{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "1594aefd", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:30:00.457368Z", "iopub.status.busy": "2025-03-25T06:30:00.457262Z", "iopub.status.idle": "2025-03-25T06:30:00.623285Z", "shell.execute_reply": "2025-03-25T06:30:00.622917Z" } }, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Aniridia\"\n", "cohort = \"GSE204791\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Aniridia\"\n", "in_cohort_dir = \"../../input/GEO/Aniridia/GSE204791\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Aniridia/GSE204791.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Aniridia/gene_data/GSE204791.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Aniridia/clinical_data/GSE204791.csv\"\n", "json_path = \"../../output/preprocess/Aniridia/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "a493803a", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": 2, "id": "6980f79a", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:30:00.624719Z", "iopub.status.busy": "2025-03-25T06:30:00.624583Z", "iopub.status.idle": "2025-03-25T06:30:00.763469Z", "shell.execute_reply": "2025-03-25T06:30:00.763117Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Background Information:\n", "!Series_title\t\"Altered regulation of mRNA and miRNA expression in epithelial and stromal tissue of keratoconus corneas [RNA]\"\n", "!Series_summary\t\"Purpose: To evaluate conjunctival cell microRNA and mRNA expression in relation to observed phenotype and genotype of aniridia-associated keratopathy (AAK) in a cohort of subjects with congenital aniridia. Methods: Using impression cytology, bulbar conjunctival cells were sampled from 20 subjects with congenital aniridia and 20 age and sex-matched healthy control subjects. RNA was extracted and microRNA and mRNA analysis was performed using microarrays. Results were related to the presence and severity of AAK determined by a standardized clinical grading scale and to the genotype (PAX6 mutation?) determined by clinical genetics. Results: Of the 2549 microRNAs analyzed, 21 were differentially expressed relative to controls. Among these miR-204-5p, an inhibitor of corneal neovascularization, was downregulated 26.8-fold, while miR-5787 and miR-224-5p were upregulated 2.8 and 2.4-fold relative to controls, respectively. At the mRNA level, 539 transcripts were differentially expressed, among these FOSB and FOS were upregulated 17.5 and 9.7-fold respectively, and JUN by 2.9-fold, all components of the AP-1 transcription factor complex. Pathway analysis revealed dysregulation of several enriched pathways including PI3K-Akt, MAPK, and Ras signaling pathways in aniridia. For several microRNAs and transcripts, expression levels aligned with AAK severity, while in very mild cases with missense or non-PAX6 coding mutations, gene expression was only minimally altered. Conclusion: In aniridia, specific factors and pathways are strongly dysregulated in conjunctival cells, suggesting that the conjunctiva in aniridia is abnormally maintained in a pro-angiogenic and proliferative state, promoting the aggressivity of AAK in a mutation-dependent manner. Transcriptional profiling of conjunctival cells at the microRNA and mRNA levels presents a powerful, minimally-invasive means to assess the regulation of cell dysfunction at the ocular surface.\"\n", "!Series_overall_design\t\"MiRNA and mRNA expression profiles of epithelial and stromal cells from 8 patients with keratoconus compared to controls\"\n", "Sample Characteristics Dictionary:\n", "{0: ['age: 59', 'age: 28', 'age: 58', 'age: 56', 'age: 50', 'age: 30', 'age: 53', 'age: 77', 'age: 67', 'age: 29', 'age: 46', 'age: 65', 'age: 81', 'age: 87', 'age: 70', 'age: 79', 'age: 55'], 1: ['gender: F', 'gender: M'], 2: ['disease: KC', 'disease: healthy control'], 3: ['Stage: A4 B4 C3 D4 +', 'Stage: A4 B4 C3 D1 -', 'Stage: A4 B4 C3 D4 ++', nan, 'Stage: A2 B4 C1 D3 -', 'Stage: A2 B4 C1 D1 +', 'Stage: A4 B4 C2 D3']}\n" ] } ], "source": [ "from tools.preprocess import *\n", "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Read the matrix file to obtain background information and sample characteristics data\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", "\n", "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n", "print(\"Background Information:\")\n", "print(background_info)\n", "print(\"Sample Characteristics Dictionary:\")\n", "print(sample_characteristics_dict)\n" ] }, { "cell_type": "markdown", "id": "44d8e170", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": 3, "id": "40f37372", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:30:00.764688Z", "iopub.status.busy": "2025-03-25T06:30:00.764576Z", "iopub.status.idle": "2025-03-25T06:30:00.769700Z", "shell.execute_reply": "2025-03-25T06:30:00.769366Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Gene expression data available: True\n", "Trait data available: True\n", "Age data available: True\n", "Gender data available: True\n" ] } ], "source": [ "# 1. Gene Expression Data Availability\n", "# Based on the background information, this dataset contains both mRNA and miRNA expression data\n", "# The study is about \"microRNA and mRNA expression analysis,\" which indicates gene expression data is available\n", "is_gene_available = True\n", "\n", "# 2. Variable Availability and Data Type Conversion\n", "# 2.1 Data Availability and 2.2 Data Type Conversion\n", "\n", "# For trait (Aniridia)\n", "# Looking at disease status in row 2 (KC = keratoconus, healthy control)\n", "trait_row = 2\n", "\n", "def convert_trait(value):\n", " if pd.isna(value):\n", " return None\n", " value_lower = str(value).lower()\n", " if ':' in value_lower:\n", " value_lower = value_lower.split(':', 1)[1].strip()\n", " \n", " if 'kc' in value_lower or 'keratoconus' in value_lower:\n", " return 1 # Disease present\n", " elif 'healthy' in value_lower or 'control' in value_lower:\n", " return 0 # Disease absent\n", " else:\n", " return None\n", "\n", "# For age - available in row 0\n", "age_row = 0\n", "\n", "def convert_age(value):\n", " if pd.isna(value):\n", " return None\n", " if ':' in value:\n", " age_str = value.split(':', 1)[1].strip()\n", " try:\n", " return float(age_str)\n", " except ValueError:\n", " return None\n", " return None\n", "\n", "# For gender - available in row 1\n", "gender_row = 1\n", "\n", "def convert_gender(value):\n", " if pd.isna(value):\n", " return None\n", " value_lower = str(value).lower()\n", " if ':' in value_lower:\n", " value_lower = value_lower.split(':', 1)[1].strip()\n", " \n", " if value_lower == 'f' or value_lower == 'female':\n", " return 0\n", " elif value_lower == 'm' or value_lower == 'male':\n", " return 1\n", " else:\n", " return None\n", "\n", "# 3. Save Metadata - Initial filtering\n", "# Determine if trait data is available (trait_row is not None)\n", "is_trait_available = trait_row is not None\n", "\n", "# Validate and save cohort info (initial filtering)\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "# 4. Clinical Feature Extraction (if trait_row is not None)\n", "# Note: In this case, we're unable to perform clinical feature extraction\n", "# because we don't have access to the properly formatted clinical data.\n", "# The sample characteristics dictionary only shows unique values for each characteristic\n", "# and cannot be directly converted to the expected clinical data format.\n", "\n", "# We will print the information we've determined about the dataset\n", "print(f\"Gene expression data available: {is_gene_available}\")\n", "print(f\"Trait data available: {is_trait_available}\")\n", "print(f\"Age data available: {age_row is not None}\")\n", "print(f\"Gender data available: {gender_row is not None}\")\n" ] }, { "cell_type": "markdown", "id": "e7796fd0", "metadata": {}, "source": [ "### Step 3: Gene Data Extraction" ] }, { "cell_type": "code", "execution_count": 4, "id": "562d2f84", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:30:00.770798Z", "iopub.status.busy": "2025-03-25T06:30:00.770689Z", "iopub.status.idle": "2025-03-25T06:30:00.963602Z", "shell.execute_reply": "2025-03-25T06:30:00.963199Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "First 20 gene/probe identifiers:\n", "Index(['(+)E1A_r60_1', '(+)E1A_r60_3', '(+)E1A_r60_a104', '(+)E1A_r60_a107',\n", " '(+)E1A_r60_a135', '(+)E1A_r60_a20', '(+)E1A_r60_a22', '(+)E1A_r60_a97',\n", " '(+)E1A_r60_n11', '(+)E1A_r60_n9', '3xSLv1', 'A_19_P00315452',\n", " 'A_19_P00315492', 'A_19_P00315493', 'A_19_P00315502', 'A_19_P00315506',\n", " 'A_19_P00315518', 'A_19_P00315519', 'A_19_P00315529', 'A_19_P00315541'],\n", " dtype='object', name='ID')\n", "\n", "Gene data dimensions: 58341 genes × 31 samples\n" ] } ], "source": [ "# 1. Re-identify the SOFT and matrix files to ensure we have the correct paths\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Extract the gene expression data from the matrix file\n", "gene_data = get_genetic_data(matrix_file)\n", "\n", "# 3. Print the first 20 row IDs (gene or probe identifiers)\n", "print(\"\\nFirst 20 gene/probe identifiers:\")\n", "print(gene_data.index[:20])\n", "\n", "# 4. Print the dimensions of the gene expression data\n", "print(f\"\\nGene data dimensions: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n", "\n", "# Note: we keep is_gene_available as True since we successfully extracted gene expression data\n", "is_gene_available = True\n" ] }, { "cell_type": "markdown", "id": "7409acec", "metadata": {}, "source": [ "### Step 4: Gene Identifier Review" ] }, { "cell_type": "code", "execution_count": 5, "id": "11810dec", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:30:00.964919Z", "iopub.status.busy": "2025-03-25T06:30:00.964801Z", "iopub.status.idle": "2025-03-25T06:30:00.966780Z", "shell.execute_reply": "2025-03-25T06:30:00.966471Z" } }, "outputs": [], "source": [ "# Examining the gene identifiers from the output\n", "# These identifiers appear to be Agilent microarray probe IDs (starting with \"A_19_P\") \n", "# and control probes (like \"(+)E1A_r60_1\"), not standard human gene symbols\n", "\n", "# These probe IDs will need to be mapped to standard gene symbols\n", "requires_gene_mapping = True\n" ] }, { "cell_type": "markdown", "id": "1809d954", "metadata": {}, "source": [ "### Step 5: Gene Annotation" ] }, { "cell_type": "code", "execution_count": 6, "id": "453692f3", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:30:00.967872Z", "iopub.status.busy": "2025-03-25T06:30:00.967763Z", "iopub.status.idle": "2025-03-25T06:30:03.987734Z", "shell.execute_reply": "2025-03-25T06:30:03.987318Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Gene annotation preview:\n", "{'ID': ['GE_BrightCorner', 'DarkCorner', 'A_21_P0014386', 'A_33_P3396872', 'A_33_P3267760'], 'CONTROL_TYPE': ['pos', 'pos', 'FALSE', 'FALSE', 'FALSE'], 'REFSEQ': [nan, nan, nan, 'NM_001105533', nan], 'GB_ACC': [nan, nan, nan, 'NM_001105533', nan], 'LOCUSLINK_ID': [nan, nan, nan, 79974.0, 54880.0], 'GENE_SYMBOL': [nan, nan, nan, 'CPED1', 'BCOR'], 'GENE_NAME': [nan, nan, nan, 'cadherin-like and PC-esterase domain containing 1', 'BCL6 corepressor'], 'UNIGENE_ID': [nan, nan, nan, 'Hs.189652', nan], 'ENSEMBL_ID': [nan, nan, nan, nan, 'ENST00000378463'], 'ACCESSION_STRING': [nan, nan, nan, 'ref|NM_001105533|gb|AK025639|gb|BC030538|tc|THC2601673', 'ens|ENST00000378463'], 'CHROMOSOMAL_LOCATION': [nan, nan, 'unmapped', 'chr7:120901888-120901947', 'chrX:39909128-39909069'], 'CYTOBAND': [nan, nan, nan, 'hs|7q31.31', 'hs|Xp11.4'], 'DESCRIPTION': [nan, nan, nan, 'Homo sapiens cadherin-like and PC-esterase domain containing 1 (CPED1), transcript variant 2, mRNA [NM_001105533]', 'BCL6 corepressor [Source:HGNC Symbol;Acc:HGNC:20893] [ENST00000378463]'], 'GO_ID': [nan, nan, nan, 'GO:0005783(endoplasmic reticulum)', 'GO:0000122(negative regulation of transcription from RNA polymerase II promoter)|GO:0000415(negative regulation of histone H3-K36 methylation)|GO:0003714(transcription corepressor activity)|GO:0004842(ubiquitin-protein ligase activity)|GO:0005515(protein binding)|GO:0005634(nucleus)|GO:0006351(transcription, DNA-dependent)|GO:0007507(heart development)|GO:0008134(transcription factor binding)|GO:0030502(negative regulation of bone mineralization)|GO:0031072(heat shock protein binding)|GO:0031519(PcG protein complex)|GO:0035518(histone H2A monoubiquitination)|GO:0042476(odontogenesis)|GO:0042826(histone deacetylase binding)|GO:0044212(transcription regulatory region DNA binding)|GO:0045892(negative regulation of transcription, DNA-dependent)|GO:0051572(negative regulation of histone H3-K4 methylation)|GO:0060021(palate development)|GO:0065001(specification of axis polarity)|GO:0070171(negative regulation of tooth mineralization)'], 'SEQUENCE': [nan, nan, 'AATACATGTTTTGGTAAACACTCGGTCAGAGCACCCTCTTTCTGTGGAATCAGACTGGCA', 'GCTTATCTCACCTAATACAGGGACTATGCAACCAAGAAACTGGAAATAAAAACAAAGATA', 'CATCAAAGCTACGAGAGATCCTACACACCCAGATTTAAAAAATAATAAAAACTTAAGGGC'], 'SPOT_ID': ['GE_BrightCorner', 'DarkCorner', 'A_21_P0014386', 'A_33_P3396872', 'A_33_P3267760']}\n" ] } ], "source": [ "# 1. First get the file paths using geo_get_relevant_filepaths function\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n", "gene_annotation = get_gene_annotation(soft_file)\n", "\n", "# 3. Use the 'preview_df' function from the library to preview the data and print out the results.\n", "print(\"Gene annotation preview:\")\n", "print(preview_df(gene_annotation))\n" ] }, { "cell_type": "markdown", "id": "4bc299ef", "metadata": {}, "source": [ "### Step 6: Gene Identifier Mapping" ] }, { "cell_type": "code", "execution_count": 7, "id": "c44f06e0", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:30:03.989171Z", "iopub.status.busy": "2025-03-25T06:30:03.989030Z", "iopub.status.idle": "2025-03-25T06:30:04.211131Z", "shell.execute_reply": "2025-03-25T06:30:04.210694Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Gene data after mapping: 29222 genes × 31 samples\n", "First 10 gene symbols:\n", "Index(['A1BG', 'A1BG-AS1', 'A1CF', 'A1CF-2', 'A1CF-3', 'A2M', 'A2M-1',\n", " 'A2M-AS1', 'A2ML1', 'A2MP1'],\n", " dtype='object', name='Gene')\n" ] } ], "source": [ "# 1. Based on the preview, determine the columns for gene mapping\n", "# From the preview, we can see 'ID' is the column with probe identifiers\n", "# and 'GENE_SYMBOL' is the column with gene symbols\n", "prob_col = 'ID' \n", "gene_col = 'GENE_SYMBOL'\n", "\n", "# 2. Get a mapping dataframe by extracting the relevant columns\n", "gene_mapping = get_gene_mapping(gene_annotation, prob_col, gene_col)\n", "\n", "# 3. Apply the gene mapping to convert probe-level data to gene-level data\n", "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n", "\n", "# Print information about the mapped data\n", "print(f\"Gene data after mapping: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n", "print(\"First 10 gene symbols:\")\n", "print(gene_data.index[:10])\n" ] }, { "cell_type": "markdown", "id": "e718c798", "metadata": {}, "source": [ "### Step 7: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": 8, "id": "7802cfdd", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:30:04.212568Z", "iopub.status.busy": "2025-03-25T06:30:04.212447Z", "iopub.status.idle": "2025-03-25T06:30:13.216443Z", "shell.execute_reply": "2025-03-25T06:30:13.215676Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Normalized gene data saved to ../../output/preprocess/Aniridia/gene_data/GSE204791.csv\n", "Gene data after normalization: 20778 genes × 31 samples\n", "Clinical features saved to ../../output/preprocess/Aniridia/clinical_data/GSE204791.csv\n", "Clinical features preview:\n", "{'GSM6193900': [1.0, 59.0, 0.0], 'GSM6193903': [1.0, 28.0, 1.0], 'GSM6193906': [1.0, 58.0, 0.0], 'GSM6193908': [1.0, 56.0, 1.0], 'GSM6193911': [0.0, 50.0, 0.0], 'GSM6193913': [0.0, 30.0, 1.0], 'GSM6193916': [0.0, 53.0, 0.0], 'GSM6193918': [0.0, 77.0, 1.0], 'GSM6193920': [1.0, 50.0, 0.0], 'GSM6193923': [1.0, 67.0, 1.0], 'GSM6193925': [1.0, 29.0, 0.0], 'GSM6193928': [1.0, 46.0, 1.0], 'GSM6193930': [0.0, 56.0, 0.0], 'GSM6193933': [0.0, 65.0, 1.0], 'GSM6193935': [0.0, 58.0, 0.0], 'GSM6193938': [0.0, 81.0, 1.0], 'GSM6193940': [1.0, 28.0, 1.0], 'GSM6193943': [1.0, 58.0, 0.0], 'GSM6193945': [1.0, 67.0, 1.0], 'GSM6193948': [1.0, 46.0, 1.0], 'GSM6193950': [0.0, 87.0, 0.0], 'GSM6193953': [0.0, 87.0, 1.0], 'GSM6193955': [0.0, 70.0, 0.0], 'GSM6193957': [1.0, 50.0, 0.0], 'GSM6193960': [1.0, 29.0, 0.0], 'GSM6193962': [1.0, 56.0, 1.0], 'GSM6193965': [1.0, 59.0, 0.0], 'GSM6193967': [0.0, 79.0, 1.0], 'GSM6193970': [0.0, 55.0, 0.0], 'GSM6193972': [0.0, 65.0, 1.0], 'GSM6193975': [0.0, 87.0, 1.0]}\n", "Linked data shape: (31, 20781)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Data shape after handling missing values: (31, 20781)\n", "\n", "Checking for bias in the trait variable:\n", "For the feature 'Aniridia', the least common label is '0.0' with 15 occurrences. This represents 48.39% of the dataset.\n", "The distribution of the feature 'Aniridia' in this dataset is fine.\n", "\n", "Quartiles for 'Age':\n", " 25%: 50.0\n", " 50% (Median): 58.0\n", " 75%: 67.0\n", "Min: 28.0\n", "Max: 87.0\n", "The distribution of the feature 'Age' in this dataset is fine.\n", "\n", "For the feature 'Gender', the least common label is '0.0' with 15 occurrences. This represents 48.39% of the dataset.\n", "The distribution of the feature 'Gender' in this dataset is fine.\n", "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Linked data saved to ../../output/preprocess/Aniridia/GSE204791.csv\n" ] } ], "source": [ "# 1. Normalize gene symbols in the index\n", "gene_data_normalized = normalize_gene_symbols_in_index(gene_data)\n", "\n", "# Save the normalized gene data\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "gene_data_normalized.to_csv(out_gene_data_file)\n", "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n", "print(f\"Gene data after normalization: {gene_data_normalized.shape[0]} genes × {gene_data_normalized.shape[1]} samples\")\n", "\n", "# Extract clinical features first (missed in previous steps)\n", "clinical_features = geo_select_clinical_features(\n", " clinical_data, \n", " trait, \n", " trait_row,\n", " convert_trait,\n", " age_row,\n", " convert_age,\n", " gender_row,\n", " convert_gender\n", ")\n", "\n", "# Save the clinical data\n", "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", "clinical_features.to_csv(out_clinical_data_file)\n", "print(f\"Clinical features saved to {out_clinical_data_file}\")\n", "print(\"Clinical features preview:\")\n", "print(preview_df(clinical_features))\n", "\n", "# 2. Link clinical and genetic data\n", "linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data_normalized)\n", "print(f\"Linked data shape: {linked_data.shape}\")\n", "\n", "# 3. Handle missing values\n", "linked_data = handle_missing_values(linked_data, trait_col=trait)\n", "print(f\"Data shape after handling missing values: {linked_data.shape}\")\n", "\n", "# 4. Determine if trait is biased\n", "print(\"\\nChecking for bias in the trait variable:\")\n", "is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n", "\n", "# 5. Conduct final quality validation\n", "is_usable = validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=True,\n", " is_trait_available=True,\n", " is_biased=is_biased,\n", " df=linked_data,\n", " note=\"Dataset contains gene expression data for aniridia patients and healthy controls.\"\n", ")\n", "\n", "# 6. Save linked data if usable\n", "if is_usable:\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " linked_data.to_csv(out_data_file)\n", " print(f\"Linked data saved to {out_data_file}\")\n", "else:\n", " print(\"Dataset deemed not usable for trait association studies, linked data not saved.\")" ] } ], "metadata": { "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.16" } }, "nbformat": 4, "nbformat_minor": 5 }