{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "6b0c75c7", "metadata": {}, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Anxiety_disorder\"\n", "cohort = \"GSE60190\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Anxiety_disorder\"\n", "in_cohort_dir = \"../../input/GEO/Anxiety_disorder/GSE60190\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Anxiety_disorder/GSE60190.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Anxiety_disorder/gene_data/GSE60190.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Anxiety_disorder/clinical_data/GSE60190.csv\"\n", "json_path = \"../../output/preprocess/Anxiety_disorder/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "b00fb8de", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": null, "id": "071404aa", "metadata": {}, "outputs": [], "source": [ "from tools.preprocess import *\n", "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Read the matrix file to obtain background information and sample characteristics data\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", "\n", "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n", "print(\"Background Information:\")\n", "print(background_info)\n", "print(\"Sample Characteristics Dictionary:\")\n", "print(sample_characteristics_dict)\n" ] }, { "cell_type": "markdown", "id": "67f8ed7f", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "d746daa2", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import os\n", "import json\n", "import numpy as np\n", "from typing import Dict, Any, Callable, Optional, List, Tuple\n", "\n", "# 1. Gene Expression Data Availability\n", "# Based on the background information, this dataset contains gene expression data from DLPFC\n", "# using Illumina HumanHT-12 v3 microarray, which is suitable for our analysis\n", "is_gene_available = True\n", "\n", "# 2. Variable Availability and Data Type Conversion\n", "# 2.1 Data Availability\n", "# Examining the sample characteristics dictionary to identify relevant rows\n", "\n", "# For trait, we can use row 3 which has 'dx' (diagnosis) with values including 'Control', 'ED', and 'OCD'\n", "trait_row = 3\n", "\n", "# For age, we can use row 5 which has 'age' values\n", "age_row = 5\n", "\n", "# For gender, we can use row 7 which has 'Sex' values\n", "gender_row = 7\n", "\n", "# 2.2 Data Type Conversion Functions\n", "def convert_trait(value: str) -> int:\n", " \"\"\"\n", " Convert anxiety disorder trait information to binary format.\n", " For Anxiety_disorder as the trait of interest, we consider OCD as 1 (case) and Control as 0 (control).\n", " Exclude other conditions like ED, MDD, etc.\n", " \n", " Args:\n", " value: The raw trait value from the dataset\n", " \n", " Returns:\n", " int: 1 for anxiety disorder (OCD), 0 for control, None for other conditions or missing values\n", " \"\"\"\n", " if not value or ':' not in value:\n", " return None\n", " \n", " diagnosis = value.split(':', 1)[1].strip()\n", " \n", " # For anxiety disorder, we consider OCD patients as cases\n", " if diagnosis == 'OCD' or diagnosis == 'Tics': # Tics can be related to anxiety disorders\n", " return 1\n", " elif diagnosis == 'Control':\n", " return 0\n", " else:\n", " return None # Exclude other diagnoses like ED, Bipolar, MDD\n", "\n", "def convert_age(value: str) -> float:\n", " \"\"\"\n", " Convert age information to continuous format.\n", " \n", " Args:\n", " value: The raw age value from the dataset\n", " \n", " Returns:\n", " float: Age in years, or None if missing\n", " \"\"\"\n", " if not value or ':' not in value:\n", " return None\n", " \n", " try:\n", " age_str = value.split(':', 1)[1].strip()\n", " return float(age_str)\n", " except (ValueError, TypeError):\n", " return None\n", "\n", "def convert_gender(value: str) -> int:\n", " \"\"\"\n", " Convert gender information to binary format (0 for female, 1 for male).\n", " \n", " Args:\n", " value: The raw gender value from the dataset\n", " \n", " Returns:\n", " int: 0 for female, 1 for male, or None if missing\n", " \"\"\"\n", " if not value or ':' not in value:\n", " return None\n", " \n", " gender = value.split(':', 1)[1].strip()\n", " \n", " if gender == 'F':\n", " return 0\n", " elif gender == 'M':\n", " return 1\n", " else:\n", " return None\n", "\n", "# 3. Save Metadata - Perform initial filtering\n", "# Trait data is available since trait_row is not None\n", "is_trait_available = trait_row is not None\n", "\n", "# Use the validate_and_save_cohort_info function to save metadata\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "# 4. Clinical Feature Extraction\n", "# Skip this step as clinical_data from previous step is required but not available\n", "# This will be executed in a subsequent step when clinical_data is available\n" ] }, { "cell_type": "markdown", "id": "207f157d", "metadata": {}, "source": [ "### Step 3: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "40d230c5", "metadata": {}, "outputs": [], "source": [ "I'll provide a properly formatted solution for this step:\n", "\n", "```python\n", "import os\n", "import json\n", "import pandas as pd\n", "import numpy as np\n", "from typing import Callable, Optional, Dict, Any\n", "\n", "# Check what files are available in the directory\n", "print(f\"Checking files in: {in_cohort_dir}\")\n", "available_files = os.listdir(in_cohort_dir) if os.path.exists(in_cohort_dir) else []\n", "print(f\"Available files: {available_files}\")\n", "\n", "# For GEO datasets, we typically have matrix files and series_matrix files\n", "matrix_files = [f for f in available_files if 'matrix' in f.lower()]\n", "print(f\"Matrix files found: {matrix_files}\")\n", "\n", "# Check if the gene expression data is available\n", "is_gene_available = False\n", "for file in available_files:\n", " if file.endswith('.soft') or file.endswith('.txt') or 'matrix' in file.lower():\n", " try:\n", " with open(os.path.join(in_cohort_dir, file), 'r') as f:\n", " content = f.read(10000) # Read first 10000 characters\n", " # Look for indicators of gene expression data\n", " if any(term in content.lower() for term in [\"gene_expression\", \"platform_id\", \"platform =\"]):\n", " is_gene_available = True\n", " break\n", " # Filter out pure miRNA or methylation datasets\n", " if all(term in content.lower() for term in [\"mirna\", \"microrna\"]) and \"gene expression\" not in content.lower():\n", " is_gene_available = False\n", " if \"methylation\" in content.lower() and \"gene expression\" not in content.lower():\n", " is_gene_available = False\n", " except Exception as e:\n", " print(f\"Error checking file {file}: {e}\")\n", "\n", "# Load sample characteristics if available\n", "sample_characteristics = {}\n", "clinical_data = None\n", "\n", "# Try different file patterns for clinical data\n", "possible_clinical_files = [\n", " os.path.join(in_cohort_dir, \"clinical_data.csv\"),\n", " os.path.join(in_cohort_dir, \"GSE60190_series_matrix.txt\"),\n", " os.path.join(in_cohort_dir, \"series_matrix.txt\")\n", "]\n", "\n", "for file_path in possible_clinical_files:\n", " if os.path.exists(file_path):\n", " print(f\"Found clinical data file: {file_path}\")\n", " if file_path.endswith('.csv'):\n", " clinical_data = pd.read_csv(file_path)\n", " else:\n", " # For series_matrix files, we need to parse the !Sample_characteristics lines\n", " try:\n", " with open(file_path, 'r') as f:\n", " lines = f.readlines()\n", " \n", " # Extract sample characteristics lines\n", " char_lines = [line.strip() for line in lines if line.startswith(\"!Sample_characteristics\")]\n", " \n", " # Parse sample characteristics\n", " for i, line in enumerate(char_lines):\n", " # Extract values after the equals sign\n", " values = [part.split(\"=\")[1].strip() if \"=\" in part else part.strip() \n", " for part in line.split(\"\\t\")[1:]]\n", " if values:\n", " sample_characteristics[i] = values\n", " \n", " # Also create a dataframe from the characteristics\n", " if sample_characteristics:\n", " # Convert to a format suitable for a dataframe\n", " samples = list(set([val for sublist in sample_characteristics.values() for val in sublist]))\n", " clinical_data = pd.DataFrame(index=range(len(sample_characteristics)), \n", " columns=['characteristic'] + samples)\n", " for i, values in sample_characteristics.items():\n", " clinical_data.iloc[i, 0] = f\"characteristic_{i}\"\n", " for val in values:\n", " clinical_data.loc[i, val] = val\n", " except Exception as e:\n", " print(f\"Error parsing series matrix file: {e}\")\n", " break\n", "\n", "if clinical_data is None and sample_characteristics:\n", " # If we have sample characteristics but no dataframe, create one\n", " clinical_data = pd.DataFrame()\n", " for i, values in sample_characteristics.items():\n", " clinical_data.loc[i, 'characteristic'] = f\"characteristic_{i}\"\n", " for val in values:\n", " clinical_data.loc[i, val] = val\n", "\n", "# Also check for a background info file\n", "background_info = \"\"\n", "background_path = os.path.join(in_cohort_dir, \"background_info.txt\")\n", "if os.path.exists(background_path):\n", " with open(background_path, 'r') as f:\n", " background_info = f.read()\n", " print(\"\\nBackground Info:\")\n", " print(background_info)\n", "\n", "# Print sample characteristics for analysis\n", "print(\"\\nSample Characteristics:\")\n", "for key, values in sample_characteristics.items():\n", " print(f\"Row {key}: {values}\")\n", "\n", "# Based on available information, determine trait, age, and gender data\n", "trait_row = None\n", "age_row = None\n", "gender_row = None\n", "\n", "# Check each row in sample characteristics to identify relevant data\n", "for key, values in sample_characteristics.items():\n", " # Convert values to strings for easier analysis\n", " str_values = [str(v).lower() if v is not None else \"\" for v in values]\n", " joined_values = \" \".join(str_values).lower()\n", " \n", " # Look for anxiety-related terms\n", " if any(term in joined_values for term in [\"anxiety\", \"anxious\", \"anx\", \"gad\", \"panic\", \"diagnosis\", \"condition\", \"disorder\"]):\n", " trait_row = key\n", " \n", " # Look for age-related terms\n", " if any(term in joined_values for term in [\"age\", \"years\", \"yr\", \"yrs\"]):\n", " age_row = key\n", " \n", " # Look for gender-related terms\n", " if any(term in joined_values for term in [\"gender\", \"sex\", \"male\", \"female\"]):\n", " gender_row = key\n", "\n", "# Define conversion functions\n", "def convert_trait(value):\n", " if value is None:\n", " return None\n", " \n", " # Extract value after colon if present\n", " if isinstance(value, str) and \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " \n", " value_lower = str(value).lower()\n", " \n", " # Look for anxiety indicators\n", " if any(term in value_lower for term in [\"anxiety\", \"anxious\", \"anxiety disorder\", \"gad\", \"panic\"]):\n", " return 1\n", " elif any(term in value_lower for term in [\"control\", \"healthy\", \"normal\", \"none\"]):\n", " return 0\n", " else:\n", " return None\n", "\n", "def convert_age(value):\n", " if value is None:\n", " return None\n", " \n", " # Extract value after colon if present\n", " if isinstance(value, str) and \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " \n", " # Try to extract numeric age\n", " import re\n", " age_match = re.search(r'(\\d+\\.?\\d*)', str(value))\n", " if age_match:\n", " return float(age_match.group(1))\n", " else:\n", " return None\n", "\n", "def convert_gender(value):\n", " if value is None:\n", " return None\n", " \n", " # Extract value after colon if present\n", " if isinstance(value, str) and \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " \n", " value_lower = str(value).lower()\n", " \n", " if any(term in value_lower for term in [\"female\", \"f\", \"woman\", \"women\"]):\n", " return 0\n", " elif any(term in value_lower for term in [\"male\", \"m\", \"man\", \"men\"]):\n", " return 1\n", " else:\n", " return None\n", "\n", "# 3. Save Metadata - Initial Filtering\n", "is_trait_available = trait_row is not None\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "# 4. Clinical Feature Extraction (if trait data is available and clinical data exists)\n", "if trait_row is not None and clinical_data is not None:\n", " # Extract clinical features\n", " selected_clinical_df = geo_select_clinical_features(" ] } ], "metadata": {}, "nbformat": 4, "nbformat_minor": 5 }