "GSE68608"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis"
10
+ in_cohort_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis/GSE68608"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/GSE68608.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/gene_data/GSE68608.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/clinical_data/GSE68608.csv"
16
+ json_path = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/cohort_info.json"
17
+
18
+ # STEP 1
19
+
20
+ from tools.preprocess import *
21
+
22
+ # 1. Identify the paths to the SOFT file and the matrix file
23
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
24
+
25
+ # 2. Read the matrix file to obtain background information and sample characteristics data
26
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
27
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
28
+ background_info, clinical_data = get_background_and_clinical_data(
29
+ matrix_file,
30
+ background_prefixes,
31
+ clinical_prefixes
32
+ )
33
+
34
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
35
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
36
+
37
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
38
+ print("Background Information:")
39
+ print(background_info)
40
+ print("\nSample Characteristics Dictionary:")
41
+ print(sample_characteristics_dict)
42
+ # 1) Gene Expression Data Availability
43
+ is_gene_available = True # Based on the background, it's likely gene expression data.
44
+
45
+ # 2) Variable Availability and Data Type Conversion
46
+ trait_row = 1 # Key 1 contains ALS vs Control information.
47
+ age_row = None # No age information found in the dictionary.
48
+ gender_row = None # No gender information found in the dictionary.
49
+
50
+ def convert_trait(value: str):
51
+ # Extract the part after the colon (if any) and convert to lowercase
52
+ if ':' in value:
53
+ _, val = value.split(':', 1)
54
+ val = val.strip().lower()
55
+ else:
56
+ val = value.strip().lower()
57
+
58
+ # Map to binary
59
+ if 'als' in val:
60
+ return 1
61
+ elif 'control' in val or 'healthy' in val:
62
+ return 0
63
+ else:
64
+ return None
65
+
66
+ def convert_age(value: str):
67
+ # No age data is available; return None
68
+ return None
69
+
70
+ def convert_gender(value: str):
71
+ # No gender data is available; return None
72
+ return None
73
+
74
+ # 3) Save Metadata (Initial filtering)
75
+ is_trait_available = (trait_row is not None)
76
+ is_usable = validate_and_save_cohort_info(
77
+ is_final=False,
78
+ cohort=cohort,
79
+ info_path=json_path,
80
+ is_gene_available=is_gene_available,
81
+ is_trait_available=is_trait_available
82
+ )
83
+
84
+ # 4) Clinical Feature Extraction (only if trait data is available)
85
+ if trait_row is not None:
86
+ selected_clinical_df = geo_select_clinical_features(
87
+ clinical_df=clinical_data,
88
+ trait=trait,
89
+ trait_row=trait_row,
90
+ convert_trait=convert_trait,
91
+ age_row=age_row,
92
+ convert_age=convert_age,
93
+ gender_row=gender_row,
94
+ convert_gender=convert_gender
95
+ )
96
+ print("Preview of selected clinical features:")
97
+ print(preview_df(selected_clinical_df))
98
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
99
+ # STEP3
100
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
101
+ gene_data = get_genetic_data(matrix_file)
102
+
103
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
104
+ print(gene_data.index[:20])
105
+ # Based on the provided identifiers (e.g., '1007_s_at', '1053_at'), they appear to be Affymetrix probe set IDs.
106
+ # These are not standard human gene symbols and thus require mapping to gene symbols.
107
+ print("They appear to be Affymetrix probe set IDs.")
108
+ print("requires_gene_mapping = True")
109
+ # STEP5
110
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
111
+ gene_annotation = get_gene_annotation(soft_file)
112
+
113
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
114
+ print("Gene annotation preview:")
115
+ print(preview_df(gene_annotation))
116
+ # STEP: Gene Identifier Mapping
117
+
118
+ # 1) The 'ID' column in 'gene_annotation' corresponds to the probe IDs in the gene expression data.
119
+ # The 'Gene Symbol' column contains the gene symbols.
120
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
121
+
122
+ # 2) Convert probe-level measurements to gene-level measurements by applying the many-to-many mapping.
123
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
124
+ # STEP 7: Data Normalization and Linking
125
+
126
+ # 1. Normalize gene symbols in the obtained gene expression data
127
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
128
+ normalized_gene_data.to_csv(out_gene_data_file)
129
+ print(f"Saved normalized gene data to {out_gene_data_file}")
130
+
131
+ # 2. Link the clinical and genetic data
132
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
133
+
134
+ # 3. Systematically handle missing values
135
+ linked_data = handle_missing_values(linked_data, trait)
136
+
137
+ # 4. Determine whether the trait (and demographic features) are severely biased
138
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
139
+
140
+ # 5. Conduct final quality validation and save metadata
141
+ is_usable = validate_and_save_cohort_info(
142
+ is_final=True,
143
+ cohort=cohort,
144
+ info_path=json_path,
145
+ is_gene_available=True,
146
+ is_trait_available=True,
147
+ is_biased=trait_biased,
148
+ df=linked_data,
149
+ note="Trait data is ALS vs. control; age and gender are not available."
150
+ )
151
+
152
+ # 6. If the dataset is usable, save the final linked data
153
+ if is_usable:
154
+ linked_data.to_csv(out_data_file)
155
+ print(f"Saved final linked data to {out_data_file}")
156
+ else:
157
+ print("Data not usable for association; skipping final output.")
p1/preprocess/Amyotrophic_Lateral_Sclerosis/code/GSE95810.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Amyotrophic_Lateral_Sclerosis"
6
+ cohort = "GSE95810"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis"
10
+ in_cohort_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis/GSE95810"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/GSE95810.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/gene_data/GSE95810.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/clinical_data/GSE95810.csv"
16
+ json_path = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/cohort_info.json"
17
+
18
+ # STEP 1
19
+
20
+ from tools.preprocess import *
21
+
22
+ # 1. Identify the paths to the SOFT file and the matrix file
23
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
24
+
25
+ # 2. Read the matrix file to obtain background information and sample characteristics data
26
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
27
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
28
+ background_info, clinical_data = get_background_and_clinical_data(
29
+ matrix_file,
30
+ background_prefixes,
31
+ clinical_prefixes
32
+ )
33
+
34
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
35
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
36
+
37
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
38
+ print("Background Information:")
39
+ print(background_info)
40
+ print("\nSample Characteristics Dictionary:")
41
+ print(sample_characteristics_dict)
42
+ # 1) Determine if gene expression data is available
43
+ is_gene_available = True # Based on series title indicating "Gene expression..."
44
+
45
+ # 2) Identify the availability of trait, age, and gender data
46
+ trait_row = None # No ALS-specific indicator in the sample characteristics
47
+ age_row = None # No age data found
48
+ gender_row = None # No gender data found
49
+
50
+ # 2) Create conversion functions (though they won't be used since rows are None)
51
+ def convert_trait(value: str):
52
+ return None
53
+
54
+ def convert_age(value: str):
55
+ return None
56
+
57
+ def convert_gender(value: str):
58
+ return None
59
+
60
+ # 3) Initial metadata saving and validation
61
+ is_trait_available = (trait_row is not None)
62
+ validate_and_save_cohort_info(
63
+ is_final=False,
64
+ cohort=cohort,
65
+ info_path=json_path,
66
+ is_gene_available=is_gene_available,
67
+ is_trait_available=is_trait_available
68
+ )
69
+
70
+ # 4) Skip clinical feature extraction because 'trait_row' is None
71
+ # STEP3
72
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
73
+ gene_data = get_genetic_data(matrix_file)
74
+
75
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
76
+ print(gene_data.index[:20])
77
+ # Based on the provided gene identifiers (e.g., A1BG, A1CF, A2M, etc.), they appear to be standard human gene symbols.
78
+ # Consequently, a separate mapping step does not seem to be required.
79
+
80
+ print("requires_gene_mapping = False")
81
+ # STEP 5: Data Normalization and Linking
82
+
83
+ # Since trait data is not available based on the previous steps (trait_row=None),
84
+ # we cannot perform clinical-gene linking or meaningful trait-based analyses.
85
+
86
+ # 1. Normalize gene symbols in the obtained gene expression data
87
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
88
+ normalized_gene_data.to_csv(out_gene_data_file)
89
+ print(f"Saved normalized gene data to {out_gene_data_file}")
90
+
91
+ # 2-6. Since there's no trait data, we skip linking and final output for association.
92
+ # Perform final validation indicating the dataset is not usable for trait association.
93
+ is_trait_available = False
94
+ validate_and_save_cohort_info(
95
+ is_final=True,
96
+ cohort=cohort,
97
+ info_path=json_path,
98
+ is_gene_available=True,
99
+ is_trait_available=is_trait_available,
100
+ is_biased=False, # Provide a valid Boolean so it doesn't raise ValueError
101
+ df=pd.DataFrame(), # Empty since we can't link without trait
102
+ note="No trait data found; skipping linking and final output."
103
+ )
104
+
105
+ print("Trait data is unavailable; no further steps for linking or final output can be performed.")
p1/preprocess/Amyotrophic_Lateral_Sclerosis/code/TCGA.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Amyotrophic_Lateral_Sclerosis"
6
+
7
+ # Input paths
8
+ tcga_root_dir = "../DATA/TCGA"
9
+
10
+ # Output paths
11
+ out_data_file = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/TCGA.csv"
12
+ out_gene_data_file = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/gene_data/TCGA.csv"
13
+ out_clinical_data_file = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/clinical_data/TCGA.csv"
14
+ json_path = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/cohort_info.json"
15
+
16
+ import os
17
+ import pandas as pd
18
+
19
+ # 1. Identify the relevant subdirectory for the trait "Obesity"
20
+ subdirectories = [
21
+ 'CrawlData.ipynb', '.DS_Store', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)',
22
+ 'TCGA_Uterine_Carcinosarcoma_(UCS)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Thymoma_(THYM)',
23
+ 'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Sarcoma_(SARC)',
24
+ 'TCGA_Rectal_Cancer_(READ)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)',
25
+ 'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Ocular_melanomas_(UVM)',
26
+ 'TCGA_Mesothelioma_(MESO)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)',
27
+ 'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lower_Grade_Glioma_(LGG)',
28
+ 'TCGA_Liver_Cancer_(LIHC)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)',
29
+ 'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Head_and_Neck_Cancer_(HNSC)',
30
+ 'TCGA_Glioblastoma_(GBM)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Endometrioid_Cancer_(UCEC)',
31
+ 'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Cervical_Cancer_(CESC)',
32
+ 'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Bile_Duct_Cancer_(CHOL)',
33
+ 'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Acute_Myeloid_Leukemia_(LAML)'
34
+ ]
35
+
36
+ trait_keyword = trait
37
+ target_subdir = None
38
+
39
+ for sd in subdirectories:
40
+ if trait_keyword.lower() in sd.lower():
41
+ target_subdir = sd
42
+ break
43
+
44
+ if target_subdir is None:
45
+ # No suitable data found for this trait; mark as completed
46
+ print("No TCGA subdirectory found for the trait. Skipping.")
47
+ else:
48
+ # 2. Locate clinical and genetic data files
49
+ cohort_dir = os.path.join(tcga_root_dir, target_subdir)
50
+ clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
51
+
52
+ # 3. Load the data
53
+ clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
54
+ genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
55
+
56
+ # 4. Print column names of clinical data
57
+ print(clinical_df.columns)
p1/preprocess/Amyotrophic_Lateral_Sclerosis/gene_data/GSE118336.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ Gene,GSM3325490,GSM3325491,GSM3325492,GSM3325493,GSM3325494,GSM3325495,GSM3325496,GSM3325497,GSM3325498,GSM3325499,GSM3325500,GSM3325501,GSM3325502,GSM3325503,GSM3325504,GSM3325505,GSM3325506,GSM3325507,GSM3325508,GSM3325509,GSM3325510,GSM3325511,GSM3325512,GSM3325513,GSM3325514,GSM3325515,GSM3325516,GSM3325517,GSM3325518,GSM3325519,GSM3325520,GSM3325521,GSM3325522,GSM3325523,GSM3325524,GSM3325525,GSM3325526,GSM3325527,GSM3325528,GSM3325529,GSM3325530,GSM3325531,GSM3325532,GSM3325533,GSM3325534,GSM3325535,GSM3325536,GSM3325537,GSM3325538,GSM3325539,GSM3325540,GSM3325541,GSM3325542,GSM3325543,GSM3325544,GSM3325545,GSM3325546,GSM3325547,GSM3325548,GSM3325549
p1/preprocess/Amyotrophic_Lateral_Sclerosis/gene_data/GSE139384.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ Gene,GSM4140293,GSM4140294,GSM4140295,GSM4140296,GSM4140297,GSM4140298,GSM4140299,GSM4140300,GSM4140301,GSM4140302,GSM4140303,GSM4140304,GSM4140305,GSM4140306,GSM4140307,GSM4140308,GSM4140309,GSM4140310,GSM4140311,GSM4140312,GSM4140313,GSM4140314,GSM4140315,GSM4140316,GSM4140317,GSM4140318,GSM4140319,GSM4140320,GSM4140321,GSM4140322,GSM4140323,GSM4140324,GSM4140325
p1/preprocess/Amyotrophic_Lateral_Sclerosis/gene_data/GSE212134.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ Gene,GSM6509811,GSM6509812,GSM6509813,GSM6509814,GSM6509815,GSM6509816,GSM6509817,GSM6509818,GSM6509819,GSM6509820,GSM6509821,GSM6509822,GSM6509823,GSM6509824,GSM6509825,GSM6509826,GSM6509827,GSM6509828,GSM6509829,GSM6509830,GSM6509831,GSM6509832,GSM6509833,GSM6509834,GSM6509835,GSM6509836,GSM6509837,GSM6509838,GSM6509839,GSM6509840,GSM6509841,GSM6509842,GSM6509843,GSM6509844,GSM6509845,GSM6509846,GSM6509847,GSM6509848,GSM6509849,GSM6509850,GSM6509851,GSM6509852
p1/preprocess/Amyotrophic_Lateral_Sclerosis/gene_data/GSE26927.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ Gene,GSM663008,GSM663009,GSM663010,GSM663011,GSM663012,GSM663013,GSM663014,GSM663015,GSM663016,GSM663017,GSM663018,GSM663019,GSM663020,GSM663021,GSM663022,GSM663023,GSM663024,GSM663025,GSM663026,GSM663027,GSM663028,GSM663029,GSM663030,GSM663031,GSM663032,GSM663033,GSM663034,GSM663035,GSM663036,GSM663037,GSM663038,GSM663039,GSM663040,GSM663041,GSM663042,GSM663043,GSM663044,GSM663045,GSM663046,GSM663047,GSM663048,GSM663049,GSM663050,GSM663051,GSM663052,GSM663053,GSM663054,GSM663055,GSM663056,GSM663057,GSM663058,GSM663059,GSM663060,GSM663061,GSM663062,GSM663063,GSM663064,GSM663065,GSM663066,GSM663067,GSM663068,GSM663069,GSM663070,GSM663071,GSM663072,GSM663073,GSM663074,GSM663075,GSM663076,GSM663077,GSM663078,GSM663079,GSM663080,GSM663081,GSM663082,GSM663083,GSM663084,GSM663085,GSM663086,GSM663087,GSM663088,GSM663089,GSM663090,GSM663091,GSM663092,GSM663093,GSM663094,GSM663095,GSM663096,GSM663097,GSM663098,GSM663099,GSM663100,GSM663101,GSM663102,GSM663103,GSM663104,GSM663105,GSM663106,GSM663107,GSM663108,GSM663109,GSM663110,GSM663111,GSM663112,GSM663113,GSM663114,GSM663115,GSM663116,GSM663117,GSM663118,GSM663119,GSM663120,GSM663121,GSM663122,GSM663123,GSM663124,GSM663125
p1/preprocess/Amyotrophic_Lateral_Sclerosis/gene_data/GSE52937.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ Gene,GSM1278303,GSM1278304,GSM1278305,GSM1278306,GSM1278307,GSM1278308,GSM1278309,GSM1278310,GSM1278311,GSM1278312,GSM1278313,GSM1278314,GSM1278315,GSM1278316,GSM1278317,GSM1278318,GSM1278319,GSM1278320,GSM1278321,GSM1278322,GSM1278323,GSM1278324,GSM1278325,GSM1278326,GSM1278327,GSM1278328,GSM1278329,GSM1627269,GSM1627270,GSM1627271,GSM1627272,GSM1627273,GSM1627274,GSM1627275,GSM1627276,GSM1627277,GSM1627278,GSM1627279,GSM1627280,GSM1627281,GSM1627282,GSM1627283,GSM1627284,GSM1627285,GSM1627286,GSM1627287,GSM1627288,GSM1627289,GSM1627290,GSM1627291,GSM1627292,GSM1627293,GSM1627294,GSM1627295
p1/preprocess/Amyotrophic_Lateral_Sclerosis/gene_data/GSE61322.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ Gene,GSM1502059,GSM1502060,GSM1502061,GSM1502062,GSM1502063,GSM1502064,GSM1502065,GSM1502066,GSM1502067,GSM1502068,GSM1502069,GSM1502070,GSM1502071,GSM1502072,GSM1502073,GSM1502074,GSM1502075,GSM1502076,GSM1502077,GSM1502078,GSM1502079,GSM1502080,GSM1502081,GSM1502082,GSM1502083,GSM1502084,GSM1502085,GSM1502086,GSM1502087,GSM1502088,GSM1502089,GSM1502090,GSM1502091
p1/preprocess/Amyotrophic_Lateral_Sclerosis/gene_data/GSE68607.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ Gene,GSM1677001,GSM1677002,GSM1677003,GSM1677004,GSM1677005,GSM1677006,GSM1677007,GSM1677008,GSM1677009,GSM1677010,GSM1677011,GSM1677012,GSM1677013,GSM1677014,GSM1677015,GSM1677016,GSM1677017,GSM1677018,GSM1677019,GSM1677020,GSM1677021,GSM1677022,GSM1677023,GSM1677024,GSM1677025,GSM1677026,GSM1677027,GSM1677028,GSM1677029,GSM1677030,GSM1677031,GSM1677032,GSM1677033,GSM1677034,GSM1677035,GSM1677036,GSM1677037,GSM1677038,GSM1677039,GSM1677040,GSM1677041,GSM1677042,GSM1677043,GSM1677044,GSM1677045,GSM1677046,GSM1677047,GSM1677048,GSM1677049,GSM1677050,GSM1677051,GSM1677052,GSM1677053,GSM1677054,GSM1677055,GSM1677056,GSM1677057,GSM1677058,GSM1677059,GSM1677060,GSM1677061,GSM1677062,GSM1677063,GSM1677064,GSM1677065,GSM1677066,GSM1677067,GSM1677068,GSM1677069
p1/preprocess/Amyotrophic_Lateral_Sclerosis/gene_data/GSE68608.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ Gene,GSM1676853,GSM1676854,GSM1676855,GSM1676856,GSM1676857,GSM1676858,GSM1676859,GSM1676860,GSM1676861,GSM1676862,GSM1676863
p1/preprocess/Amyotrophic_Lateral_Sclerosis/gene_data/GSE95810.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ ID,GSM2526327,GSM2526328,GSM2526329,GSM2526330,GSM2526331,GSM2526332,GSM2526333,GSM2526334,GSM2526335,GSM2526336,GSM2526337,GSM2526338,GSM2526339,GSM2526340,GSM2526341,GSM2526342,GSM2526343,GSM2526344,GSM2526345,GSM2526346,GSM2526347,GSM2526348,GSM2526349,GSM2526350,GSM2526351,GSM2526352,GSM2526353,GSM2526354,GSM2526355,GSM2526356,GSM2526357,GSM2526358,GSM2526359,GSM2526360,GSM2526361,GSM2526362,GSM2526363,GSM2526364,GSM2526365,GSM2526366,GSM2526367,GSM2526368,GSM2526369,GSM2526370,GSM2526371,GSM2526372,GSM2526373,GSM2526374,GSM2526375,GSM2526376,GSM2526377,GSM2526378,GSM2526379,GSM2526380,GSM2526381,GSM2526382,GSM2526383,GSM2526384
p1/preprocess/Angelman_Syndrome/code/GSE43900.py ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Angelman_Syndrome"
6
+ cohort = "GSE43900"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Angelman_Syndrome"
10
+ in_cohort_dir = "../DATA/GEO/Angelman_Syndrome/GSE43900"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Angelman_Syndrome/GSE43900.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Angelman_Syndrome/gene_data/GSE43900.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Angelman_Syndrome/clinical_data/GSE43900.csv"
16
+ json_path = "./output/preprocess/1/Angelman_Syndrome/cohort_info.json"
17
+
18
+ # STEP 1
19
+
20
+ from tools.preprocess import *
21
+
22
+ # 1. Identify the paths to the SOFT file and the matrix file
23
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
24
+
25
+ # 2. Read the matrix file to obtain background information and sample characteristics data
26
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
27
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
28
+ background_info, clinical_data = get_background_and_clinical_data(
29
+ matrix_file,
30
+ background_prefixes,
31
+ clinical_prefixes
32
+ )
33
+
34
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
35
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
36
+
37
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
38
+ print("Background Information:")
39
+ print(background_info)
40
+ print("\nSample Characteristics Dictionary:")
41
+ print(sample_characteristics_dict)
42
+ # 1. Determine if the dataset likely contains gene expression data
43
+ is_gene_available = True # From background info, it appears to focus on gene regulation, so we assume gene expression data
44
+
45
+ # 2. Variable Availability and Data Type Conversion
46
+
47
+ # According to the sample characteristics dictionary, we only have:
48
+ # 0: treatment information,
49
+ # 1: cell type, and
50
+ # 2: strain.
51
+ # None indicates that the dataset does not provide suitable human trait, age, or gender info.
52
+ trait_row = None
53
+ age_row = None
54
+ gender_row = None
55
+
56
+ # Define the conversion functions (though they won't be used if rows are None).
57
+
58
+ def convert_trait(x: str) -> int:
59
+ # No actual data available, placeholder implementation
60
+ return None
61
+
62
+ def convert_age(x: str) -> float:
63
+ # No actual data available, placeholder implementation
64
+ return None
65
+
66
+ def convert_gender(x: str) -> int:
67
+ # No actual data available, placeholder implementation
68
+ return None
69
+
70
+ # 3. Save Metadata (initial filtering)
71
+ is_trait_available = (trait_row is not None)
72
+ validate_and_save_cohort_info(
73
+ is_final=False,
74
+ cohort=cohort,
75
+ info_path=json_path,
76
+ is_gene_available=is_gene_available,
77
+ is_trait_available=is_trait_available
78
+ )
79
+
80
+ # 4. Clinical Feature Extraction (skip because trait_row is None)
81
+ # No action needed as trait_row is None
82
+ # STEP3
83
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
84
+ gene_data = get_genetic_data(matrix_file)
85
+
86
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
87
+ print(gene_data.index[:20])
88
+ # Based on observation, the identifiers are numeric probe IDs and do not appear to be standard human gene symbols.
89
+ # Therefore, gene mapping is required.
90
+ print("requires_gene_mapping = True")
91
+ # STEP5
92
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
93
+ gene_annotation = get_gene_annotation(soft_file)
94
+
95
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
96
+ print("Gene annotation preview:")
97
+ print(preview_df(gene_annotation))
98
+ # STEP: Gene Identifier Mapping
99
+
100
+ # 1. Decide the columns for gene identifier (probe) and gene symbol based on the preview.
101
+ probe_col = "ID"
102
+ gene_symbol_col = "Gene Symbol"
103
+
104
+ # 2. Get the mapping dataframe from the annotation.
105
+ mapping_df = get_gene_mapping(gene_annotation, probe_col, gene_symbol_col)
106
+
107
+ # 3. Convert probe-level measurements to gene-level expression data.
108
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
109
+
110
+ # Display the first few gene symbols to confirm the result.
111
+ print(gene_data.index[:20])
112
+ # STEP 7: Data Normalization and Linking
113
+
114
+ # 1. Normalize gene symbols in the obtained gene expression data
115
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
116
+ normalized_gene_data.to_csv(out_gene_data_file)
117
+ print(f"Saved normalized gene data to {out_gene_data_file}")
118
+
119
+ # 2. Check if the trait is available in this dataset
120
+ if trait_row is None:
121
+ # If the trait does not exist, we do not finalize; we do an initial validation
122
+ # so that the library won't require 'df' and 'is_biased'.
123
+ validate_and_save_cohort_info(
124
+ is_final=False,
125
+ cohort=cohort,
126
+ info_path=json_path,
127
+ is_gene_available=True, # Genetic data is present
128
+ is_trait_available=False # Trait data is not available
129
+ )
130
+ print("Trait data not available. Only gene expression data was processed. No final data to save.")
131
+
132
+ else:
133
+ # 3. Since trait is available, link the clinical and genetic data on sample IDs
134
+ selected_clinical_df = geo_select_clinical_features(
135
+ clinical_data,
136
+ trait,
137
+ trait_row,
138
+ convert_trait,
139
+ age_row,
140
+ convert_age,
141
+ gender_row,
142
+ convert_gender
143
+ )
144
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
145
+
146
+ # 4. Handle missing values as instructed
147
+ linked_data = handle_missing_values(linked_data, trait)
148
+
149
+ # 5. Determine whether the trait is severely biased
150
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
151
+
152
+ # 6. Conduct final quality validation and save metadata
153
+ is_usable = validate_and_save_cohort_info(
154
+ is_final=True,
155
+ cohort=cohort,
156
+ info_path=json_path,
157
+ is_gene_available=True,
158
+ is_trait_available=True,
159
+ is_biased=trait_biased,
160
+ df=linked_data,
161
+ note="Cohort data successfully processed with trait-based analysis."
162
+ )
163
+
164
+ # 7. If the dataset is usable, save the final linked data
165
+ if is_usable:
166
+ linked_data.to_csv(out_data_file, index=True)
167
+ print(f"Saved final linked data to {out_data_file}")
168
+ else:
169
+ print("The dataset is not usable for trait-based association. Skipping final output.")
p1/preprocess/Angelman_Syndrome/code/TCGA.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Angelman_Syndrome"
6
+
7
+ # Input paths
8
+ tcga_root_dir = "../DATA/TCGA"
9
+
10
+ # Output paths
11
+ out_data_file = "./output/preprocess/1/Angelman_Syndrome/TCGA.csv"
12
+ out_gene_data_file = "./output/preprocess/1/Angelman_Syndrome/gene_data/TCGA.csv"
13
+ out_clinical_data_file = "./output/preprocess/1/Angelman_Syndrome/clinical_data/TCGA.csv"
14
+ json_path = "./output/preprocess/1/Angelman_Syndrome/cohort_info.json"
15
+
16
+ import os
17
+ import pandas as pd
18
+
19
+ # 1. Identify the relevant subdirectory for the trait "Obesity"
20
+ subdirectories = [
21
+ 'CrawlData.ipynb', '.DS_Store', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)',
22
+ 'TCGA_Uterine_Carcinosarcoma_(UCS)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Thymoma_(THYM)',
23
+ 'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Sarcoma_(SARC)',
24
+ 'TCGA_Rectal_Cancer_(READ)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)',
25
+ 'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Ocular_melanomas_(UVM)',
26
+ 'TCGA_Mesothelioma_(MESO)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)',
27
+ 'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lower_Grade_Glioma_(LGG)',
28
+ 'TCGA_Liver_Cancer_(LIHC)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)',
29
+ 'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Head_and_Neck_Cancer_(HNSC)',
30
+ 'TCGA_Glioblastoma_(GBM)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Endometrioid_Cancer_(UCEC)',
31
+ 'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Cervical_Cancer_(CESC)',
32
+ 'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Bile_Duct_Cancer_(CHOL)',
33
+ 'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Acute_Myeloid_Leukemia_(LAML)'
34
+ ]
35
+
36
+ trait_keyword = trait
37
+ target_subdir = None
38
+
39
+ for sd in subdirectories:
40
+ if trait_keyword.lower() in sd.lower():
41
+ target_subdir = sd
42
+ break
43
+
44
+ if target_subdir is None:
45
+ # No suitable data found for this trait; mark as completed
46
+ print("No TCGA subdirectory found for the trait. Skipping.")
47
+ else:
48
+ # 2. Locate clinical and genetic data files
49
+ cohort_dir = os.path.join(tcga_root_dir, target_subdir)
50
+ clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
51
+
52
+ # 3. Load the data
53
+ clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
54
+ genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
55
+
56
+ # 4. Print column names of clinical data
57
+ print(clinical_df.columns)
p1/preprocess/Angelman_Syndrome/cohort_info.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"GSE43900": {"is_usable": false, "is_gene_available": true, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}}
p1/preprocess/Angelman_Syndrome/gene_data/GSE43900.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ Gene,GSM1179395,GSM1179396,GSM1179397,GSM1179398,GSM1179399,GSM1179400,GSM1179401,GSM1179402,GSM1179409,GSM1179410,GSM1179411,GSM1179412,GSM1179413,GSM1179414,GSM1179415,GSM1179416,GSM1179417,GSM1179418,GSM1179419,GSM1179420,GSM1179421,GSM1179422,GSM1179423,GSM1179424,GSM1179425,GSM1179426,GSM1179427,GSM1179428,GSM1179429,GSM1179430,GSM1179431,GSM1179432,GSM1179433,GSM1179434
p1/preprocess/Aniridia/clinical_data/GSE137996.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ GSM4096389,GSM4096390,GSM4096391,GSM4096392,GSM4096393,GSM4096394,GSM4096395,GSM4096396,GSM4096397,GSM4096398,GSM4096399,GSM4096400,GSM4096401,GSM4096402,GSM4096403,GSM4096404,GSM4096405,GSM4096406,GSM4096407,GSM4096408,GSM4096409,GSM4096410,GSM4096411,GSM4096412,GSM4096413,GSM4096414,GSM4096415,GSM4096416,GSM4096417,GSM4096418,GSM4096419,GSM4096420,GSM4096421,GSM4096422,GSM4096423,GSM4096424,GSM4096425,GSM4096426,GSM4096427,GSM4096428
2
+ 1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
3
+ 20.0,20.0,28.0,20.0,38.0,57.0,26.0,18.0,36.0,42.0,18.0,42.0,36.0,28.0,55.0,54.0,34.0,51.0,46.0,52.0,53.0,54.0,40.0,55.0,57.0,28.0,39.0,59.0,20.0,32.0,37.0,34.0,28.0,28.0,29.0,19.0,25.0,25.0,34.0,22.0
4
+ 0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0
p1/preprocess/Aniridia/clinical_data/GSE137997.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ GSM4096349,GSM4096350,GSM4096351,GSM4096352,GSM4096353,GSM4096354,GSM4096355,GSM4096356,GSM4096357,GSM4096358,GSM4096359,GSM4096360,GSM4096361,GSM4096362,GSM4096363,GSM4096364,GSM4096365,GSM4096366,GSM4096367,GSM4096368,GSM4096369,GSM4096370,GSM4096371,GSM4096372,GSM4096373,GSM4096374,GSM4096375,GSM4096376,GSM4096377,GSM4096378,GSM4096379,GSM4096380,GSM4096381,GSM4096382,GSM4096383,GSM4096384,GSM4096385,GSM4096386,GSM4096387,GSM4096388
2
+ 1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
3
+ 20.0,20.0,28.0,20.0,38.0,57.0,26.0,18.0,36.0,42.0,18.0,42.0,36.0,28.0,55.0,54.0,34.0,51.0,46.0,52.0,53.0,54.0,40.0,55.0,57.0,28.0,39.0,59.0,20.0,32.0,37.0,34.0,28.0,28.0,29.0,19.0,25.0,25.0,34.0,22.0
4
+ 0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0
p1/preprocess/Aniridia/code/GSE137996.py ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Aniridia"
6
+ cohort = "GSE137996"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Aniridia"
10
+ in_cohort_dir = "../DATA/GEO/Aniridia/GSE137996"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Aniridia/GSE137996.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Aniridia/gene_data/GSE137996.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Aniridia/clinical_data/GSE137996.csv"
16
+ json_path = "./output/preprocess/1/Aniridia/cohort_info.json"
17
+
18
+ # STEP 1
19
+
20
+ from tools.preprocess import *
21
+
22
+ # 1. Identify the paths to the SOFT file and the matrix file
23
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
24
+
25
+ # 2. Read the matrix file to obtain background information and sample characteristics data
26
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
27
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
28
+ background_info, clinical_data = get_background_and_clinical_data(
29
+ matrix_file,
30
+ background_prefixes,
31
+ clinical_prefixes
32
+ )
33
+
34
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
35
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
36
+
37
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
38
+ print("Background Information:")
39
+ print(background_info)
40
+ print("\nSample Characteristics Dictionary:")
41
+ print(sample_characteristics_dict)
42
+ # Step 1: Determine if gene expression data is available
43
+ # Based on the background info (mRNA expression and microRNA data), we consider this dataset to have gene expression data.
44
+ is_gene_available = True
45
+
46
+ # Step 2: Identify availability for trait, age, and gender, and define conversion functions.
47
+
48
+ # From the sample characteristics:
49
+ # row 0 => age
50
+ # row 1 => gender
51
+ # row 2 => disease (AAK / healthy control)
52
+ #
53
+ # We treat 'disease' as the trait variable, 'age' as continuous, and 'gender' as binary.
54
+
55
+ trait_row = 2
56
+ age_row = 0
57
+ gender_row = 1
58
+
59
+ def convert_trait(x: str) -> int:
60
+ # Extract the raw value after the colon
61
+ val = x.split(':')[-1].strip().lower()
62
+ # Convert to binary: 1 for aniridia (AAK), 0 for control, None otherwise
63
+ if val == 'aak':
64
+ return 1
65
+ elif val == 'healthy control':
66
+ return 0
67
+ return None
68
+
69
+ def convert_age(x: str) -> float:
70
+ # Extract the raw value after the colon
71
+ val = x.split(':')[-1].strip()
72
+ # Convert to float if possible
73
+ try:
74
+ return float(val)
75
+ except ValueError:
76
+ return None
77
+
78
+ def convert_gender(x: str) -> int:
79
+ # Extract the raw value after the colon
80
+ val = x.split(':')[-1].strip().lower()
81
+ # Convert F/M/W to binary: female => 0, male => 1
82
+ if val in ['f', 'w']:
83
+ return 0
84
+ elif val == 'm':
85
+ return 1
86
+ return None
87
+
88
+ # Step 3: Initial filtering and saving metadata
89
+ is_trait_available = (trait_row is not None)
90
+
91
+ validate_and_save_cohort_info(
92
+ is_final=False,
93
+ cohort=cohort,
94
+ info_path=json_path,
95
+ is_gene_available=is_gene_available,
96
+ is_trait_available=is_trait_available
97
+ )
98
+
99
+ # Step 4: Clinical feature extraction (only if trait_row is not None)
100
+ if trait_row is not None:
101
+ selected_clinical_df = geo_select_clinical_features(
102
+ clinical_data,
103
+ trait=trait, # "Aniridia"
104
+ trait_row=trait_row,
105
+ convert_trait=convert_trait,
106
+ age_row=age_row,
107
+ convert_age=convert_age,
108
+ gender_row=gender_row,
109
+ convert_gender=convert_gender
110
+ )
111
+
112
+ # Preview extracted clinical features
113
+ previewed_data = preview_df(selected_clinical_df)
114
+ print("Preview of selected clinical data:", previewed_data)
115
+
116
+ # Save clinical features to CSV
117
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
118
+ # STEP3
119
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
120
+ gene_data = get_genetic_data(matrix_file)
121
+
122
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
123
+ print(gene_data.index[:20])
124
+ # After reviewing the identifiers such as "A_19_P00315452", they appear to be array probe IDs and not standard gene symbols.
125
+ # Therefore, gene symbol mapping is required.
126
+ print("requires_gene_mapping = True")
127
+ # STEP5
128
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
129
+ gene_annotation = get_gene_annotation(soft_file)
130
+
131
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
132
+ print("Gene annotation preview:")
133
+ print(preview_df(gene_annotation))
134
+ # Gene Identifier Mapping
135
+ mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="GENE_SYMBOL")
136
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
137
+ # STEP 7: Data Normalization and Linking
138
+
139
+ # 1. Normalize gene symbols in the obtained gene expression data
140
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
141
+ normalized_gene_data.to_csv(out_gene_data_file)
142
+ print(f"Saved normalized gene data to {out_gene_data_file}")
143
+
144
+ # 2. Link the clinical and genetic data on sample IDs
145
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
146
+
147
+ # 3. Handle missing values, removing or imputing as instructed
148
+ linked_data = handle_missing_values(linked_data, trait)
149
+
150
+ # 4. Determine whether the trait (and potentially other features) is severely biased.
151
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
152
+
153
+ # 5. Conduct final quality validation and save metadata
154
+ is_usable = validate_and_save_cohort_info(
155
+ is_final=True,
156
+ cohort=cohort,
157
+ info_path=json_path,
158
+ is_gene_available=True,
159
+ is_trait_available=True, # We do have a trait column
160
+ is_biased=trait_biased,
161
+ df=linked_data,
162
+ note="Cohort data successfully processed with trait-based analysis."
163
+ )
164
+
165
+ # 6. If the dataset is usable, save the final linked data
166
+ if is_usable:
167
+ linked_data.to_csv(out_data_file, index=True)
168
+ print(f"Saved final linked data to {out_data_file}")
169
+ else:
170
+ print("The dataset is not usable for trait-based association. Skipping final output.")
p1/preprocess/Aniridia/code/GSE137997.py ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Aniridia"
6
+ cohort = "GSE137997"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Aniridia"
10
+ in_cohort_dir = "../DATA/GEO/Aniridia/GSE137997"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Aniridia/GSE137997.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Aniridia/gene_data/GSE137997.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Aniridia/clinical_data/GSE137997.csv"
16
+ json_path = "./output/preprocess/1/Aniridia/cohort_info.json"
17
+
18
+ # STEP 1
19
+
20
+ from tools.preprocess import *
21
+
22
+ # 1. Identify the paths to the SOFT file and the matrix file
23
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
24
+
25
+ # 2. Read the matrix file to obtain background information and sample characteristics data
26
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
27
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
28
+ background_info, clinical_data = get_background_and_clinical_data(
29
+ matrix_file,
30
+ background_prefixes,
31
+ clinical_prefixes
32
+ )
33
+
34
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
35
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
36
+
37
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
38
+ print("Background Information:")
39
+ print(background_info)
40
+ print("\nSample Characteristics Dictionary:")
41
+ print(sample_characteristics_dict)
42
+ # 1. Determine if gene expression data is available
43
+ is_gene_available = True # The title mentions "mRNA" alongside miRNA, so we consider gene expression data present.
44
+
45
+ # 2. Identify rows for trait, age, and gender, and define their conversion functions
46
+
47
+ # Based on the sample characteristics dictionary:
48
+ # 0 -> age data
49
+ # 1 -> gender data
50
+ # 2 -> "disease: AAK" or "disease: healthy control"
51
+ # This suggests:
52
+ trait_row = 2
53
+ age_row = 0
54
+ gender_row = 1
55
+
56
+ def convert_trait(value: str) -> int:
57
+ """
58
+ Convert 'disease: AAK' or 'disease: healthy control' to binary (1 for aniridia, 0 for control).
59
+ Unknown or unexpected values become None.
60
+ """
61
+ try:
62
+ val = value.split(':', 1)[1].strip().lower()
63
+ if 'aak' in val:
64
+ return 1
65
+ elif 'healthy' in val:
66
+ return 0
67
+ else:
68
+ return None
69
+ except:
70
+ return None
71
+
72
+ def convert_age(value: str) -> float:
73
+ """
74
+ Convert 'age: 20' etc. to a float (continuous). Unknown values become None.
75
+ """
76
+ try:
77
+ val = value.split(':', 1)[1].strip()
78
+ return float(val)
79
+ except:
80
+ return None
81
+
82
+ def convert_gender(value: str) -> int:
83
+ """
84
+ Convert 'gender: F', 'gender: M', 'gender: W' to binary (female=0, male=1).
85
+ 'W' presumed female. Unknown or unexpected become None.
86
+ """
87
+ try:
88
+ val = value.split(':', 1)[1].strip().lower()
89
+ if val in ['f', 'w', 'female', 'woman', 'women']:
90
+ return 0
91
+ elif val in ['m', 'male']:
92
+ return 1
93
+ else:
94
+ return None
95
+ except:
96
+ return None
97
+
98
+ # 3. Conduct initial filtering and save metadata
99
+ is_trait_available = (trait_row is not None)
100
+ validate_and_save_cohort_info(
101
+ is_final=False,
102
+ cohort=cohort,
103
+ info_path=json_path,
104
+ is_gene_available=is_gene_available,
105
+ is_trait_available=is_trait_available
106
+ )
107
+
108
+ # 4. Clinical feature extraction if trait data is available
109
+ if trait_row is not None:
110
+ selected_clinical_df = geo_select_clinical_features(
111
+ clinical_df=clinical_data,
112
+ trait=trait,
113
+ trait_row=trait_row,
114
+ convert_trait=convert_trait,
115
+ age_row=age_row,
116
+ convert_age=convert_age,
117
+ gender_row=gender_row,
118
+ convert_gender=convert_gender
119
+ )
120
+ # Preview
121
+ preview_result = preview_df(selected_clinical_df)
122
+ print("Preview of selected clinical features:", preview_result)
123
+ # Save clinical data
124
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
125
+ # STEP3
126
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
127
+ gene_data = get_genetic_data(matrix_file)
128
+
129
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
130
+ print(gene_data.index[:20])
131
+ # These are microRNA identifiers (e.g. hsa-miR-1-3p) rather than standard human gene symbols;
132
+ # they do not require further mapping to gene symbols.
133
+ print("requires_gene_mapping = False")
134
+ # STEP 7: Data Normalization and Linking
135
+
136
+ # 1. Normalize gene symbols in the obtained gene expression data
137
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
138
+ normalized_gene_data.to_csv(out_gene_data_file)
139
+ print(f"Saved normalized gene data to {out_gene_data_file}")
140
+
141
+ # 2. Link the clinical and genetic data on sample IDs
142
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
143
+
144
+ # 3. Handle missing values, removing or imputing as instructed
145
+ linked_data = handle_missing_values(linked_data, trait)
146
+
147
+ # 4. Determine whether the trait (and potentially other features) is severely biased.
148
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
149
+
150
+ # 5. Conduct final quality validation and save metadata
151
+ is_usable = validate_and_save_cohort_info(
152
+ is_final=True,
153
+ cohort=cohort,
154
+ info_path=json_path,
155
+ is_gene_available=True,
156
+ is_trait_available=True, # We do have a trait column
157
+ is_biased=trait_biased,
158
+ df=linked_data,
159
+ note="Cohort data successfully processed with trait-based analysis."
160
+ )
161
+
162
+ # 6. If the dataset is usable, save the final linked data
163
+ if is_usable:
164
+ linked_data.to_csv(out_data_file, index=True)
165
+ print(f"Saved final linked data to {out_data_file}")
166
+ else:
167
+ print("The dataset is not usable for trait-based association. Skipping final output.")
p1/preprocess/Aniridia/code/GSE204791.py ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Aniridia"
6
+ cohort = "GSE204791"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Aniridia"
10
+ in_cohort_dir = "../DATA/GEO/Aniridia/GSE204791"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Aniridia/GSE204791.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Aniridia/gene_data/GSE204791.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Aniridia/clinical_data/GSE204791.csv"
16
+ json_path = "./output/preprocess/1/Aniridia/cohort_info.json"
17
+
18
+ # STEP 1
19
+
20
+ from tools.preprocess import *
21
+
22
+ # 1. Identify the paths to the SOFT file and the matrix file
23
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
24
+
25
+ # 2. Read the matrix file to obtain background information and sample characteristics data
26
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
27
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
28
+ background_info, clinical_data = get_background_and_clinical_data(
29
+ matrix_file,
30
+ background_prefixes,
31
+ clinical_prefixes
32
+ )
33
+
34
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
35
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
36
+
37
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
38
+ print("Background Information:")
39
+ print(background_info)
40
+ print("\nSample Characteristics Dictionary:")
41
+ print(sample_characteristics_dict)
42
+ # 1. Gene Expression Data Availability
43
+ is_gene_available = True # The series includes mRNA expression, so we consider it gene expression data.
44
+
45
+ # 2. Variable Availability and Data Type Conversion
46
+ # 2.1 Determine row indices for 'trait', 'age', 'gender'
47
+ # Based on the sample characteristics dictionary:
48
+ # - 0: ['age: 59', 'age: 28', ... ]
49
+ # - 1: ['gender: F', 'gender: M']
50
+ # - 2: ['disease: KC', 'disease: healthy control']
51
+ # - 3: [ ... staging info ... ]
52
+ # We are looking for "Aniridia" but our dictionary lists "KC" or "healthy control" for disease.
53
+ # Hence, we do not have data for "Aniridia." So trait_row = None.
54
+
55
+ trait_row = None # No data on "Aniridia" found
56
+ age_row = 0 # Multiple ages are present
57
+ gender_row = 1 # "F" and "M" are present
58
+
59
+ # 2.2 Write conversion functions
60
+ def convert_trait(val: str):
61
+ """
62
+ Attempt to parse 'Aniridia' or 'control' from the string after the colon.
63
+ Since 'Aniridia' is not actually in our sample data, return None.
64
+ """
65
+ return None
66
+
67
+ def convert_age(val: str):
68
+ """
69
+ Parse the value after the colon and convert to float.
70
+ Non-numeric or invalid data is converted to None.
71
+ """
72
+ parts = val.split(':')
73
+ if len(parts) < 2:
74
+ return None
75
+ raw_value = parts[1].strip()
76
+ try:
77
+ return float(raw_value)
78
+ except ValueError:
79
+ return None
80
+
81
+ def convert_gender(val: str):
82
+ """
83
+ Parse the value after the colon and convert:
84
+ F -> 0
85
+ M -> 1
86
+ Otherwise -> None
87
+ """
88
+ parts = val.split(':')
89
+ if len(parts) < 2:
90
+ return None
91
+ raw_value = parts[1].strip().upper()
92
+ if raw_value == 'F':
93
+ return 0
94
+ elif raw_value == 'M':
95
+ return 1
96
+ else:
97
+ return None
98
+
99
+ # 3. Save Metadata
100
+ # Trait data availability is determined by whether trait_row is None.
101
+ is_trait_available = (trait_row is not None)
102
+
103
+ # Perform initial filtering (is_final=False).
104
+ # This will record metadata if data fails initial filtering.
105
+ is_usable = validate_and_save_cohort_info(
106
+ is_final=False,
107
+ cohort=cohort,
108
+ info_path=json_path,
109
+ is_gene_available=is_gene_available,
110
+ is_trait_available=is_trait_available
111
+ )
112
+
113
+ # 4. Clinical Feature Extraction
114
+ # Since trait_row is None, clinical data extraction is skipped.
115
+ # STEP3
116
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
117
+ gene_data = get_genetic_data(matrix_file)
118
+
119
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
120
+ print(gene_data.index[:20])
121
+ # These identifiers appear to be microarray probe IDs or custom probe identifiers rather than standard human gene symbols.
122
+ # Therefore, they need to be mapped to gene symbols.
123
+
124
+ requires_gene_mapping = True
125
+ # STEP5
126
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
127
+ gene_annotation = get_gene_annotation(soft_file)
128
+
129
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
130
+ print("Gene annotation preview:")
131
+ print(preview_df(gene_annotation))
132
+ # Gene Identifier Mapping
133
+
134
+ # 1. Identify which columns correspond to the expression data's probe ID and to the gene symbols.
135
+ # From the annotation preview, "ID" appears to match the probe identifiers (e.g., "A_19_P..."),
136
+ # and "GENE_SYMBOL" appears to be the gene symbol column.
137
+
138
+ probe_id_col = "ID"
139
+ gene_symbol_col = "GENE_SYMBOL"
140
+
141
+ # 2. Extract the mapping information between probe IDs and gene symbols.
142
+ gene_mapping_df = get_gene_mapping(gene_annotation, probe_id_col, gene_symbol_col)
143
+
144
+ # 3. Apply the mapping to convert probe-level data into gene-level data.
145
+ gene_data = apply_gene_mapping(gene_data, gene_mapping_df)
146
+ # STEP 7: Data Normalization and Linking
147
+
148
+ import pandas as pd
149
+
150
+ # Since in previous steps we determined trait_row = None (no available trait data),
151
+ # we cannot link clinical data or perform trait-based filtering. Hence, we skip steps
152
+ # that depend on clinical or trait information.
153
+
154
+ # 1. Normalize gene symbols in the obtained gene expression data
155
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
156
+ normalized_gene_data.to_csv(out_gene_data_file)
157
+ print(f"Saved normalized gene data to {out_gene_data_file}")
158
+
159
+ # 2. No trait data found; skip clinical linking, missing-value handling, and bias assessment.
160
+ print("No trait data found. Skipping clinical linking, missing-value handling, and bias assessment.")
161
+
162
+ # 3. Conduct final quality validation and save metadata.
163
+ # Since there's no trait data, we must pass some dummy DataFrame and a boolean for is_biased
164
+ # to avoid the ValueError in final mode.
165
+ dummy_df = pd.DataFrame()
166
+ is_biased_dummy = False # Arbitrary placeholder since we can't assess bias
167
+ is_usable = validate_and_save_cohort_info(
168
+ is_final=True,
169
+ cohort=cohort,
170
+ info_path=json_path,
171
+ is_gene_available=True,
172
+ is_trait_available=False,
173
+ is_biased=is_biased_dummy,
174
+ df=dummy_df,
175
+ note="Trait data not found; dataset cannot be used for trait-based analysis."
176
+ )
177
+
178
+ # 4. Because we don't have usable trait data, skip saving the linked data
179
+ if is_usable:
180
+ # This case should not occur since there's no trait data
181
+ pass
182
+ else:
183
+ print("The dataset is not usable for trait-based association. Skipping final output.")
p1/preprocess/Aniridia/code/TCGA.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Aniridia"
6
+
7
+ # Input paths
8
+ tcga_root_dir = "../DATA/TCGA"
9
+
10
+ # Output paths
11
+ out_data_file = "./output/preprocess/1/Aniridia/TCGA.csv"
12
+ out_gene_data_file = "./output/preprocess/1/Aniridia/gene_data/TCGA.csv"
13
+ out_clinical_data_file = "./output/preprocess/1/Aniridia/clinical_data/TCGA.csv"
14
+ json_path = "./output/preprocess/1/Aniridia/cohort_info.json"
15
+
16
+ import os
17
+ import pandas as pd
18
+
19
+ # 1. Identify the relevant subdirectory for the trait "Obesity"
20
+ subdirectories = [
21
+ 'CrawlData.ipynb', '.DS_Store', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)',
22
+ 'TCGA_Uterine_Carcinosarcoma_(UCS)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Thymoma_(THYM)',
23
+ 'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Sarcoma_(SARC)',
24
+ 'TCGA_Rectal_Cancer_(READ)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)',
25
+ 'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Ocular_melanomas_(UVM)',
26
+ 'TCGA_Mesothelioma_(MESO)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)',
27
+ 'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lower_Grade_Glioma_(LGG)',
28
+ 'TCGA_Liver_Cancer_(LIHC)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)',
29
+ 'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Head_and_Neck_Cancer_(HNSC)',
30
+ 'TCGA_Glioblastoma_(GBM)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Endometrioid_Cancer_(UCEC)',
31
+ 'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Cervical_Cancer_(CESC)',
32
+ 'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Bile_Duct_Cancer_(CHOL)',
33
+ 'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Acute_Myeloid_Leukemia_(LAML)'
34
+ ]
35
+
36
+ trait_keyword = trait
37
+ target_subdir = None
38
+
39
+ for sd in subdirectories:
40
+ if trait_keyword.lower() in sd.lower():
41
+ target_subdir = sd
42
+ break
43
+
44
+ if target_subdir is None:
45
+ # No suitable data found for this trait; mark as completed
46
+ print("No TCGA subdirectory found for the trait. Skipping.")
47
+ else:
48
+ # 2. Locate clinical and genetic data files
49
+ cohort_dir = os.path.join(tcga_root_dir, target_subdir)
50
+ clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
51
+
52
+ # 3. Load the data
53
+ clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
54
+ genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
55
+
56
+ # 4. Print column names of clinical data
57
+ print(clinical_df.columns)
p1/preprocess/Aniridia/cohort_info.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"GSE204791": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Trait data not found; dataset cannot be used for trait-based analysis."}, "GSE137997": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Cohort data successfully processed with trait-based analysis."}, "GSE137996": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Cohort data successfully processed with trait-based analysis."}}
p1/preprocess/Aniridia/gene_data/GSE137996.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ Gene,GSM4096389,GSM4096390,GSM4096391,GSM4096392,GSM4096393,GSM4096394,GSM4096395,GSM4096396,GSM4096397,GSM4096398,GSM4096399,GSM4096400,GSM4096401,GSM4096402,GSM4096403,GSM4096404,GSM4096405,GSM4096406,GSM4096407,GSM4096408,GSM4096409,GSM4096410,GSM4096411,GSM4096412,GSM4096413,GSM4096414,GSM4096415,GSM4096416,GSM4096417,GSM4096418,GSM4096419,GSM4096420,GSM4096421,GSM4096422,GSM4096423,GSM4096424,GSM4096425,GSM4096426,GSM4096427,GSM4096428
p1/preprocess/Aniridia/gene_data/GSE137997.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ ID,GSM4096349,GSM4096350,GSM4096351,GSM4096352,GSM4096353,GSM4096354,GSM4096355,GSM4096356,GSM4096357,GSM4096358,GSM4096359,GSM4096360,GSM4096361,GSM4096362,GSM4096363,GSM4096364,GSM4096365,GSM4096366,GSM4096367,GSM4096368,GSM4096369,GSM4096370,GSM4096371,GSM4096372,GSM4096373,GSM4096374,GSM4096375,GSM4096376,GSM4096377,GSM4096378,GSM4096379,GSM4096380,GSM4096381,GSM4096382,GSM4096383,GSM4096384,GSM4096385,GSM4096386,GSM4096387,GSM4096388
p1/preprocess/Aniridia/gene_data/GSE204791.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ Gene,GSM6193900,GSM6193903,GSM6193906,GSM6193908,GSM6193911,GSM6193913,GSM6193916,GSM6193918,GSM6193920,GSM6193923,GSM6193925,GSM6193928,GSM6193930,GSM6193933,GSM6193935,GSM6193938,GSM6193940,GSM6193943,GSM6193945,GSM6193948,GSM6193950,GSM6193953,GSM6193955,GSM6193957,GSM6193960,GSM6193962,GSM6193965,GSM6193967,GSM6193970,GSM6193972,GSM6193975
p1/preprocess/Ankylosing_Spondylitis/clinical_data/GSE25101.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ GSM616668,GSM616669,GSM616670,GSM616671,GSM616672,GSM616673,GSM616674,GSM616675,GSM616676,GSM616677,GSM616678,GSM616679,GSM616680,GSM616681,GSM616682,GSM616683,GSM616684,GSM616685,GSM616686,GSM616687,GSM616688,GSM616689,GSM616690,GSM616691,GSM616692,GSM616693,GSM616694,GSM616695,GSM616696,GSM616697,GSM616698,GSM616699
2
+ 1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
p1/preprocess/Ankylosing_Spondylitis/clinical_data/GSE73754.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ GSM1902130,GSM1902131,GSM1902132,GSM1902133,GSM1902134,GSM1902135,GSM1902136,GSM1902137,GSM1902138,GSM1902139,GSM1902140,GSM1902141,GSM1902142,GSM1902143,GSM1902144,GSM1902145,GSM1902146,GSM1902147,GSM1902148,GSM1902149,GSM1902150,GSM1902151,GSM1902152,GSM1902153,GSM1902154,GSM1902155,GSM1902156,GSM1902157,GSM1902158,GSM1902159,GSM1902160,GSM1902161,GSM1902162,GSM1902163,GSM1902164,GSM1902165,GSM1902166,GSM1902167,GSM1902168,GSM1902169,GSM1902170,GSM1902171,GSM1902172,GSM1902173,GSM1902174,GSM1902175,GSM1902176,GSM1902177,GSM1902178,GSM1902179,GSM1902180,GSM1902181,GSM1902182,GSM1902183,GSM1902184,GSM1902185,GSM1902186,GSM1902187,GSM1902188,GSM1902189,GSM1902190,GSM1902191,GSM1902192,GSM1902193,GSM1902194,GSM1902195,GSM1902196,GSM1902197,GSM1902198,GSM1902199,GSM1902200,GSM1902201
2
+ 1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
3
+ 53.0,26.0,29.0,50.0,35.0,48.0,18.0,39.0,49.0,43.0,43.0,18.0,59.0,51.0,18.0,45.0,52.0,77.0,34.0,31.0,51.0,23.0,52.0,46.0,40.0,55.0,54.0,41.0,38.0,45.0,52.0,43.0,41.0,21.0,47.0,60.0,46.0,27.0,37.0,28.0,37.0,48.0,41.0,53.0,39.0,18.0,50.0,22.0,48.0,57.0,23.0,56.0,28.0,26.0,65.0,41.0,32.0,56.0,47.0,71.0,24.0,24.0,27.0,37.0,42.0,63.0,61.0,20.0,31.0,25.0,29.0,65.0
4
+ 1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p1/preprocess/Ankylosing_Spondylitis/code/GSE25101.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Ankylosing_Spondylitis"
6
+ cohort = "GSE25101"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Ankylosing_Spondylitis"
10
+ in_cohort_dir = "../DATA/GEO/Ankylosing_Spondylitis/GSE25101"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Ankylosing_Spondylitis/GSE25101.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Ankylosing_Spondylitis/gene_data/GSE25101.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Ankylosing_Spondylitis/clinical_data/GSE25101.csv"
16
+ json_path = "./output/preprocess/1/Ankylosing_Spondylitis/cohort_info.json"
17
+
18
+ # STEP 1
19
+
20
+ from tools.preprocess import *
21
+
22
+ # 1. Identify the paths to the SOFT file and the matrix file
23
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
24
+
25
+ # 2. Read the matrix file to obtain background information and sample characteristics data
26
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
27
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
28
+ background_info, clinical_data = get_background_and_clinical_data(
29
+ matrix_file,
30
+ background_prefixes,
31
+ clinical_prefixes
32
+ )
33
+
34
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
35
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
36
+
37
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
38
+ print("Background Information:")
39
+ print(background_info)
40
+ print("\nSample Characteristics Dictionary:")
41
+ print(sample_characteristics_dict)
42
+ # 1) Gene Expression Data Availability
43
+ # Based on the series description, this dataset uses "Illumina HT-12 Whole-Genome Expression BeadChips".
44
+ # Hence, we conclude that it likely contains gene expression data.
45
+ is_gene_available = True
46
+
47
+ # 2) Variable Availability and Data Type Conversion
48
+
49
+ # Inspecting the sample characteristics dictionary:
50
+ # {0: ['tissue: Whole blood'],
51
+ # 1: ['cell type: PBMC'],
52
+ # 2: ['disease status: Ankylosing spondylitis patient', 'disease status: Normal control']}
53
+
54
+ # -- Trait --
55
+ # The data for "Ankylosing_Spondylitis" can be inferred from key=2 (it has at least 2 unique values).
56
+ trait_row = 2
57
+
58
+ # -- Age --
59
+ # No age information is found. So:
60
+ age_row = None
61
+
62
+ # -- Gender --
63
+ # No gender information is found. So:
64
+ gender_row = None
65
+
66
+ # Data type choices:
67
+ # Since the "trait" variable has two categories (patient vs control), we treat it as binary.
68
+ # For "age" and "gender", no data is available, so we won't convert.
69
+
70
+ def convert_trait(value: str):
71
+ """
72
+ Convert disease status to binary:
73
+ 'Ankylosing spondylitis patient' -> 1
74
+ 'Normal control' -> 0
75
+ Unknown -> None
76
+ """
77
+ # Split by ':', then take the part after the colon if present
78
+ parts = value.split(':', 1)
79
+ val = parts[1].strip().lower() if len(parts) > 1 else parts[0].strip().lower()
80
+
81
+ if 'ankylosing spondylitis patient' in val:
82
+ return 1
83
+ elif 'normal control' in val:
84
+ return 0
85
+ else:
86
+ return None
87
+
88
+ def convert_age(value: str):
89
+ # Age not available in this dataset, so all become None
90
+ return None
91
+
92
+ def convert_gender(value: str):
93
+ # Gender not available in this dataset, so all become None
94
+ return None
95
+
96
+ # 3) Save Metadata with initial filtering
97
+ # Trait data is available if trait_row is not None
98
+ is_trait_available = (trait_row is not None)
99
+
100
+ is_usable = validate_and_save_cohort_info(
101
+ is_final=False,
102
+ cohort=cohort,
103
+ info_path=json_path,
104
+ is_gene_available=is_gene_available,
105
+ is_trait_available=is_trait_available
106
+ )
107
+
108
+ # 4) Clinical Feature Extraction (only if trait_row is not None)
109
+ if trait_row is not None:
110
+ selected_clinical = geo_select_clinical_features(
111
+ clinical_df=clinical_data, # assume 'clinical_data' was loaded in a previous step
112
+ trait=trait,
113
+ trait_row=trait_row,
114
+ convert_trait=convert_trait,
115
+ age_row=age_row,
116
+ convert_age=convert_age,
117
+ gender_row=gender_row,
118
+ convert_gender=convert_gender
119
+ )
120
+ # Preview the extracted clinical features
121
+ print("Preview of selected clinical features:")
122
+ print(preview_df(selected_clinical, n=5))
123
+
124
+ # Save the clinical data
125
+ selected_clinical.to_csv(out_clinical_data_file, index=False)
126
+ # STEP3
127
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
128
+ gene_data = get_genetic_data(matrix_file)
129
+
130
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
131
+ print(gene_data.index[:20])
132
+ # These ILMN_* identifiers are Illumina probe IDs, not standard human gene symbols.
133
+ # Therefore, they require mapping to gene symbols.
134
+
135
+ print("requires_gene_mapping = True")
136
+ # STEP5
137
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
138
+ gene_annotation = get_gene_annotation(soft_file)
139
+
140
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
141
+ print("Gene annotation preview:")
142
+ print(preview_df(gene_annotation))
143
+ # STEP: Gene Identifier Mapping
144
+
145
+ # 1) Identify the columns in gene_annotation that match gene_data's "ID" and the gene symbol
146
+ # From inspection, "ID" corresponds to the Illumina probe IDs in gene_data, and "Symbol" contains the gene symbols.
147
+
148
+ # 2) Create the gene mapping dataframe using probe IDs and gene symbols
149
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
150
+
151
+ # 3) Convert probe-level to gene-level data using the mapping
152
+ gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)
153
+
154
+ # Print out some information about the mapped gene data
155
+ print("Gene expression data after mapping:")
156
+ print("Shape of gene_data:", gene_data.shape)
157
+ print("First 20 mapped gene symbols:", list(gene_data.index[:20]))
158
+ # STEP 7: Data Normalization and Linking
159
+
160
+ # 1. Normalize gene symbols in the obtained gene expression data
161
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
162
+ normalized_gene_data.to_csv(out_gene_data_file)
163
+ print(f"Saved normalized gene data to {out_gene_data_file}")
164
+
165
+ # 2. Link the clinical and genetic data on sample IDs
166
+ linked_data = geo_link_clinical_genetic_data(selected_clinical, normalized_gene_data)
167
+
168
+ # 3. Handle missing values, removing or imputing as instructed
169
+ linked_data = handle_missing_values(linked_data, trait)
170
+
171
+ # 4. Determine whether the trait (and potentially other features) is severely biased.
172
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
173
+
174
+ # 5. Conduct final quality validation and save metadata
175
+ is_usable = validate_and_save_cohort_info(
176
+ is_final=True,
177
+ cohort=cohort,
178
+ info_path=json_path,
179
+ is_gene_available=True,
180
+ is_trait_available=True, # We do have a trait column
181
+ is_biased=trait_biased,
182
+ df=linked_data,
183
+ note="Cohort data successfully processed with trait-based analysis."
184
+ )
185
+
186
+ # 6. If the dataset is usable, save the final linked data
187
+ if is_usable:
188
+ linked_data.to_csv(out_data_file, index=True)
189
+ print(f"Saved final linked data to {out_data_file}")
190
+ else:
191
+ print("The dataset is not usable for trait-based association. Skipping final output.")
p1/preprocess/Ankylosing_Spondylitis/code/GSE73754.py ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Ankylosing_Spondylitis"
6
+ cohort = "GSE73754"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Ankylosing_Spondylitis"
10
+ in_cohort_dir = "../DATA/GEO/Ankylosing_Spondylitis/GSE73754"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Ankylosing_Spondylitis/GSE73754.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Ankylosing_Spondylitis/gene_data/GSE73754.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Ankylosing_Spondylitis/clinical_data/GSE73754.csv"
16
+ json_path = "./output/preprocess/1/Ankylosing_Spondylitis/cohort_info.json"
17
+
18
+ # STEP 1
19
+
20
+ from tools.preprocess import *
21
+
22
+ # 1. Identify the paths to the SOFT file and the matrix file
23
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
24
+
25
+ # 2. Read the matrix file to obtain background information and sample characteristics data
26
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
27
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
28
+ background_info, clinical_data = get_background_and_clinical_data(
29
+ matrix_file,
30
+ background_prefixes,
31
+ clinical_prefixes
32
+ )
33
+
34
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
35
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
36
+
37
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
38
+ print("Background Information:")
39
+ print(background_info)
40
+ print("\nSample Characteristics Dictionary:")
41
+ print(sample_characteristics_dict)
42
+ # Step 1. Determine gene expression data availability
43
+ is_gene_available = True # Based on the background (differential gene expression analysis), we consider this dataset to have gene data
44
+
45
+ # Step 2. Identify data availability for trait, age, and gender
46
+ # According to the sample characteristics dictionary:
47
+ # 0 -> 'Sex: Male', 'Sex: Female'
48
+ # 1 -> 'age (yr): 53', ...
49
+ # 3 -> 'disease: Ankylosing Spondylitis', 'disease: healthy control'
50
+ trait_row = 3
51
+ age_row = 1
52
+ gender_row = 0
53
+
54
+ # Step 2.2 Define conversion functions
55
+ def convert_trait(x: str):
56
+ # e.g., "disease: Ankylosing Spondylitis" -> 1, "disease: healthy control" -> 0
57
+ # parse out the value after the colon
58
+ try:
59
+ val = x.split(":", 1)[1].strip().lower()
60
+ except IndexError:
61
+ return None
62
+ if "ankylosing spondylitis" in val:
63
+ return 1
64
+ elif "healthy control" in val:
65
+ return 0
66
+ else:
67
+ return None
68
+
69
+ def convert_age(x: str):
70
+ # e.g., "age (yr): 53" -> 53
71
+ try:
72
+ val = x.split(":", 1)[1].strip()
73
+ return float(val)
74
+ except:
75
+ return None
76
+
77
+ def convert_gender(x: str):
78
+ # e.g., "Sex: Male" -> 1, "Sex: Female" -> 0
79
+ try:
80
+ val = x.split(":", 1)[1].strip().lower()
81
+ except IndexError:
82
+ return None
83
+ if "male" in val:
84
+ return 1
85
+ elif "female" in val:
86
+ return 0
87
+ else:
88
+ return None
89
+
90
+ # Step 3. Initial filtering and save metadata
91
+ is_trait_available = (trait_row is not None)
92
+ validate_and_save_cohort_info(
93
+ is_final=False,
94
+ cohort=cohort,
95
+ info_path=json_path,
96
+ is_gene_available=is_gene_available,
97
+ is_trait_available=is_trait_available
98
+ )
99
+
100
+ # Step 4. Clinical feature extraction (only if trait_row is not None)
101
+ if trait_row is not None:
102
+ # 'clinical_data' is assumed to be the DataFrame previously obtained for sample characteristics
103
+ selected_clinical_df = geo_select_clinical_features(
104
+ clinical_df=clinical_data,
105
+ trait=trait,
106
+ trait_row=trait_row,
107
+ convert_trait=convert_trait,
108
+ age_row=age_row,
109
+ convert_age=convert_age,
110
+ gender_row=gender_row,
111
+ convert_gender=convert_gender
112
+ )
113
+
114
+ # Preview the result
115
+ print("Preview of clinical features:")
116
+ print(preview_df(selected_clinical_df, n=5))
117
+
118
+ # Save to CSV
119
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
120
+ # STEP3
121
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
122
+ gene_data = get_genetic_data(matrix_file)
123
+
124
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
125
+ print(gene_data.index[:20])
126
+ # The observed gene identifiers (ILMN_####) are Illumina microarray probe IDs.
127
+ # They are not standard human gene symbols and require mapping to official gene symbols.
128
+ print("requires_gene_mapping = True")
129
+ # STEP5
130
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
131
+ gene_annotation = get_gene_annotation(soft_file)
132
+
133
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
134
+ print("Gene annotation preview:")
135
+ print(preview_df(gene_annotation))
136
+ # STEP: Gene Identifier Mapping
137
+
138
+ # 1. Identify the annotation columns for mapping
139
+ # - The gene expression data uses 'ILMN_####' as identifiers, which match the 'ID' column in the annotation.
140
+ # - The gene symbols are in the 'Symbol' column.
141
+
142
+ # 2. Extract the gene mapping dataframe using the library function
143
+ gene_mapping_df = get_gene_mapping(annotation=gene_annotation, prob_col='ID', gene_col='Symbol')
144
+
145
+ # 3. Convert probe-level measurements to gene expression data
146
+ gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=gene_mapping_df)
147
+
148
+ # Print shape of the new gene_data to confirm processing
149
+ print("Gene data shape after mapping:", gene_data.shape)
150
+ # STEP 7: Data Normalization and Linking
151
+
152
+ # 1. Normalize gene symbols in the obtained gene expression data
153
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
154
+ normalized_gene_data.to_csv(out_gene_data_file)
155
+ print(f"Saved normalized gene data to {out_gene_data_file}")
156
+
157
+ # 2. Link the clinical and genetic data on sample IDs
158
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
159
+
160
+ # 3. Handle missing values, removing or imputing as instructed
161
+ linked_data = handle_missing_values(linked_data, trait)
162
+
163
+ # 4. Determine whether the trait (and potentially other features) is severely biased.
164
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
165
+
166
+ # 5. Conduct final quality validation and save metadata
167
+ is_usable = validate_and_save_cohort_info(
168
+ is_final=True,
169
+ cohort=cohort,
170
+ info_path=json_path,
171
+ is_gene_available=True,
172
+ is_trait_available=True, # We do have a trait column
173
+ is_biased=trait_biased,
174
+ df=linked_data,
175
+ note="Cohort data successfully processed with trait-based analysis."
176
+ )
177
+
178
+ # 6. If the dataset is usable, save the final linked data
179
+ if is_usable:
180
+ linked_data.to_csv(out_data_file, index=True)
181
+ print(f"Saved final linked data to {out_data_file}")
182
+ else:
183
+ print("The dataset is not usable for trait-based association. Skipping final output.")
p1/preprocess/Ankylosing_Spondylitis/code/TCGA.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Ankylosing_Spondylitis"
6
+
7
+ # Input paths
8
+ tcga_root_dir = "../DATA/TCGA"
9
+
10
+ # Output paths
11
+ out_data_file = "./output/preprocess/1/Ankylosing_Spondylitis/TCGA.csv"
12
+ out_gene_data_file = "./output/preprocess/1/Ankylosing_Spondylitis/gene_data/TCGA.csv"
13
+ out_clinical_data_file = "./output/preprocess/1/Ankylosing_Spondylitis/clinical_data/TCGA.csv"
14
+ json_path = "./output/preprocess/1/Ankylosing_Spondylitis/cohort_info.json"
15
+
16
+ import os
17
+ import pandas as pd
18
+
19
+ # 1. Identify the relevant subdirectory for the trait "Obesity"
20
+ subdirectories = [
21
+ 'CrawlData.ipynb', '.DS_Store', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)',
22
+ 'TCGA_Uterine_Carcinosarcoma_(UCS)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Thymoma_(THYM)',
23
+ 'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Sarcoma_(SARC)',
24
+ 'TCGA_Rectal_Cancer_(READ)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)',
25
+ 'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Ocular_melanomas_(UVM)',
26
+ 'TCGA_Mesothelioma_(MESO)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)',
27
+ 'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lower_Grade_Glioma_(LGG)',
28
+ 'TCGA_Liver_Cancer_(LIHC)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)',
29
+ 'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Head_and_Neck_Cancer_(HNSC)',
30
+ 'TCGA_Glioblastoma_(GBM)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Endometrioid_Cancer_(UCEC)',
31
+ 'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Cervical_Cancer_(CESC)',
32
+ 'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Bile_Duct_Cancer_(CHOL)',
33
+ 'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Acute_Myeloid_Leukemia_(LAML)'
34
+ ]
35
+
36
+ trait_keyword = trait
37
+ target_subdir = None
38
+
39
+ for sd in subdirectories:
40
+ if trait_keyword.lower() in sd.lower():
41
+ target_subdir = sd
42
+ break
43
+
44
+ if target_subdir is None:
45
+ # No suitable data found for this trait; mark as completed
46
+ print("No TCGA subdirectory found for the trait. Skipping.")
47
+ else:
48
+ # 2. Locate clinical and genetic data files
49
+ cohort_dir = os.path.join(tcga_root_dir, target_subdir)
50
+ clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
51
+
52
+ # 3. Load the data
53
+ clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
54
+ genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
55
+
56
+ # 4. Print column names of clinical data
57
+ print(clinical_df.columns)
p1/preprocess/Ankylosing_Spondylitis/cohort_info.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"GSE73754": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Cohort data successfully processed with trait-based analysis."}, "GSE25101": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Cohort data successfully processed with trait-based analysis."}}
p1/preprocess/Ankylosing_Spondylitis/gene_data/GSE25101.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ Gene,GSM616668,GSM616669,GSM616670,GSM616671,GSM616672,GSM616673,GSM616674,GSM616675,GSM616676,GSM616677,GSM616678,GSM616679,GSM616680,GSM616681,GSM616682,GSM616683,GSM616684,GSM616685,GSM616686,GSM616687,GSM616688,GSM616689,GSM616690,GSM616691,GSM616692,GSM616693,GSM616694,GSM616695,GSM616696,GSM616697,GSM616698,GSM616699
p1/preprocess/Ankylosing_Spondylitis/gene_data/GSE73754.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ Gene,GSM1902130,GSM1902131,GSM1902132,GSM1902133,GSM1902134,GSM1902135,GSM1902136,GSM1902137,GSM1902138,GSM1902139,GSM1902140,GSM1902141,GSM1902142,GSM1902143,GSM1902144,GSM1902145,GSM1902146,GSM1902147,GSM1902148,GSM1902149,GSM1902150,GSM1902151,GSM1902152,GSM1902153,GSM1902154,GSM1902155,GSM1902156,GSM1902157,GSM1902158,GSM1902159,GSM1902160,GSM1902161,GSM1902162,GSM1902163,GSM1902164,GSM1902165,GSM1902166,GSM1902167,GSM1902168,GSM1902169,GSM1902170,GSM1902171,GSM1902172,GSM1902173,GSM1902174,GSM1902175,GSM1902176,GSM1902177,GSM1902178,GSM1902179,GSM1902180,GSM1902181,GSM1902182,GSM1902183,GSM1902184,GSM1902185,GSM1902186,GSM1902187,GSM1902188,GSM1902189,GSM1902190,GSM1902191,GSM1902192,GSM1902193,GSM1902194,GSM1902195,GSM1902196,GSM1902197,GSM1902198,GSM1902199,GSM1902200,GSM1902201
p1/preprocess/Anorexia_Nervosa/clinical_data/GSE60190.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM1467273,GSM1467274,GSM1467275,GSM1467276,GSM1467277,GSM1467278,GSM1467279,GSM1467280,GSM1467281,GSM1467282,GSM1467283,GSM1467284,GSM1467285,GSM1467286,GSM1467287,GSM1467288,GSM1467289,GSM1467290,GSM1467291,GSM1467292,GSM1467293,GSM1467294,GSM1467295,GSM1467296,GSM1467297,GSM1467298,GSM1467299,GSM1467300,GSM1467301,GSM1467302,GSM1467303,GSM1467304,GSM1467305,GSM1467306,GSM1467307,GSM1467308,GSM1467309,GSM1467310,GSM1467311,GSM1467312,GSM1467313,GSM1467314,GSM1467315,GSM1467316,GSM1467317,GSM1467318,GSM1467319,GSM1467320,GSM1467321,GSM1467322,GSM1467323,GSM1467324,GSM1467325,GSM1467326,GSM1467327,GSM1467328,GSM1467329,GSM1467330,GSM1467331,GSM1467332,GSM1467333,GSM1467334,GSM1467335,GSM1467336,GSM1467337,GSM1467338,GSM1467339,GSM1467340,GSM1467341,GSM1467342,GSM1467343,GSM1467344,GSM1467345,GSM1467346,GSM1467347,GSM1467348,GSM1467349,GSM1467350,GSM1467351,GSM1467352,GSM1467353,GSM1467354,GSM1467355,GSM1467356,GSM1467357,GSM1467358,GSM1467359,GSM1467360,GSM1467361,GSM1467362,GSM1467363,GSM1467364,GSM1467365,GSM1467366,GSM1467367,GSM1467368,GSM1467369,GSM1467370,GSM1467371,GSM1467372,GSM1467373,GSM1467374,GSM1467375,GSM1467376,GSM1467377,GSM1467378,GSM1467379,GSM1467380,GSM1467381,GSM1467382,GSM1467383,GSM1467384,GSM1467385,GSM1467386,GSM1467387,GSM1467388,GSM1467389,GSM1467390,GSM1467391,GSM1467392,GSM1467393,GSM1467394,GSM1467395,GSM1467396,GSM1467397,GSM1467398,GSM1467399,GSM1467400,GSM1467401,GSM1467402,GSM1467403,GSM1467404,GSM1467405
2
+ Anorexia_Nervosa,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
3
+ Age,50.421917,27.49863,30.627397,61.167123,32.69589,39.213698,58.605479,49.2,41.041095,51.750684,50.89863,26.745205,29.104109,39.301369,48.978082,57.884931,28.364383,24.041095,19.268493,27.230136,46.605479,23.443835,51.038356,39.663013,46.109589,77.989041,46.967123,63.241095,62.306849,83.641095,42.838356,51.386301,66.715068,51.939726,34.339726,50.109589,18.758904,16.649315,16.353424,42.065753,16.726027,34.465753,34.254794,47.484931,43.756164,49.210958,57.482191,46.561643,49.561643,28.589041,38.410958,30.032876,56.09041,46.915068,49.021917,71.109589,17.235616,16.583561,16.934246,16.8,18.117808,18.660273,16.69589,75.572602,59.260273,55.545205,41.778082,57.454794,45.284931,56.304109,39.654794,55.945205,38.232876,58.109589,40.021917,50.504109,36.550684,45.117808,83.545205,18.786301,48.567123,38.331506,48.101369,18.39452,60.843835,61.372602,52.038356,59.254794,41.567123,50.358904,31.558904,45.701369,44.731506,34.39726,31.613698,54.846575,84.057534,66.79452,53.323287,30.043835,55.435616,45.676712,54.334246,63.558904,45.224657,23.69589,67.865753,16.753424,18.424657,17.09041,16.183561,33.260273,54.424657,45.378082,52.523287,35.273972,22.630136,20.863013,26.531506,24.627397,53.978082,34.961643,18.731506,30.726027,63.471232,54.808219,57.512328,57.610958,44.958904,35.684931,63.0,38.780821,45.978082
4
+ Gender,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0
p1/preprocess/Anorexia_Nervosa/code/GSE60190.py ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Anorexia_Nervosa"
6
+ cohort = "GSE60190"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Anorexia_Nervosa"
10
+ in_cohort_dir = "../DATA/GEO/Anorexia_Nervosa/GSE60190"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Anorexia_Nervosa/GSE60190.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Anorexia_Nervosa/gene_data/GSE60190.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Anorexia_Nervosa/clinical_data/GSE60190.csv"
16
+ json_path = "./output/preprocess/1/Anorexia_Nervosa/cohort_info.json"
17
+
18
+ # STEP 1
19
+
20
+ from tools.preprocess import *
21
+
22
+ # 1. Identify the paths to the SOFT file and the matrix file
23
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
24
+
25
+ # 2. Read the matrix file to obtain background information and sample characteristics data
26
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
27
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
28
+ background_info, clinical_data = get_background_and_clinical_data(
29
+ matrix_file,
30
+ background_prefixes,
31
+ clinical_prefixes
32
+ )
33
+
34
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
35
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
36
+
37
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
38
+ print("Background Information:")
39
+ print(background_info)
40
+ print("\nSample Characteristics Dictionary:")
41
+ print(sample_characteristics_dict)
42
+ # 1. Determine if gene expression data is available
43
+ # Based on the background info (Illumina HumanHT-12 v3 microarray measurements),
44
+ # we conclude that gene expression data is available.
45
+ is_gene_available = True
46
+
47
+ # 2. Identify rows and define conversion functions for trait, age, and gender.
48
+
49
+ # After examining the sample characteristics dictionary, we select:
50
+ # - trait information in row 3 ("dx: ED", "dx: OCD", "dx: Control", etc.)
51
+ # We'll map "dx: ED" -> 1 (our trait of interest, albeit grouped as ED)
52
+ # and everything else -> 0.
53
+ trait_row = 3
54
+
55
+ # - age information in row 5 (e.g., "age: 50.421917")
56
+ age_row = 5
57
+
58
+ # - gender information in row 7 (e.g., "Sex: F" or "Sex: M")
59
+ gender_row = 7
60
+
61
+ def convert_trait(x: str) -> Optional[int]:
62
+ parts = x.split(":", 1)
63
+ if len(parts) < 2:
64
+ return None
65
+ val = parts[1].strip()
66
+ # Convert "ED" to 1, others (including OCD, Control, etc.) to 0
67
+ return 1 if val == "ED" else 0
68
+
69
+ def convert_age(x: str) -> Optional[float]:
70
+ parts = x.split(":", 1)
71
+ if len(parts) < 2:
72
+ return None
73
+ val = parts[1].strip()
74
+ try:
75
+ return float(val)
76
+ except ValueError:
77
+ return None
78
+
79
+ def convert_gender(x: str) -> Optional[int]:
80
+ parts = x.split(":", 1)
81
+ if len(parts) < 2:
82
+ return None
83
+ val = parts[1].strip()
84
+ # Map "F" -> 0, "M" -> 1
85
+ if val == "F":
86
+ return 0
87
+ elif val == "M":
88
+ return 1
89
+ return None
90
+
91
+ # 2.1 Check if trait data is available
92
+ # We consider trait data available if trait_row is not None
93
+ is_trait_available = (trait_row is not None)
94
+
95
+ # 3. Perform initial filtering and save metadata
96
+ # (is_final=False for initial filtering)
97
+ is_usable = validate_and_save_cohort_info(
98
+ is_final=False,
99
+ cohort=cohort,
100
+ info_path=json_path,
101
+ is_gene_available=is_gene_available,
102
+ is_trait_available=is_trait_available
103
+ )
104
+
105
+ # 4. If trait_row is not None, extract clinical features, preview, and save
106
+ if trait_row is not None:
107
+ clinical_data_selected = geo_select_clinical_features(
108
+ clinical_df=clinical_data,
109
+ trait=trait,
110
+ trait_row=trait_row,
111
+ convert_trait=convert_trait,
112
+ age_row=age_row,
113
+ convert_age=convert_age,
114
+ gender_row=gender_row,
115
+ convert_gender=convert_gender
116
+ )
117
+ # Preview the selected clinical data
118
+ preview = preview_df(clinical_data_selected)
119
+ print("Preview of selected clinical features:", preview)
120
+
121
+ # Save the clinical features to CSV
122
+ clinical_data_selected.to_csv(out_clinical_data_file)
123
+ # STEP3
124
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
125
+ gene_data = get_genetic_data(matrix_file)
126
+
127
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
128
+ print(gene_data.index[:20])
129
+ print("These are Illumina probe identifiers (e.g., ILMN_xxxx), which are not human gene symbols and thus require mapping.")
130
+ print("requires_gene_mapping = True")
131
+ # STEP5
132
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
133
+ gene_annotation = get_gene_annotation(soft_file)
134
+
135
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
136
+ print("Gene annotation preview:")
137
+ print(preview_df(gene_annotation))
138
+ # STEP6 - Gene Identifier Mapping
139
+
140
+ # 1. Identify the columns for probe IDs and gene symbols in the gene_annotation DataFrame.
141
+ # From observing the data preview, "ID" holds Illumina probe identifiers matching our gene_data index,
142
+ # and "Symbol" holds the gene symbol information.
143
+ mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Symbol")
144
+
145
+ # 2. Apply this mapping to the probe-level expression data to get gene-level expression data.
146
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
147
+
148
+ # Now, 'gene_data' contains gene expression values indexed by gene symbols.
149
+ # STEP 7: Data Normalization and Linking
150
+
151
+ # 1. Normalize gene symbols in the obtained gene expression data
152
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
153
+ normalized_gene_data.to_csv(out_gene_data_file)
154
+ print(f"Saved normalized gene data to {out_gene_data_file}")
155
+
156
+ # Make sure we have the clinical data in scope.
157
+ # In previous steps, we stored it as 'clinical_data_selected', so define 'selected_clinical' for consistency here.
158
+ selected_clinical = clinical_data_selected
159
+
160
+ # 2. Link the clinical and genetic data on sample IDs
161
+ linked_data = geo_link_clinical_genetic_data(selected_clinical, normalized_gene_data)
162
+
163
+ # 3. Handle missing values, removing or imputing as instructed
164
+ linked_data = handle_missing_values(linked_data, trait)
165
+
166
+ # 4. Determine whether the trait (and potentially other features) is severely biased.
167
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
168
+
169
+ # 5. Conduct final quality validation and save metadata
170
+ is_usable = validate_and_save_cohort_info(
171
+ is_final=True,
172
+ cohort=cohort,
173
+ info_path=json_path,
174
+ is_gene_available=True,
175
+ is_trait_available=True, # We do have a trait column
176
+ is_biased=trait_biased,
177
+ df=linked_data,
178
+ note="Cohort data successfully processed with trait-based analysis."
179
+ )
180
+
181
+ # 6. If the dataset is usable, save the final linked data
182
+ if is_usable:
183
+ linked_data.to_csv(out_data_file, index=True)
184
+ print(f"Saved final linked data to {out_data_file}")
185
+ else:
186
+ print("The dataset is not usable for trait-based association. Skipping final output.")
p1/preprocess/Anorexia_Nervosa/code/TCGA.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Anorexia_Nervosa"
6
+
7
+ # Input paths
8
+ tcga_root_dir = "../DATA/TCGA"
9
+
10
+ # Output paths
11
+ out_data_file = "./output/preprocess/1/Anorexia_Nervosa/TCGA.csv"
12
+ out_gene_data_file = "./output/preprocess/1/Anorexia_Nervosa/gene_data/TCGA.csv"
13
+ out_clinical_data_file = "./output/preprocess/1/Anorexia_Nervosa/clinical_data/TCGA.csv"
14
+ json_path = "./output/preprocess/1/Anorexia_Nervosa/cohort_info.json"
15
+
16
+ import os
17
+ import pandas as pd
18
+
19
+ # 1. Identify the relevant subdirectory for the trait "Obesity"
20
+ subdirectories = [
21
+ 'CrawlData.ipynb', '.DS_Store', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)',
22
+ 'TCGA_Uterine_Carcinosarcoma_(UCS)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Thymoma_(THYM)',
23
+ 'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Sarcoma_(SARC)',
24
+ 'TCGA_Rectal_Cancer_(READ)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)',
25
+ 'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Ocular_melanomas_(UVM)',
26
+ 'TCGA_Mesothelioma_(MESO)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)',
27
+ 'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lower_Grade_Glioma_(LGG)',
28
+ 'TCGA_Liver_Cancer_(LIHC)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)',
29
+ 'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Head_and_Neck_Cancer_(HNSC)',
30
+ 'TCGA_Glioblastoma_(GBM)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Endometrioid_Cancer_(UCEC)',
31
+ 'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Cervical_Cancer_(CESC)',
32
+ 'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Bile_Duct_Cancer_(CHOL)',
33
+ 'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Acute_Myeloid_Leukemia_(LAML)'
34
+ ]
35
+
36
+ trait_keyword = trait
37
+ target_subdir = None
38
+
39
+ for sd in subdirectories:
40
+ if trait_keyword.lower() in sd.lower():
41
+ target_subdir = sd
42
+ break
43
+
44
+ if target_subdir is None:
45
+ # No suitable data found for this trait; mark as completed
46
+ print("No TCGA subdirectory found for the trait. Skipping.")
47
+ else:
48
+ # 2. Locate clinical and genetic data files
49
+ cohort_dir = os.path.join(tcga_root_dir, target_subdir)
50
+ clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
51
+
52
+ # 3. Load the data
53
+ clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
54
+ genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
55
+
56
+ # 4. Print column names of clinical data
57
+ print(clinical_df.columns)
p1/preprocess/Anorexia_Nervosa/cohort_info.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"GSE60190": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Cohort data successfully processed with trait-based analysis."}}