{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "e6332184", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:23:58.899890Z", "iopub.status.busy": "2025-03-25T06:23:58.899783Z", "iopub.status.idle": "2025-03-25T06:23:59.065214Z", "shell.execute_reply": "2025-03-25T06:23:59.064871Z" } }, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Allergies\"\n", "cohort = \"GSE205151\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Allergies\"\n", "in_cohort_dir = \"../../input/GEO/Allergies/GSE205151\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Allergies/GSE205151.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Allergies/gene_data/GSE205151.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Allergies/clinical_data/GSE205151.csv\"\n", "json_path = \"../../output/preprocess/Allergies/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "80178eff", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": 2, "id": "698ac1fb", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:23:59.066656Z", "iopub.status.busy": "2025-03-25T06:23:59.066514Z", "iopub.status.idle": "2025-03-25T06:23:59.094086Z", "shell.execute_reply": "2025-03-25T06:23:59.093793Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Background Information:\n", "!Series_title\t\"Functional Immunophenotyping of Children with Critical Status Asthmaticus Identifies Differential Gene Expression Responses in Neutrophils Exposed to a Poly(I:C) Stimulus\"\n", "!Series_summary\t\"We determined whether we could identify clusters of children with critical asthma by functional immunophenotyping using an intracellular viral analog stimulus.\"\n", "!Series_summary\t\"We performed a single-center, prospective, observational cohort study of 43 children ages 6 – 17 years admitted to a pediatric intensive care unit for an asthma attack between July 2019 to February 2021.\"\n", "!Series_overall_design\t\"Neutrophils were isolated from children, stimulated overnight with LyoVec poly(I:C), and mRNA was analyzed using a targeted Nanostring immunology array. Network analysis of the differentially expressed transcripts for the paired LyoVec poly(I:C) samples was performed.\"\n", "Sample Characteristics Dictionary:\n", "{0: ['polyic_stimulation: Unstimulated', 'polyic_stimulation: Stimulated', 'polyic_stimulation: No'], 1: ['cluster: 1', 'cluster: 2', nan]}\n" ] } ], "source": [ "from tools.preprocess import *\n", "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Read the matrix file to obtain background information and sample characteristics data\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", "\n", "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n", "print(\"Background Information:\")\n", "print(background_info)\n", "print(\"Sample Characteristics Dictionary:\")\n", "print(sample_characteristics_dict)\n" ] }, { "cell_type": "markdown", "id": "c453aba9", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": 3, "id": "59a13bc6", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:23:59.095086Z", "iopub.status.busy": "2025-03-25T06:23:59.094980Z", "iopub.status.idle": "2025-03-25T06:23:59.099737Z", "shell.execute_reply": "2025-03-25T06:23:59.099466Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Clinical data file not found. Unable to extract clinical features.\n" ] } ], "source": [ "# 1. Gene Expression Data Availability\n", "# Based on the background information, this dataset contains gene expression data (mRNA analyzed using Nanostring immunology array)\n", "is_gene_available = True\n", "\n", "# 2. Variable Availability and Data Type Conversion\n", "# 2.1 Data Availability\n", "# Looking at the Sample Characteristics Dictionary, we have:\n", "# - Key 0: 'polyic_stimulation' (Unstimulated, Stimulated, No)\n", "# - Key 1: 'cluster' (1, 2, nan)\n", "\n", "# For the allergy trait (asthma in this case), we can use the 'cluster' field\n", "# The study mentions clusters of children with critical asthma\n", "trait_row = 1\n", "\n", "# Age and gender are not available in the sample characteristics dictionary\n", "age_row = None\n", "gender_row = None\n", "\n", "# 2.2 Data Type Conversion Functions\n", "def convert_trait(value):\n", " \"\"\"Convert trait (cluster) to binary value (0 or 1)\"\"\"\n", " if pd.isna(value):\n", " return None\n", " \n", " # Extract the value after the colon and strip whitespace\n", " if ':' in value:\n", " value = value.split(':', 1)[1].strip()\n", " \n", " # Convert cluster values to binary (0 for cluster 1, 1 for cluster 2)\n", " try:\n", " cluster = int(value)\n", " if cluster == 1:\n", " return 0\n", " elif cluster == 2:\n", " return 1\n", " else:\n", " return None\n", " except (ValueError, TypeError):\n", " return None\n", "\n", "def convert_age(value):\n", " \"\"\"Convert age to continuous value (not used in this dataset)\"\"\"\n", " return None\n", "\n", "def convert_gender(value):\n", " \"\"\"Convert gender to binary value (not used in this dataset)\"\"\"\n", " return None\n", "\n", "# 3. Save Metadata\n", "# Determine trait data availability\n", "is_trait_available = trait_row is not None\n", "\n", "# Validate and save cohort info\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "# 4. Clinical Feature Extraction\n", "# Since trait_row is not None, we need to extract clinical features\n", "if trait_row is not None:\n", " try:\n", " # Look for the sample characteristics data which should be available from previous steps\n", " # Each cohort typically has a characteristics.csv file from GEO processing\n", " clinical_data_file = os.path.join(in_cohort_dir, \"characteristics.csv\")\n", " clinical_data = pd.read_csv(clinical_data_file, index_col=0)\n", " \n", " # Extract clinical features\n", " selected_clinical_df = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", " \n", " # Preview the extracted clinical features\n", " clinical_preview = preview_df(selected_clinical_df)\n", " print(\"Clinical Data Preview:\")\n", " print(clinical_preview)\n", " \n", " # Save the clinical data\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n", " print(f\"Clinical data saved to {out_clinical_data_file}\")\n", " except FileNotFoundError:\n", " print(f\"Clinical data file not found. Unable to extract clinical features.\")\n" ] }, { "cell_type": "markdown", "id": "98adb4d2", "metadata": {}, "source": [ "### Step 3: Gene Data Extraction" ] }, { "cell_type": "code", "execution_count": 4, "id": "dd22eac2", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:23:59.100733Z", "iopub.status.busy": "2025-03-25T06:23:59.100634Z", "iopub.status.idle": "2025-03-25T06:23:59.118507Z", "shell.execute_reply": "2025-03-25T06:23:59.118228Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "First 20 gene/probe identifiers:\n", "Index(['ABCB1', 'ABCF1', 'ABL1', 'ADA', 'AHR', 'AICDA', 'AIRE', 'ALAS1', 'APP',\n", " 'ARG1', 'ARG2', 'ARHGDIB', 'ATG10', 'ATG12', 'ATG16L1', 'ATG5', 'ATG7',\n", " 'ATM', 'B2M', 'B3GAT1'],\n", " dtype='object', name='ID')\n" ] } ], "source": [ "# 1. First get the file paths again to access the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Use the get_genetic_data function from the library to get the gene_data from the matrix_file\n", "gene_data = get_genetic_data(matrix_file)\n", "\n", "# 3. Print the first 20 row IDs (gene or probe identifiers) for future observation\n", "print(\"First 20 gene/probe identifiers:\")\n", "print(gene_data.index[:20])\n" ] }, { "cell_type": "markdown", "id": "39d9de18", "metadata": {}, "source": [ "### Step 4: Gene Identifier Review" ] }, { "cell_type": "code", "execution_count": 5, "id": "3becceb1", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:23:59.119487Z", "iopub.status.busy": "2025-03-25T06:23:59.119387Z", "iopub.status.idle": "2025-03-25T06:23:59.121049Z", "shell.execute_reply": "2025-03-25T06:23:59.120785Z" } }, "outputs": [], "source": [ "# These identifiers appear to be standard human gene symbols (like ABCB1, ATG5, B2M)\n", "# They follow the standard HGNC gene nomenclature and are recognizable as common human genes\n", "# No mapping is needed as they are already in the preferred format\n", "\n", "requires_gene_mapping = False\n" ] }, { "cell_type": "markdown", "id": "a1fe33fb", "metadata": {}, "source": [ "### Step 5: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": 6, "id": "274cb43b", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:23:59.122023Z", "iopub.status.busy": "2025-03-25T06:23:59.121919Z", "iopub.status.idle": "2025-03-25T06:23:59.375666Z", "shell.execute_reply": "2025-03-25T06:23:59.375301Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Normalizing gene symbols...\n", "Gene data shape after normalization: (576, 144)\n", "Normalized gene data saved to ../../output/preprocess/Allergies/gene_data/GSE205151.csv\n", "Loading the original clinical data...\n", "Extracting clinical features...\n", "Clinical data preview:\n", "{'GSM6205808': [0.0], 'GSM6205809': [0.0], 'GSM6205810': [1.0], 'GSM6205811': [1.0], 'GSM6205812': [0.0], 'GSM6205813': [0.0], 'GSM6205814': [1.0], 'GSM6205815': [1.0], 'GSM6205816': [1.0], 'GSM6205817': [1.0], 'GSM6205818': [1.0], 'GSM6205819': [1.0], 'GSM6205820': [0.0], 'GSM6205821': [0.0], 'GSM6205822': [1.0], 'GSM6205823': [1.0], 'GSM6205824': [1.0], 'GSM6205825': [1.0], 'GSM6205826': [1.0], 'GSM6205827': [1.0], 'GSM6205828': [0.0], 'GSM6205829': [0.0], 'GSM6205830': [1.0], 'GSM6205831': [1.0], 'GSM6205832': [1.0], 'GSM6205833': [1.0], 'GSM6205834': [0.0], 'GSM6205835': [0.0], 'GSM6205836': [0.0], 'GSM6205837': [0.0], 'GSM6205838': [0.0], 'GSM6205839': [0.0], 'GSM6205840': [1.0], 'GSM6205841': [1.0], 'GSM6205842': [0.0], 'GSM6205843': [0.0], 'GSM6205844': [1.0], 'GSM6205845': [1.0], 'GSM6205846': [1.0], 'GSM6205847': [1.0], 'GSM6205848': [0.0], 'GSM6205849': [0.0], 'GSM6205850': [0.0], 'GSM6205851': [0.0], 'GSM6205852': [0.0], 'GSM6205853': [0.0], 'GSM6205854': [0.0], 'GSM6205855': [0.0], 'GSM6205856': [0.0], 'GSM6205857': [0.0], 'GSM6205858': [1.0], 'GSM6205859': [1.0], 'GSM6205860': [0.0], 'GSM6205861': [0.0], 'GSM6205862': [0.0], 'GSM6205863': [0.0], 'GSM6205864': [0.0], 'GSM6205865': [0.0], 'GSM6205866': [0.0], 'GSM6205867': [0.0], 'GSM6205868': [0.0], 'GSM6205869': [0.0], 'GSM6205870': [0.0], 'GSM6205871': [0.0], 'GSM6205872': [1.0], 'GSM6205873': [1.0], 'GSM6205874': [1.0], 'GSM6205875': [1.0], 'GSM6205876': [1.0], 'GSM6205877': [1.0], 'GSM6205878': [1.0], 'GSM6205879': [1.0], 'GSM6205880': [1.0], 'GSM6205881': [1.0], 'GSM6205882': [0.0], 'GSM6205883': [0.0], 'GSM6205884': [1.0], 'GSM6205885': [1.0], 'GSM6205886': [1.0], 'GSM6205887': [1.0], 'GSM6205888': [1.0], 'GSM6205889': [1.0], 'GSM6205890': [1.0], 'GSM6205891': [1.0], 'GSM6205892': [0.0], 'GSM6205893': [0.0], 'GSM6205894': [1.0], 'GSM6205895': [1.0], 'GSM6205896': [0.0], 'GSM6205897': [0.0], 'GSM6205898': [1.0], 'GSM6205899': [1.0], 'GSM6205900': [0.0], 'GSM6205901': [0.0], 'GSM6205902': [1.0], 'GSM6205903': [1.0], 'GSM6205904': [0.0], 'GSM6205905': [1.0], 'GSM6205906': [0.0], 'GSM6205907': [1.0], 'GSM6205908': [0.0], 'GSM6205909': [1.0], 'GSM6205910': [1.0], 'GSM6205911': [1.0], 'GSM6205912': [1.0], 'GSM6205913': [1.0], 'GSM6205914': [0.0], 'GSM6205915': [1.0], 'GSM6205916': [1.0], 'GSM6205917': [1.0], 'GSM6205918': [0.0], 'GSM6205919': [0.0], 'GSM6205920': [0.0], 'GSM6205921': [1.0], 'GSM6205922': [0.0], 'GSM6205923': [0.0], 'GSM6205924': [0.0], 'GSM6205925': [nan], 'GSM6205926': [0.0], 'GSM6205927': [0.0], 'GSM6205928': [0.0], 'GSM6205929': [0.0], 'GSM6205930': [1.0], 'GSM6205931': [0.0], 'GSM6205932': [0.0], 'GSM6205933': [0.0], 'GSM6205934': [0.0], 'GSM6205935': [1.0], 'GSM6205936': [0.0], 'GSM6205937': [1.0], 'GSM6205938': [1.0], 'GSM6205939': [1.0], 'GSM6205940': [1.0], 'GSM6205941': [1.0], 'GSM6205942': [1.0], 'GSM6205943': [1.0], 'GSM6205944': [1.0], 'GSM6205945': [0.0], 'GSM6205946': [0.0], 'GSM6205947': [1.0], 'GSM6205948': [0.0], 'GSM6205949': [1.0], 'GSM6205950': [0.0], 'GSM6205951': [1.0]}\n", "Clinical data saved to ../../output/preprocess/Allergies/clinical_data/GSE205151.csv\n", "Linking clinical and genetic data...\n", "Linked data shape: (144, 577)\n", "Handling missing values...\n", "Linked data shape after handling missing values: (143, 577)\n", "Checking for bias in trait distribution...\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "For the feature 'Allergies', the least common label is '0.0' with 69 occurrences. This represents 48.25% of the dataset.\n", "The distribution of the feature 'Allergies' in this dataset is fine.\n", "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Dataset usability: True\n", "Linked data saved to ../../output/preprocess/Allergies/GSE205151.csv\n" ] } ], "source": [ "# 1. Normalize gene symbols in the gene expression data\n", "print(\"Normalizing gene symbols...\")\n", "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n", "print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n", "\n", "# Save the normalized gene data to a CSV file\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "normalized_gene_data.to_csv(out_gene_data_file)\n", "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n", "\n", "# 2. Link the clinical and genetic data\n", "print(\"Loading the original clinical data...\")\n", "# Get the matrix file again to ensure we have the proper data\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n", "\n", "print(\"Extracting clinical features...\")\n", "# Use the clinical_data obtained directly from the matrix file\n", "selected_clinical_df = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", ")\n", "\n", "print(\"Clinical data preview:\")\n", "print(preview_df(selected_clinical_df))\n", "\n", "# Save the clinical data to a CSV file\n", "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", "selected_clinical_df.to_csv(out_clinical_data_file)\n", "print(f\"Clinical data saved to {out_clinical_data_file}\")\n", "\n", "# Link clinical and genetic data using the normalized gene data\n", "print(\"Linking clinical and genetic data...\")\n", "linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n", "print(f\"Linked data shape: {linked_data.shape}\")\n", "\n", "# 3. Handle missing values in the linked data\n", "print(\"Handling missing values...\")\n", "linked_data = handle_missing_values(linked_data, trait)\n", "print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n", "\n", "# 4. Check if trait is biased\n", "print(\"Checking for bias in trait distribution...\")\n", "is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n", "\n", "# 5. Final validation\n", "note = \"Dataset contains gene expression data from patients with Essential Thrombocythemia (ET), Polycythemia Vera (PV), and Primary Myelofibrosis (PMF).\"\n", "is_usable = validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available,\n", " is_biased=is_biased,\n", " df=linked_data,\n", " note=note\n", ")\n", "\n", "print(f\"Dataset usability: {is_usable}\")\n", "\n", "# 6. Save linked data if usable\n", "if is_usable:\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " linked_data.to_csv(out_data_file)\n", " print(f\"Linked data saved to {out_data_file}\")\n", "else:\n", " print(\"Dataset is not usable for trait-gene association studies due to bias or other issues.\")" ] } ], "metadata": { "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.16" } }, "nbformat": 4, "nbformat_minor": 5 }