{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "ed3d3307", "metadata": {}, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Allergies\"\n", "cohort = \"GSE230164\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Allergies\"\n", "in_cohort_dir = \"../../input/GEO/Allergies/GSE230164\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Allergies/GSE230164.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Allergies/gene_data/GSE230164.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Allergies/clinical_data/GSE230164.csv\"\n", "json_path = \"../../output/preprocess/Allergies/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "83f25c6e", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": null, "id": "5dbe3593", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "id": "f61931c3", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "48e922d6", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "id": "e07dac68", "metadata": {}, "source": [ "### Step 3: Gene Data Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "f6cd71d8", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "id": "d8656551", "metadata": {}, "source": [ "### Step 4: Gene Identifier Review" ] }, { "cell_type": "code", "execution_count": null, "id": "c57135c9", "metadata": {}, "outputs": [], "source": [ "# First, let's load the gene expression data to examine the gene identifiers\n", "try:\n", " # Load gene expression data from a previous step\n", " gene_file = os.path.join(in_cohort_dir, 'gene_expression.txt')\n", " gene_data = pd.read_csv(gene_file, sep='\\t', index_col=0)\n", " \n", " # Look at the first few gene identifiers\n", " gene_identifiers = gene_data.index.tolist()[:10] # Sample of gene identifiers\n", " print(\"Sample gene identifiers:\", gene_identifiers)\n", " \n", " # Check if identifiers are likely human gene symbols\n", " # Human gene symbols typically have format like \"BRCA1\", \"TP53\", etc.\n", " # Other formats might be Ensembl IDs (ENSG...), Affymetrix IDs, or probe IDs\n", " \n", " # Simple heuristic: If most identifiers match pattern of human gene symbols\n", " # (typically uppercase letters with some numbers, not starting with numbers)\n", " import re\n", " \n", " gene_symbol_pattern = re.compile(r'^[A-Z][A-Z0-9]*$')\n", " ensembl_pattern = re.compile(r'^ENS[A-Z]*[0-9]+')\n", " probe_pattern = re.compile(r'^[0-9]+_')\n", " \n", " gene_symbol_count = sum(1 for gene_id in gene_identifiers if gene_symbol_pattern.match(gene_id))\n", " ensembl_count = sum(1 for gene_id in gene_identifiers if ensembl_pattern.match(gene_id))\n", " probe_count = sum(1 for gene_id in gene_identifiers if probe_pattern.match(gene_id))\n", " \n", " print(f\"Gene symbol pattern matches: {gene_symbol_count}/{len(gene_identifiers)}\")\n", " print(f\"Ensembl pattern matches: {ensembl_count}/{len(gene_identifiers)}\")\n", " print(f\"Probe pattern matches: {probe_count}/{len(gene_identifiers)}\")\n", " \n", " # Determine if mapping is needed\n", " requires_gene_mapping = not (gene_symbol_count / len(gene_identifiers) > 0.8)\n", " print(f\"requires_gene_mapping = {requires_gene_mapping}\")\n", " \n", "except Exception as e:\n", " print(f\"Error examining gene identifiers: {e}\")\n", " # If we can't determine, default to requiring mapping\n", " requires_gene_mapping = True\n", " print(f\"requires_gene_mapping = {requires_gene_mapping}\")\n" ] }, { "cell_type": "markdown", "id": "be820d6a", "metadata": {}, "source": [ "### Step 5: Gene Annotation" ] }, { "cell_type": "code", "execution_count": null, "id": "4b40bbd7", "metadata": {}, "outputs": [], "source": [ "# 1. First get the file paths using geo_get_relevant_filepaths function\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n", "gene_annotation = get_gene_annotation(soft_file)\n", "\n", "# 3. Use the 'preview_df' function from the library to preview the data and print out the results.\n", "print(\"Gene annotation preview:\")\n", "print(preview_df(gene_annotation))\n" ] }, { "cell_type": "markdown", "id": "4eb875c7", "metadata": {}, "source": [ "### Step 6: Gene Identifier Mapping" ] }, { "cell_type": "code", "execution_count": null, "id": "adb23b68", "metadata": {}, "outputs": [], "source": [ "# 1. Let's identify the relevant columns for mapping\n", "# Based on the preview, 'ID' seems to be the probe identifier, and 'Symbol' contains gene symbols\n", "# These appear to match what we need for mapping\n", "\n", "# 2. Get gene expression data\n", "gene_data = get_genetic_data(matrix_file)\n", "print(f\"Gene expression data shape: {gene_data.shape}\")\n", "print(\"First few probe IDs from gene expression data:\")\n", "print(gene_data.index[:5])\n", "\n", "# 3. Get gene mapping dataframe\n", "gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')\n", "print(f\"Gene mapping dataframe shape: {gene_mapping.shape}\")\n", "print(\"First few rows of gene mapping:\")\n", "print(gene_mapping.head())\n", "\n", "# 4. Apply gene mapping to convert probe-level measurements to gene-level expression\n", "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n", "print(f\"After mapping: Gene expression data shape: {gene_data.shape}\")\n", "print(\"First few gene symbols:\")\n", "print(gene_data.index[:10])\n", "\n", "# 5. Normalize gene symbols using synonym information\n", "gene_data = normalize_gene_symbols_in_index(gene_data)\n", "print(f\"After normalization: Gene expression data shape: {gene_data.shape}\")\n", "print(\"First few normalized gene symbols:\")\n", "print(gene_data.index[:10])\n", "\n", "# 6. Save gene data to file\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "gene_data.to_csv(out_gene_data_file)\n", "print(f\"Gene expression data saved to {out_gene_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "a810ba3d", "metadata": {}, "source": [ "### Step 7: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": null, "id": "c9d33a62", "metadata": {}, "outputs": [], "source": [ "# 1. The gene data is already normalized in the previous step\n", "\n", "# 2. Link the clinical and genetic data\n", "print(\"Extracting clinical data directly from the source...\")\n", "# Get the matrix file again to ensure we have the proper data\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n", "\n", "# Get unique values dictionary to identify feature rows\n", "unique_values_dict = get_unique_values_by_row(clinical_data)\n", "print(\"Sample characteristics (first few entries):\")\n", "for i, (key, values) in enumerate(unique_values_dict.items()):\n", " print(f\"{key}: {values}\")\n", " if i > 5: # Limit output to first few entries\n", " print(\"...\")\n", " break\n", "\n", "# Define conversion functions based on the data inspection\n", "# These would normally be defined in Step 2\n", "def convert_trait(cell):\n", " \"\"\"Convert allergies information to binary (1: has allergies, 0: healthy control)\"\"\"\n", " if isinstance(cell, str):\n", " if 'allergy' in cell.lower() or 'allergic' in cell.lower():\n", " return 1\n", " elif 'healthy' in cell.lower() or 'control' in cell.lower():\n", " return 0\n", " return None\n", "\n", "def convert_age(cell):\n", " \"\"\"Extract age value from cell\"\"\"\n", " if isinstance(cell, str) and 'age:' in cell.lower():\n", " # Extract numbers after \"age:\"\n", " import re\n", " match = re.search(r'age:\\s*(\\d+)', cell.lower())\n", " if match:\n", " return float(match.group(1))\n", " return None\n", "\n", "def convert_gender(cell):\n", " \"\"\"Convert gender to binary (0: female, 1: male)\"\"\"\n", " if isinstance(cell, str):\n", " cell = cell.lower()\n", " if 'female' in cell or 'f' in cell:\n", " return 0\n", " elif 'male' in cell or 'm' in cell:\n", " return 1\n", " return None\n", "\n", "# Find appropriate rows for trait, age, and gender\n", "trait_row = None\n", "age_row = None\n", "gender_row = None\n", "\n", "# Scan through the unique values to identify feature rows\n", "for idx, values in unique_values_dict.items():\n", " values_str = str(values).lower()\n", " if 'allergy' in values_str or 'allergic' in values_str or 'healthy' in values_str:\n", " trait_row = idx\n", " elif 'age' in values_str:\n", " age_row = idx\n", " elif 'gender' in values_str or 'sex' in values_str or ('male' in values_str and 'female' in values_str):\n", " gender_row = idx\n", "\n", "print(f\"Identified trait_row: {trait_row}, age_row: {age_row}, gender_row: {gender_row}\")\n", "\n", "# Extract clinical features\n", "if trait_row is not None:\n", " selected_clinical_df = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", " \n", " print(\"Clinical data preview:\")\n", " print(preview_df(selected_clinical_df))\n", " \n", " # Save the clinical data to a CSV file\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " selected_clinical_df.to_csv(out_clinical_data_file)\n", " print(f\"Clinical data saved to {out_clinical_data_file}\")\n", " \n", " # Link clinical and genetic data\n", " print(\"Linking clinical and genetic data...\")\n", " linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)\n", " print(f\"Linked data shape: {linked_data.shape}\")\n", " \n", " # 3. Handle missing values in the linked data\n", " print(\"Handling missing values...\")\n", " linked_data = handle_missing_values(linked_data, trait)\n", " print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n", " \n", " # 4. Check if trait is biased\n", " print(\"Checking for bias in trait distribution...\")\n", " is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n", " \n", " # 5. Final validation\n", " note = \"Dataset contains gene expression data from peripheral blood related to food allergies.\"\n", " is_usable = validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=True, # We have gene data\n", " is_trait_available=True, # We've identified the trait row\n", " is_biased=is_biased,\n", " df=linked_data,\n", " note=note\n", " )\n", " \n", " print(f\"Dataset usability: {is_usable}\")\n", " \n", " # 6. Save linked data if usable\n", " if is_usable:\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " linked_data.to_csv(out_data_file)\n", " print(f\"Linked data saved to {out_data_file}\")\n", " else:\n", " print(\"Dataset is not usable for trait-gene association studies due to bias or other issues.\")\n", "else:\n", " print(\"No trait information found in the clinical data. Cannot proceed with linking.\")\n", " # Save validation information\n", " is_usable = validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=True,\n", " is_trait_available=False,\n", " is_biased=None,\n", " df=None,\n", " note=\"No trait information found in the clinical data.\"\n", " )\n", " print(f\"Dataset usability: {is_usable}\")" ] } ], "metadata": {}, "nbformat": 4, "nbformat_minor": 5 }