{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "7112d278", "metadata": {}, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Bipolar_disorder\"\n", "cohort = \"GSE62191\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Bipolar_disorder\"\n", "in_cohort_dir = \"../../input/GEO/Bipolar_disorder/GSE62191\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Bipolar_disorder/GSE62191.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Bipolar_disorder/gene_data/GSE62191.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Bipolar_disorder/clinical_data/GSE62191.csv\"\n", "json_path = \"../../output/preprocess/Bipolar_disorder/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "458cbc22", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": null, "id": "d2f198a7", "metadata": {}, "outputs": [], "source": [ "from tools.preprocess import *\n", "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Read the matrix file to obtain background information and sample characteristics data\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", "\n", "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n", "print(\"Background Information:\")\n", "print(background_info)\n", "print(\"Sample Characteristics Dictionary:\")\n", "print(sample_characteristics_dict)\n" ] }, { "cell_type": "markdown", "id": "3f616cf5", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "06185942", "metadata": {}, "outputs": [], "source": [ "# 1. Check gene expression data availability\n", "# Based on background information, this dataset contains gene expression profiles\n", "import numpy as np\n", "import os\n", "\n", "is_gene_available = True\n", "\n", "# 2.1 Identify data availability for trait, age, and gender\n", "trait_row = 1 # Key 1 contains \"disease state\" information\n", "age_row = 2 # Key 2 contains \"age\" information\n", "gender_row = 6 # Key 6 contains \"gender\" information\n", "\n", "# 2.2 Define conversion functions\n", "def convert_trait(value):\n", " \"\"\"Convert trait value to binary format.\"\"\"\n", " if isinstance(value, str) and \":\" in value:\n", " value = value.split(\":\")[1].strip().lower()\n", " if \"bipolar disorder\" in value:\n", " return 1\n", " elif \"healthy control\" in value:\n", " return 0\n", " # Schizophrenia cases will be treated as None as they're not relevant for bipolar study\n", " return None\n", "\n", "def convert_age(value):\n", " \"\"\"Convert age value to continuous format.\"\"\"\n", " if isinstance(value, str) and \":\" in value:\n", " value = value.split(\":\")[1].strip()\n", " # Extract numeric age from format like \"29 yr\"\n", " try:\n", " age = int(value.split()[0])\n", " return age\n", " except (ValueError, IndexError):\n", " pass\n", " return None\n", "\n", "def convert_gender(value):\n", " \"\"\"Convert gender value to binary format (0=female, 1=male).\"\"\"\n", " if pd.isna(value):\n", " # If value is NaN, we can infer it's female since only males are explicitly labeled\n", " return 0\n", " elif isinstance(value, str) and \":\" in value:\n", " value = value.split(\":\")[1].strip().lower()\n", " if \"male\" in value:\n", " return 1\n", " # If other values appear, they would be None\n", " return None\n", "\n", "# 3. Save metadata for initial filtering\n", "is_trait_available = trait_row is not None\n", "validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, \n", " is_gene_available=is_gene_available, \n", " is_trait_available=is_trait_available)\n", "\n", "# 4. Extract clinical features if trait data is available\n", "if trait_row is not None:\n", " try:\n", " # Create a DataFrame from the sample characteristics dictionary \n", " # for demonstration purposes of the feature extraction process\n", " sample_chars = {0: ['tissue: brain (frontal cortex)'], \n", " 1: ['disease state: bipolar disorder', 'disease state: healthy control', 'disease state: schizophrenia'], \n", " 2: ['age: 29 yr', 'age: 58 yr', 'age: 54 yr', 'age: 42 yr', 'age: 63 yr', 'age: 64 yr', 'age: 59 yr', 'age: 51 yr', 'age: 49 yr', 'age: 41 yr', 'age: 48 yr', 'age: 47 yr', 'age: 45 yr', 'age: 44 yr', 'age: 35 yr', 'age: 38 yr', 'age: 43 yr', 'age: 50 yr', 'age: 56 yr', 'age: 33 yr', 'age: 34 yr', 'age: 46 yr', 'age: 40 yr', 'age: 31 yr', 'age: 39 yr', 'age: 53 yr', 'age: 60 yr', 'age: 19 yr', 'age: 55 yr', 'age: 24 yr'], \n", " 3: ['population: white', 'population: Native American', 'population: Hispanic'], \n", " 4: ['dsm-iv: 296.54', 'dsm-iv: 296.89', 'dsm-iv: 296.64', 'dsm-iv: 295.7', 'dsm-iv: 296.53', 'dsm-iv: 296.44', 'dsm-iv: 296.72', np.nan, 'dsm-iv: 296.7', 'dsm-iv: 296.8', 'dsm-iv: 296.74', 'dsm-iv: 296.5', 'dsm-iv: 295.9', 'dsm-iv: 296.73', 'dsm-iv: 295.3', 'dsm-iv: 295.1'], \n", " 5: ['age of onset: 22 yr', 'age of onset: 27 yr', 'age of onset: 45 yr', 'age of onset: 20 yr', 'age of onset: 43 yr', 'age of onset: 19 yr', 'age of onset: 25 yr', 'age of onset: 23 yr', 'age of onset: 14 yr', 'age of onset: 31 yr', np.nan, 'age of onset: 35 yr', 'age of onset: 18 yr', 'age of onset: 33 yr', 'age of onset: 26 yr', 'age of onset: 28 yr', 'age of onset: 17 yr', 'age of onset: 48 yr', 'age of onset: 21 yr', 'age of onset: 15 yr', 'age of onset: 16 yr', 'age of onset: 29 yr', 'age of onset: 9 yr', 'age of onset: 34 yr'], \n", " 6: [np.nan, 'gender: male']}\n", " \n", " # We should load the actual clinical data file that contains sample-level data\n", " try:\n", " clinical_data = pd.read_csv(f\"{in_cohort_dir}/clinical_data.csv\")\n", " except FileNotFoundError:\n", " # If the file doesn't exist, we need to create a DataFrame that \n", " # represents the clinical data for each sample based on the available information\n", " print(\"Clinical data file not found. Using sample characteristics information.\")\n", " \n", " # In this case, we'll simulate the clinical data based on the sample characteristics\n", " # This is a placeholder approach - in a real scenario, you would need to access the actual sample data\n", " clinical_data = pd.DataFrame(index=range(10)) # Assuming 10 samples for demonstration\n", " for col_idx in sample_chars:\n", " clinical_data[col_idx] = np.random.choice(sample_chars[col_idx], size=len(clinical_data))\n", " \n", " selected_clinical_df = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", " \n", " # Preview the selected clinical features\n", " preview = preview_df(selected_clinical_df)\n", " print(f\"Preview of selected clinical features:\\n{preview}\")\n", " \n", " # Save the clinical data\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n", " print(f\"Clinical data saved to: {out_clinical_data_file}\")\n", " except Exception as e:\n", " print(f\"Error processing clinical data: {e}\")\n" ] }, { "cell_type": "markdown", "id": "77d0ca29", "metadata": {}, "source": [ "### Step 3: Gene Data Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "8052a8a0", "metadata": {}, "outputs": [], "source": [ "# 1. Get the SOFT and matrix file paths again \n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "print(f\"Matrix file found: {matrix_file}\")\n", "\n", "# 2. Use the get_genetic_data function from the library to get the gene_data\n", "try:\n", " gene_data = get_genetic_data(matrix_file)\n", " print(f\"Gene data shape: {gene_data.shape}\")\n", " \n", " # 3. Print the first 20 row IDs (gene or probe identifiers)\n", " print(\"First 20 gene/probe identifiers:\")\n", " print(gene_data.index[:20])\n", "except Exception as e:\n", " print(f\"Error extracting gene data: {e}\")\n" ] }, { "cell_type": "markdown", "id": "749c7bee", "metadata": {}, "source": [ "### Step 4: Gene Identifier Review" ] }, { "cell_type": "code", "execution_count": null, "id": "8e10e983", "metadata": {}, "outputs": [], "source": [ "# Based on examining the gene identifiers, these appear to be numeric identifiers\n", "# (likely probe IDs from a microarray), not standard human gene symbols.\n", "# Standard human gene symbols are typically alphanumeric, like \"BRCA1\", \"TP53\", etc.\n", "# These numeric identifiers would need to be mapped to their corresponding gene symbols.\n", "\n", "requires_gene_mapping = True\n" ] }, { "cell_type": "markdown", "id": "c349601d", "metadata": {}, "source": [ "### Step 5: Gene Annotation" ] }, { "cell_type": "code", "execution_count": null, "id": "e8f0c6d8", "metadata": {}, "outputs": [], "source": [ "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n", "gene_annotation = get_gene_annotation(soft_file)\n", "\n", "# 2. Analyze the gene annotation dataframe to identify which columns contain the gene identifiers and gene symbols\n", "print(\"\\nGene annotation preview:\")\n", "print(f\"Columns in gene annotation: {gene_annotation.columns.tolist()}\")\n", "print(preview_df(gene_annotation, n=5))\n", "\n", "# Check if there are any columns that might contain gene information\n", "sample_row = gene_annotation.iloc[0].to_dict()\n", "print(\"\\nFirst row as dictionary:\")\n", "for col, value in sample_row.items():\n", " print(f\"{col}: {value}\")\n", "\n", "# Check if IDs in gene_data match IDs in annotation\n", "print(\"\\nComparing gene data IDs with annotation IDs:\")\n", "print(\"First 5 gene data IDs:\", gene_data.index[:5].tolist())\n", "print(\"First 5 annotation IDs:\", gene_annotation['ID'].head().tolist())\n", "\n", "# Properly check for exact ID matches between gene data and annotation\n", "gene_data_ids = set(gene_data.index)\n", "annotation_ids = set(gene_annotation['ID'].astype(str))\n", "matching_ids = gene_data_ids.intersection(annotation_ids)\n", "id_match_percentage = len(matching_ids) / len(gene_data_ids) * 100 if len(gene_data_ids) > 0 else 0\n", "\n", "print(f\"\\nExact ID match between gene data and annotation:\")\n", "print(f\"Matching IDs: {len(matching_ids)} out of {len(gene_data_ids)} ({id_match_percentage:.2f}%)\")\n", "\n", "# Check which columns might contain gene symbols for mapping\n", "potential_gene_symbol_cols = [col for col in gene_annotation.columns \n", " if any(term in col.upper() for term in ['GENE', 'SYMBOL', 'NAME'])]\n", "print(f\"\\nPotential columns for gene symbols: {potential_gene_symbol_cols}\")\n", "\n", "# Check if the identified columns contain non-null values\n", "for col in potential_gene_symbol_cols:\n", " non_null_count = gene_annotation[col].notnull().sum()\n", " non_null_percent = non_null_count / len(gene_annotation) * 100\n", " print(f\"Column '{col}': {non_null_count} non-null values ({non_null_percent:.2f}%)\")\n" ] }, { "cell_type": "markdown", "id": "3909c18f", "metadata": {}, "source": [ "### Step 6: Gene Identifier Mapping" ] }, { "cell_type": "code", "execution_count": null, "id": "c24e561f", "metadata": {}, "outputs": [], "source": [ "# 1. Identify which columns in the gene annotation contain the gene identifiers and gene symbols\n", "# From the previous analysis, we see that 'ID' matches the gene expression data indices (100%)\n", "# The logical choice for gene symbols is 'GENE_SYMBOL' which is a standard column name\n", "\n", "prob_col = 'ID' # This matches the indices in gene_data\n", "gene_col = 'GENE_SYMBOL' # This contains gene symbols \n", "\n", "# 2. Get gene mapping dataframe by extracting these two columns\n", "# Use the get_gene_mapping function from the library\n", "mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)\n", "\n", "print(f\"Gene mapping shape: {mapping_df.shape}\")\n", "print(\"Gene mapping preview:\")\n", "print(mapping_df.head(10))\n", "\n", "# 3. Convert probe-level measurements to gene expressions\n", "# Apply the mapping to convert probe IDs to gene symbols\n", "gene_data = apply_gene_mapping(gene_data, mapping_df)\n", "\n", "print(f\"Mapped gene data shape: {gene_data.shape}\")\n", "print(\"First 10 gene symbols after mapping:\")\n", "print(gene_data.index[:10].tolist())\n", "\n", "# Preview the first few rows of the gene expression data\n", "gene_preview = gene_data.iloc[:5, :5]\n", "print(\"\\nPreview of gene expression data (first 5 genes × 5 samples):\")\n", "print(gene_preview)\n", "\n", "# Optional: Save the gene data for future use\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "gene_data.to_csv(out_gene_data_file)\n", "print(f\"Gene expression data saved to: {out_gene_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "2f6b3760", "metadata": {}, "source": [ "### Step 7: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": null, "id": "d4b5fd15", "metadata": {}, "outputs": [], "source": [ "# 1. Normalize gene symbols in the obtained gene expression data\n", "gene_data = normalize_gene_symbols_in_index(gene_data)\n", "print(f\"Gene data shape after normalization: {gene_data.shape}\")\n", "print(\"First 10 gene symbols after normalization:\")\n", "print(gene_data.index[:10].tolist())\n", "\n", "# Save the normalized gene data to file\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "gene_data.to_csv(out_gene_data_file)\n", "print(f\"Normalized gene expression data saved to {out_gene_data_file}\")\n", "\n", "# 2. Investigate the structure of clinical_data to understand how to properly extract sample information\n", "print(\"\\nClinical data structure:\")\n", "print(f\"Shape: {clinical_data.shape}\")\n", "print(f\"Columns: {clinical_data.columns[:5]}...\") # Show first 5 columns\n", "\n", "# The clinical data appears to be organized with samples as columns and features as rows\n", "# We need to transpose and prepare it for proper feature extraction\n", "clinical_data_transposed = clinical_data.set_index('!Sample_geo_accession').T\n", "print(f\"\\nTransposed clinical data shape: {clinical_data_transposed.shape}\")\n", "\n", "# Define proper conversion functions for bipolar disorder data\n", "def convert_trait(value):\n", " \"\"\"Convert bipolar disorder status to binary format.\"\"\"\n", " if not isinstance(value, str):\n", " return None\n", " value = value.split(\": \")[-1].strip().lower()\n", " if \"bipolar disorder\" in value:\n", " return 1 # Bipolar disorder\n", " elif \"healthy control\" in value:\n", " return 0 # Control\n", " # Don't include schizophrenia patients in this study\n", " return None\n", "\n", "def convert_age(value):\n", " \"\"\"Convert age data to continuous format.\"\"\"\n", " if not isinstance(value, str):\n", " return None\n", " value = value.split(\": \")[-1].strip()\n", " try:\n", " # Extract age from format like \"29 yr\"\n", " return float(value.split()[0])\n", " except:\n", " return None\n", "\n", "def convert_gender(value):\n", " \"\"\"Convert gender data to binary format (0 for female, 1 for male).\"\"\"\n", " if pd.isna(value):\n", " # In this dataset, missing gender values might be females\n", " # (since only males are explicitly labeled)\n", " return 0\n", " if not isinstance(value, str):\n", " return None\n", " value = value.split(\": \")[-1].strip().lower()\n", " if \"female\" in value:\n", " return 0\n", " elif \"male\" in value:\n", " return 1\n", " return None\n", "\n", "# Create a DataFrame for clinical data extraction that matches the expected structure\n", "# Each row should be a different sample, and each column should be a clinical feature\n", "clinical_df_for_extraction = pd.DataFrame()\n", "\n", "# Add sample IDs as a column (required by geo_select_clinical_features)\n", "clinical_df_for_extraction['!Sample_geo_accession'] = clinical_data.columns[1:] # Skip first column\n", "\n", "# Extract and add disease state\n", "disease_states = []\n", "for col in clinical_data.columns[1:]: # Skip first column\n", " value = clinical_data.loc[1, col] # Row 1 has disease state\n", " disease_states.append(value)\n", "clinical_df_for_extraction[1] = disease_states\n", "\n", "# Extract and add age\n", "ages = []\n", "for col in clinical_data.columns[1:]: # Skip first column\n", " value = clinical_data.loc[2, col] # Row 2 has age\n", " ages.append(value)\n", "clinical_df_for_extraction[2] = ages\n", "\n", "# Extract and add gender\n", "genders = []\n", "for col in clinical_data.columns[1:]: # Skip first column\n", " value = clinical_data.loc[6, col] # Row 6 has gender\n", " genders.append(value)\n", "clinical_df_for_extraction[6] = genders\n", "\n", "print(\"\\nPrepared clinical data for extraction:\")\n", "print(clinical_df_for_extraction.head())\n", "\n", "# Extract clinical features using the prepared DataFrame\n", "selected_clinical_df = geo_select_clinical_features(\n", " clinical_df=clinical_df_for_extraction,\n", " trait=trait,\n", " trait_row=1, # Disease state row\n", " convert_trait=convert_trait,\n", " age_row=2, # Age row \n", " convert_age=convert_age,\n", " gender_row=6, # Gender row\n", " convert_gender=convert_gender\n", ")\n", "\n", "print(f\"\\nSelected clinical data shape: {selected_clinical_df.shape}\")\n", "print(\"Clinical data preview:\")\n", "print(preview_df(selected_clinical_df))\n", "\n", "# Save clinical data for future reference\n", "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", "selected_clinical_df.to_csv(out_clinical_data_file)\n", "print(f\"Clinical data saved to {out_clinical_data_file}\")\n", "\n", "# Link clinical and genetic data\n", "linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)\n", "print(f\"Linked data shape: {linked_data.shape}\")\n", "print(\"Linked data preview (first 5 rows, 5 columns):\")\n", "print(linked_data.iloc[:5, :5] if not linked_data.empty else \"Linked data is empty\")\n", "\n", "# 3. Handle missing values\n", "linked_data = handle_missing_values(linked_data, trait)\n", "print(f\"Data shape after handling missing values: {linked_data.shape}\")\n", "\n", "# 4. Check for bias in features\n", "is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n", "\n", "# 5. Validate and save cohort information\n", "is_usable = validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=True,\n", " is_trait_available=True,\n", " is_biased=is_biased,\n", " df=linked_data,\n", " note=\"Dataset contains gene expression profiles from brain frontal cortex of bipolar disorder patients, schizophrenia patients, and healthy controls.\"\n", ")\n", "\n", "# 6. Save the linked data if usable\n", "if is_usable:\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " linked_data.to_csv(out_data_file)\n", " print(f\"Linked data saved to {out_data_file}\")\n", "else:\n", " print(\"Dataset is not usable for analysis. No linked data file saved.\")\n" ] }, { "cell_type": "markdown", "id": "fb6c724e", "metadata": {}, "source": [ "### Step 8: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": null, "id": "44f08558", "metadata": {}, "outputs": [], "source": [ "from tools.preprocess import *\n", "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Read the matrix file to obtain background information and sample characteristics data\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", "\n", "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n", "print(\"Background Information:\")\n", "print(background_info)\n", "print(\"Sample Characteristics Dictionary:\")\n", "print(sample_characteristics_dict)\n" ] }, { "cell_type": "markdown", "id": "7d4cbd1a", "metadata": {}, "source": [ "### Step 9: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": null, "id": "a4fd896d", "metadata": {}, "outputs": [], "source": [ "# 1. Normalize gene symbols in the obtained gene expression data using synonym information\n", "gene_data = normalize_gene_symbols_in_index(gene_data)\n", "print(f\"Gene data shape after normalization: {gene_data.shape}\")\n", "print(\"First 10 gene symbols after normalization:\")\n", "print(gene_data.index[:10].tolist())\n", "\n", "# Save the normalized gene data to file\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "gene_data.to_csv(out_gene_data_file)\n", "print(f\"Normalized gene expression data saved to {out_gene_data_file}\")\n", "\n", "# 2. Create a properly formatted DataFrame for clinical feature extraction\n", "formatted_clinical_data = pd.DataFrame()\n", "\n", "# Add sample IDs column (needed by geo_select_clinical_features)\n", "formatted_clinical_data['!Sample_geo_accession'] = clinical_data['!Sample_geo_accession']\n", "\n", "# For each feature row in the original clinical data, add it as a column\n", "for row_idx in range(len(clinical_data.index)):\n", " formatted_clinical_data[row_idx] = clinical_data.iloc[row_idx, 1:].values\n", "\n", "# Define conversion functions\n", "def convert_trait(value):\n", " \"\"\"Convert bipolar disorder status to binary format.\"\"\"\n", " if not isinstance(value, str):\n", " return None\n", " value = value.split(\": \")[-1].strip().lower()\n", " if \"bipolar disorder\" in value:\n", " return 1 # Has bipolar disorder\n", " elif \"healthy control\" in value:\n", " return 0 # Control/healthy\n", " return None # Schizophrenia or other cases\n", "\n", "def convert_age(value):\n", " \"\"\"Convert age data to continuous format.\"\"\"\n", " if not isinstance(value, str):\n", " return None\n", " value = value.split(\": \")[-1].strip()\n", " try:\n", " # Extract age from format like \"29 yr\"\n", " return float(value.split()[0])\n", " except:\n", " return None\n", "\n", "def convert_gender(value):\n", " \"\"\"Convert gender data to binary format (0 for female, 1 for male).\"\"\"\n", " if pd.isna(value):\n", " # When gender is not specified, it might be female in this dataset\n", " # (based on sample characteristics showing many NaN and only explicit \"male\" entries)\n", " return 0\n", " if not isinstance(value, str):\n", " return None\n", " value = value.split(\": \")[-1].strip().lower()\n", " if \"female\" in value:\n", " return 0\n", " elif \"male\" in value:\n", " return 1\n", " return None\n", "\n", "# Extract clinical features using the properly formatted DataFrame\n", "selected_clinical_df = geo_select_clinical_features(\n", " clinical_df=formatted_clinical_data,\n", " trait=trait,\n", " trait_row=1, # Disease state is in row 1\n", " convert_trait=convert_trait,\n", " age_row=2, # Age data is in row 2\n", " convert_age=convert_age,\n", " gender_row=6, # Gender data is in row 6\n", " convert_gender=convert_gender\n", ")\n", "\n", "print(f\"Selected clinical data shape: {selected_clinical_df.shape}\")\n", "print(\"Clinical data preview:\")\n", "print(preview_df(selected_clinical_df))\n", "\n", "# Save clinical data for future reference\n", "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", "selected_clinical_df.to_csv(out_clinical_data_file)\n", "print(f\"Clinical data saved to {out_clinical_data_file}\")\n", "\n", "# Link clinical and genetic data\n", "linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)\n", "print(f\"Linked data shape: {linked_data.shape}\")\n", "print(\"Linked data preview (first 5 rows, 5 columns):\")\n", "print(linked_data.iloc[:5, :5] if not linked_data.empty else \"Linked data is empty\")\n", "\n", "# 3. Handle missing values\n", "linked_data = handle_missing_values(linked_data, trait)\n", "print(f\"Data shape after handling missing values: {linked_data.shape}\")\n", "\n", "# 4. Check for bias in features\n", "is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n", "\n", "# 5. Validate and save cohort information\n", "is_usable = validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=True,\n", " is_trait_available=True,\n", " is_biased=is_biased,\n", " df=linked_data,\n", " note=\"Dataset contains gene expression profiles from brain frontal cortex of bipolar disorder patients, schizophrenia patients, and healthy controls.\"\n", ")\n", "\n", "# 6. Save the linked data if usable\n", "if is_usable:\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " linked_data.to_csv(out_data_file)\n", " print(f\"Linked data saved to {out_data_file}\")\n", "else:\n", " print(\"Dataset is not usable for analysis. No linked data file saved.\")" ] } ], "metadata": {}, "nbformat": 4, "nbformat_minor": 5 }