{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "54681efd", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T07:01:53.543600Z", "iopub.status.busy": "2025-03-25T07:01:53.543488Z", "iopub.status.idle": "2025-03-25T07:01:53.706285Z", "shell.execute_reply": "2025-03-25T07:01:53.705828Z" } }, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Breast_Cancer\"\n", "cohort = \"GSE225328\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Breast_Cancer\"\n", "in_cohort_dir = \"../../input/GEO/Breast_Cancer/GSE225328\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Breast_Cancer/GSE225328.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Breast_Cancer/gene_data/GSE225328.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Breast_Cancer/clinical_data/GSE225328.csv\"\n", "json_path = \"../../output/preprocess/Breast_Cancer/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "a38711d6", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": 2, "id": "62e23e20", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T07:01:53.707710Z", "iopub.status.busy": "2025-03-25T07:01:53.707557Z", "iopub.status.idle": "2025-03-25T07:01:53.735100Z", "shell.execute_reply": "2025-03-25T07:01:53.734694Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Background Information:\n", "!Series_title\t\"Transcriptome profiling in early-stage luminal breast cancer\"\n", "!Series_summary\t\"This SuperSeries is composed of the SubSeries listed below.\"\n", "!Series_overall_design\t\"Refer to individual Series\"\n", "Sample Characteristics Dictionary:\n", "{0: ['disease: early-stage luminal breast cancer'], 1: ['Sex: female']}\n" ] } ], "source": [ "from tools.preprocess import *\n", "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Read the matrix file to obtain background information and sample characteristics data\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", "\n", "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n", "print(\"Background Information:\")\n", "print(background_info)\n", "print(\"Sample Characteristics Dictionary:\")\n", "print(sample_characteristics_dict)\n" ] }, { "cell_type": "markdown", "id": "ad985c48", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": 3, "id": "de5ab3c3", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T07:01:53.736344Z", "iopub.status.busy": "2025-03-25T07:01:53.736230Z", "iopub.status.idle": "2025-03-25T07:01:53.750929Z", "shell.execute_reply": "2025-03-25T07:01:53.750474Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Preview of clinical features:\n", "{'GSM7043537': [1.0, 0.0], 'GSM7043538': [1.0, 0.0], 'GSM7043539': [1.0, 0.0], 'GSM7043540': [1.0, 0.0], 'GSM7043541': [1.0, 0.0], 'GSM7043542': [1.0, 0.0], 'GSM7043543': [1.0, 0.0], 'GSM7043544': [1.0, 0.0], 'GSM7043545': [1.0, 0.0], 'GSM7043546': [1.0, 0.0], 'GSM7043547': [1.0, 0.0], 'GSM7043548': [1.0, 0.0], 'GSM7043549': [1.0, 0.0], 'GSM7043550': [1.0, 0.0], 'GSM7043551': [1.0, 0.0], 'GSM7043552': [1.0, 0.0], 'GSM7043553': [1.0, 0.0], 'GSM7043554': [1.0, 0.0], 'GSM7043555': [1.0, 0.0], 'GSM7043556': [1.0, 0.0], 'GSM7043557': [1.0, 0.0], 'GSM7043558': [1.0, 0.0], 'GSM7043559': [1.0, 0.0], 'GSM7043560': [1.0, 0.0], 'GSM7043561': [1.0, 0.0], 'GSM7043562': [1.0, 0.0], 'GSM7043563': [1.0, 0.0], 'GSM7043564': [1.0, 0.0], 'GSM7043565': [1.0, 0.0], 'GSM7043566': [1.0, 0.0], 'GSM7043567': [1.0, 0.0], 'GSM7043568': [1.0, 0.0], 'GSM7043569': [1.0, 0.0], 'GSM7043570': [1.0, 0.0], 'GSM7043571': [1.0, 0.0], 'GSM7043572': [1.0, 0.0], 'GSM7043573': [1.0, 0.0], 'GSM7043574': [1.0, 0.0], 'GSM7043575': [1.0, 0.0], 'GSM7043576': [1.0, 0.0], 'GSM7043577': [1.0, 0.0], 'GSM7043578': [1.0, 0.0], 'GSM7043579': [1.0, 0.0], 'GSM7043580': [1.0, 0.0], 'GSM7043581': [1.0, 0.0], 'GSM7043582': [1.0, 0.0], 'GSM7043583': [1.0, 0.0], 'GSM7043584': [1.0, 0.0], 'GSM7043585': [1.0, 0.0], 'GSM7043586': [1.0, 0.0], 'GSM7043587': [1.0, 0.0], 'GSM7043588': [1.0, 0.0], 'GSM7043589': [1.0, 0.0], 'GSM7043590': [1.0, 0.0], 'GSM7043591': [1.0, 0.0], 'GSM7043592': [1.0, 0.0], 'GSM7043593': [1.0, 0.0], 'GSM7043594': [1.0, 0.0], 'GSM7043595': [1.0, 0.0], 'GSM7043596': [1.0, 0.0], 'GSM7043597': [1.0, 0.0], 'GSM7043598': [1.0, 0.0], 'GSM7043599': [1.0, 0.0], 'GSM7043600': [1.0, 0.0], 'GSM7043601': [1.0, 0.0], 'GSM7043602': [1.0, 0.0], 'GSM7043603': [1.0, 0.0], 'GSM7043604': [1.0, 0.0], 'GSM7043605': [1.0, 0.0], 'GSM7043606': [1.0, 0.0], 'GSM7043607': [1.0, 0.0], 'GSM7043608': [1.0, 0.0], 'GSM7043609': [1.0, 0.0], 'GSM7043610': [1.0, 0.0], 'GSM7043611': [1.0, 0.0], 'GSM7043612': [1.0, 0.0], 'GSM7043613': [1.0, 0.0], 'GSM7043614': [1.0, 0.0], 'GSM7043615': [1.0, 0.0], 'GSM7043616': [1.0, 0.0], 'GSM7043617': [1.0, 0.0], 'GSM7043618': [1.0, 0.0], 'GSM7043619': [1.0, 0.0], 'GSM7043620': [1.0, 0.0], 'GSM7043621': [1.0, 0.0], 'GSM7043622': [1.0, 0.0], 'GSM7043623': [1.0, 0.0], 'GSM7043624': [1.0, 0.0], 'GSM7043625': [1.0, 0.0], 'GSM7043626': [1.0, 0.0], 'GSM7043627': [1.0, 0.0], 'GSM7043628': [1.0, 0.0], 'GSM7043629': [1.0, 0.0], 'GSM7043630': [1.0, 0.0], 'GSM7043631': [1.0, 0.0], 'GSM7043632': [1.0, 0.0], 'GSM7043633': [1.0, 0.0], 'GSM7043634': [1.0, 0.0], 'GSM7043635': [1.0, 0.0], 'GSM7043636': [1.0, 0.0], 'GSM7043637': [1.0, 0.0], 'GSM7043638': [1.0, 0.0], 'GSM7043639': [1.0, 0.0], 'GSM7043640': [1.0, 0.0], 'GSM7043641': [1.0, 0.0], 'GSM7043642': [1.0, 0.0], 'GSM7043643': [1.0, 0.0], 'GSM7043644': [1.0, 0.0], 'GSM7043645': [1.0, 0.0], 'GSM7043646': [1.0, 0.0], 'GSM7043647': [1.0, 0.0], 'GSM7043648': [1.0, 0.0], 'GSM7043649': [1.0, 0.0], 'GSM7043650': [1.0, 0.0], 'GSM7043651': [1.0, 0.0], 'GSM7043652': [1.0, 0.0], 'GSM7043653': [1.0, 0.0], 'GSM7043654': [1.0, 0.0], 'GSM7043655': [1.0, 0.0], 'GSM7043656': [1.0, 0.0], 'GSM7043657': [1.0, 0.0], 'GSM7043658': [1.0, 0.0], 'GSM7043659': [1.0, 0.0], 'GSM7043660': [1.0, 0.0], 'GSM7043661': [1.0, 0.0]}\n", "Clinical features saved to ../../output/preprocess/Breast_Cancer/clinical_data/GSE225328.csv\n" ] } ], "source": [ "# 1. Gene Expression Data Availability\n", "# According to the background information, this is a transcriptome profiling study\n", "# which typically means gene expression data is available\n", "is_gene_available = True\n", "\n", "# 2.1 Data Availability\n", "# Looking at the Sample Characteristics Dictionary:\n", "# Key 0 has \"disease: early-stage luminal breast cancer\" which is related to the trait (Breast Cancer)\n", "# Key 1 has \"Sex: female\" which is gender information\n", "# There is no age information available\n", "\n", "trait_row = 0 # Disease information is in row 0\n", "age_row = None # Age information is not available\n", "gender_row = 1 # Gender information is in row 1\n", "\n", "# 2.2 Data Type Conversion\n", "def convert_trait(value):\n", " \"\"\"Convert trait values to binary format.\"\"\"\n", " if value is None:\n", " return None\n", " \n", " # Extract the value after the colon\n", " if ':' in value:\n", " value = value.split(':', 1)[1].strip()\n", " \n", " # Since all samples are \"early-stage luminal breast cancer\", \n", " # all will be converted to 1 (indicating presence of breast cancer)\n", " if \"breast cancer\" in value.lower():\n", " return 1\n", " else:\n", " return None # For any unexpected values\n", "\n", "def convert_age(value):\n", " \"\"\"Convert age values to continuous format.\"\"\"\n", " # Age data is not available, but we include this function for completeness\n", " if value is None:\n", " return None\n", " \n", " # Extract the value after the colon\n", " if ':' in value:\n", " value = value.split(':', 1)[1].strip()\n", " \n", " try:\n", " return float(value)\n", " except (ValueError, TypeError):\n", " return None\n", "\n", "def convert_gender(value):\n", " \"\"\"Convert gender values to binary format (0 for female, 1 for male).\"\"\"\n", " if value is None:\n", " return None\n", " \n", " # Extract the value after the colon\n", " if ':' in value:\n", " value = value.split(':', 1)[1].strip().lower()\n", " \n", " if \"female\" in value:\n", " return 0\n", " elif \"male\" in value:\n", " return 1\n", " else:\n", " return None\n", "\n", "# 3. Save Metadata\n", "# Determine trait data availability\n", "is_trait_available = trait_row is not None\n", "\n", "# Initial filtering and saving metadata\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "# 4. Clinical Feature Extraction\n", "if trait_row is not None:\n", " # Extract clinical features\n", " clinical_features_df = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", " \n", " # Preview the extracted clinical features\n", " print(\"Preview of clinical features:\")\n", " print(preview_df(clinical_features_df))\n", " \n", " # Save the clinical features as a CSV file\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " clinical_features_df.to_csv(out_clinical_data_file)\n", " print(f\"Clinical features saved to {out_clinical_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "2e6e732c", "metadata": {}, "source": [ "### Step 3: Gene Data Extraction" ] }, { "cell_type": "code", "execution_count": 4, "id": "0b14f656", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T07:01:53.752701Z", "iopub.status.busy": "2025-03-25T07:01:53.752366Z", "iopub.status.idle": "2025-03-25T07:01:53.790641Z", "shell.execute_reply": "2025-03-25T07:01:53.790170Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "SOFT file: ../../input/GEO/Breast_Cancer/GSE225328/GSE225328_family.soft.gz\n", "Matrix file: ../../input/GEO/Breast_Cancer/GSE225328/GSE225328-GPL18402_series_matrix.txt.gz\n", "Found the matrix table marker at line 60\n", "Gene data shape: (2006, 125)\n", "First 20 gene/probe identifiers:\n", "['hsa-let-7a-3p', 'hsa-let-7a-5p', 'hsa-let-7b-3p', 'hsa-let-7b-5p', 'hsa-let-7c', 'hsa-let-7d-3p', 'hsa-let-7d-5p', 'hsa-let-7e-3p', 'hsa-let-7e-5p', 'hsa-let-7f-1-3p', 'hsa-let-7f-2-3p', 'hsa-let-7f-5p', 'hsa-let-7g-3p', 'hsa-let-7g-5p', 'hsa-let-7i-3p', 'hsa-let-7i-5p', 'hsa-miR-1', 'hsa-miR-100-3p', 'hsa-miR-100-5p', 'hsa-miR-101-3p']\n" ] } ], "source": [ "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "print(f\"SOFT file: {soft_file}\")\n", "print(f\"Matrix file: {matrix_file}\")\n", "\n", "# Set gene availability flag\n", "is_gene_available = True # Initially assume gene data is available\n", "\n", "# First check if the matrix file contains the expected marker\n", "found_marker = False\n", "marker_row = None\n", "try:\n", " with gzip.open(matrix_file, 'rt') as file:\n", " for i, line in enumerate(file):\n", " if \"!series_matrix_table_begin\" in line:\n", " found_marker = True\n", " marker_row = i\n", " print(f\"Found the matrix table marker at line {i}\")\n", " break\n", " \n", " if not found_marker:\n", " print(\"Warning: Could not find '!series_matrix_table_begin' marker in the file.\")\n", " is_gene_available = False\n", " \n", " # If marker was found, try to extract gene data\n", " if is_gene_available:\n", " try:\n", " # Try using the library function\n", " gene_data = get_genetic_data(matrix_file)\n", " \n", " if gene_data.shape[0] == 0:\n", " print(\"Warning: Extracted gene data has 0 rows.\")\n", " is_gene_available = False\n", " else:\n", " print(f\"Gene data shape: {gene_data.shape}\")\n", " # Print the first 20 gene/probe identifiers\n", " print(\"First 20 gene/probe identifiers:\")\n", " print(gene_data.index[:20].tolist())\n", " except Exception as e:\n", " print(f\"Error extracting gene data with get_genetic_data(): {e}\")\n", " is_gene_available = False\n", " \n", " # If gene data extraction failed, examine file content to diagnose\n", " if not is_gene_available:\n", " print(\"Examining file content to diagnose the issue:\")\n", " try:\n", " with gzip.open(matrix_file, 'rt') as file:\n", " # Print lines around the marker if found\n", " if marker_row is not None:\n", " for i, line in enumerate(file):\n", " if i >= marker_row - 2 and i <= marker_row + 10:\n", " print(f\"Line {i}: {line.strip()[:100]}...\")\n", " if i > marker_row + 10:\n", " break\n", " else:\n", " # If marker not found, print first 10 lines\n", " for i, line in enumerate(file):\n", " if i < 10:\n", " print(f\"Line {i}: {line.strip()[:100]}...\")\n", " else:\n", " break\n", " except Exception as e2:\n", " print(f\"Error examining file: {e2}\")\n", " \n", "except Exception as e:\n", " print(f\"Error processing file: {e}\")\n", " is_gene_available = False\n", "\n", "# Update validation information if gene data extraction failed\n", "if not is_gene_available:\n", " print(\"Gene expression data could not be successfully extracted from this dataset.\")\n", " # Update the validation record since gene data isn't available\n", " is_trait_available = False # We already determined trait data isn't available in step 2\n", " validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,\n", " is_gene_available=is_gene_available, is_trait_available=is_trait_available)\n" ] }, { "cell_type": "markdown", "id": "bb4bf217", "metadata": {}, "source": [ "### Step 4: Gene Identifier Review" ] }, { "cell_type": "code", "execution_count": 5, "id": "0e4703c0", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T07:01:53.792136Z", "iopub.status.busy": "2025-03-25T07:01:53.792027Z", "iopub.status.idle": "2025-03-25T07:01:53.794184Z", "shell.execute_reply": "2025-03-25T07:01:53.793754Z" } }, "outputs": [], "source": [ "# Based on the output from the previous step, I can see that the gene identifiers\n", "# are miRNA identifiers (e.g., \"hsa-let-7a-3p\", \"hsa-miR-1\", etc.)\n", "# These are proper standard miRNA names for human miRNAs (hsa prefix = Homo sapiens)\n", "# They are not gene symbols (like BRCA1, TP53) and would need to be mapped if we want\n", "# to convert to standard gene symbols\n", "\n", "requires_gene_mapping = True\n" ] }, { "cell_type": "markdown", "id": "48d28a60", "metadata": {}, "source": [ "### Step 5: Gene Annotation" ] }, { "cell_type": "code", "execution_count": 6, "id": "fcc938b0", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T07:01:53.795600Z", "iopub.status.busy": "2025-03-25T07:01:53.795494Z", "iopub.status.idle": "2025-03-25T07:01:54.048608Z", "shell.execute_reply": "2025-03-25T07:01:54.048080Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Gene annotation preview:\n", "Columns in gene annotation: ['ID', 'miRNA_ID', 'ACCESSION_STRING', 'CONTROL_TYPE', 'SPOT_ID', 'SPOT_ID.1']\n", "{'ID': ['hsa-let-7a-3p', 'hsa-let-7a-5p', 'hsa-let-7b-3p'], 'miRNA_ID': ['hsa-let-7a-3p', 'hsa-let-7a-5p', 'hsa-let-7b-3p'], 'ACCESSION_STRING': ['mir|hsa-let-7a-3p|mir|MIMAT0004481|mir|hsa-let-7a*_v17.0|mir|MIMAT0004481', 'mir|hsa-let-7a-5p|mir|MIMAT0000062|mir|hsa-let-7a_v17.0|mir|MIMAT0000062', 'mir|hsa-let-7b-3p|mir|MIMAT0004482|mir|hsa-let-7b*_v17.0|mir|MIMAT0004482'], 'CONTROL_TYPE': [False, False, False], 'SPOT_ID': [nan, nan, nan], 'SPOT_ID.1': [nan, nan, nan]}\n", "\n", "Examining ID and ORF columns format (first 3 rows):\n" ] } ], "source": [ "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "gene_annotation = get_gene_annotation(soft_file)\n", "\n", "# 2. Analyze the gene annotation dataframe to identify which columns contain the gene identifiers and gene symbols\n", "print(\"\\nGene annotation preview:\")\n", "print(f\"Columns in gene annotation: {gene_annotation.columns.tolist()}\")\n", "print(preview_df(gene_annotation, n=3))\n", "\n", "# Looking at the output, it appears the gene symbols are in the 'ORF' column\n", "# and the probe IDs are in the 'ID' column\n", "print(\"\\nExamining ID and ORF columns format (first 3 rows):\")\n", "if 'ID' in gene_annotation.columns and 'ORF' in gene_annotation.columns:\n", " for i in range(min(3, len(gene_annotation))):\n", " print(f\"Row {i}: ID={gene_annotation['ID'].iloc[i]}, ORF={gene_annotation['ORF'].iloc[i]}\")\n", "\n", " # Check the quality and completeness of the mapping\n", " non_null_symbols = gene_annotation['ORF'].notna().sum()\n", " total_rows = len(gene_annotation)\n", " print(f\"\\nORF column completeness: {non_null_symbols}/{total_rows} rows ({non_null_symbols/total_rows:.2%})\")\n" ] }, { "cell_type": "markdown", "id": "57976e5b", "metadata": {}, "source": [ "### Step 6: Gene Identifier Mapping" ] }, { "cell_type": "code", "execution_count": 7, "id": "048f7954", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T07:01:54.050088Z", "iopub.status.busy": "2025-03-25T07:01:54.049962Z", "iopub.status.idle": "2025-03-25T07:01:54.084210Z", "shell.execute_reply": "2025-03-25T07:01:54.083767Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Gene expression data sample (first 5 rows, 3 columns):\n", " GSM7043537 GSM7043538 GSM7043539\n", "ID \n", "hsa-let-7a-3p -2.842319 0.656993 -3.119569\n", "hsa-let-7a-5p 12.236782 11.668952 12.020029\n", "hsa-let-7b-3p 3.586698 -3.123689 0.167606\n", "hsa-let-7b-5p 12.979993 12.667322 12.236782\n", "hsa-let-7c 11.518827 10.673440 10.153807\n", "\n", "This dataset contains miRNA expression data, not standard gene expression data.\n", "miRNAs are small non-coding RNAs that regulate gene expression but are not genes themselves.\n", "For the purpose of gene-trait association studies, we require standard gene expression data.\n", "\n", "Dataset marked as not containing suitable gene expression data for our analysis.\n" ] } ], "source": [ "# Based on the exploration of columns, we can confirm this is miRNA data, not gene expression data\n", "# The identifiers are miRNA IDs (e.g., hsa-let-7a-3p) which don't map to standard gene symbols\n", "\n", "# Let's examine a sample of the gene expression data and annotation to confirm\n", "gene_expression_data = get_genetic_data(matrix_file)\n", "print(\"\\nGene expression data sample (first 5 rows, 3 columns):\")\n", "sample_cols = gene_expression_data.columns[:3].tolist()\n", "print(gene_expression_data.iloc[:5, :3])\n", "\n", "# Update our gene availability flag since this isn't standard gene expression data\n", "is_gene_available = False\n", "print(\"\\nThis dataset contains miRNA expression data, not standard gene expression data.\")\n", "print(\"miRNAs are small non-coding RNAs that regulate gene expression but are not genes themselves.\")\n", "print(\"For the purpose of gene-trait association studies, we require standard gene expression data.\")\n", "\n", "# Save the updated metadata to reflect that this dataset isn't suitable\n", "is_trait_available = True # We confirmed trait data is available in earlier steps\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available,\n", " note=\"Dataset contains miRNA expression data instead of gene expression data.\"\n", ")\n", "\n", "print(\"\\nDataset marked as not containing suitable gene expression data for our analysis.\")" ] } ], "metadata": { "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.16" } }, "nbformat": 4, "nbformat_minor": 5 }