{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "ba8805c3", "metadata": {}, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Celiac_Disease\"\n", "cohort = \"GSE113469\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Celiac_Disease\"\n", "in_cohort_dir = \"../../input/GEO/Celiac_Disease/GSE113469\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Celiac_Disease/GSE113469.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Celiac_Disease/gene_data/GSE113469.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Celiac_Disease/clinical_data/GSE113469.csv\"\n", "json_path = \"../../output/preprocess/Celiac_Disease/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "81232365", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": null, "id": "c2f1be4a", "metadata": {}, "outputs": [], "source": [ "from tools.preprocess import *\n", "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Read the matrix file to obtain background information and sample characteristics data\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", "\n", "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n", "print(\"Background Information:\")\n", "print(background_info)\n", "print(\"Sample Characteristics Dictionary:\")\n", "print(sample_characteristics_dict)\n" ] }, { "cell_type": "markdown", "id": "e5cdc099", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "b3ee538e", "metadata": {}, "outputs": [], "source": [ "# 1. Gene Expression Data Availability\n", "# Based on the series title and overall design, this dataset contains PBMC gene expression data\n", "is_gene_available = True\n", "\n", "# 2. Variable Availability and Data Type Conversion\n", "# 2.1 Data Availability\n", "# For trait: we can see 'disease state' in key 0 with values 'Healthy Control' and 'Celiac Disease'\n", "trait_row = 0\n", "\n", "# For age: we can see 'age' in key 1 with multiple values\n", "age_row = 1 \n", "\n", "# For gender: not available in the sample characteristics dictionary\n", "gender_row = None \n", "\n", "# 2.2 Data Type Conversion\n", "def convert_trait(value):\n", " \"\"\"Convert trait data to binary (0: control, 1: celiac disease)\"\"\"\n", " if not isinstance(value, str):\n", " return None\n", " \n", " # Extract value after colon if it exists\n", " if \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " \n", " if \"healthy control\" in value.lower():\n", " return 0\n", " elif \"celiac disease\" in value.lower():\n", " return 1\n", " else:\n", " return None\n", "\n", "def convert_age(value):\n", " \"\"\"Convert age data to continuous numeric values\"\"\"\n", " if not isinstance(value, str):\n", " return None\n", " \n", " # Extract value after colon if it exists\n", " if \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " \n", " try:\n", " return float(value)\n", " except (ValueError, TypeError):\n", " return None\n", "\n", "def convert_gender(value):\n", " \"\"\"Convert gender data to binary (0: female, 1: male)\"\"\"\n", " if not isinstance(value, str):\n", " return None\n", " \n", " # Extract value after colon if it exists\n", " if \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " \n", " value = value.lower()\n", " if \"female\" in value or \"f\" == value:\n", " return 0\n", " elif \"male\" in value or \"m\" == value:\n", " return 1\n", " else:\n", " return None\n", "\n", "# 3. Save Metadata\n", "# Determine trait data availability\n", "is_trait_available = trait_row is not None\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "# 4. Clinical Feature Extraction\n", "if trait_row is not None:\n", " # Sample characteristics from the previous step\n", " sample_chars_dict = {\n", " 0: ['disease state: Healthy Control', 'disease state: Celiac Disease'],\n", " 1: ['age: 30', 'age: 27', 'age: 31', 'age: 26', 'age: 28', 'age: 32', 'age: 41', 'age: 34', \n", " 'age: 25', 'age: 42', 'age: 29', 'age: 21', 'age: 44', 'age: 56', 'age: 50', 'age: 51', 'age: 37'],\n", " 2: ['cell type: PBMCs']\n", " }\n", " \n", " # Need to reconstruct clinical_data in the expected format for geo_select_clinical_features\n", " # Each row is a feature and columns are samples\n", " # First, let's determine the maximum sample size\n", " max_samples = max(len(values) for values in sample_chars_dict.values())\n", " \n", " # Create a properly structured DataFrame\n", " clinical_data = pd.DataFrame(index=range(len(sample_chars_dict)), columns=range(max_samples))\n", " \n", " # Fill the DataFrame with available data\n", " for row_idx, values in sample_chars_dict.items():\n", " for col_idx, value in enumerate(values):\n", " clinical_data.loc[row_idx, col_idx] = value\n", " \n", " # Now call geo_select_clinical_features with this properly structured data\n", " selected_clinical_df = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", " \n", " # Preview the dataframe\n", " preview = preview_df(selected_clinical_df)\n", " print(\"Preview of selected clinical features:\")\n", " print(preview)\n", " \n", " # Save the clinical data to CSV\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n", " print(f\"Clinical data saved to {out_clinical_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "ae34ddd9", "metadata": {}, "source": [ "### Step 3: Gene Data Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "10985a2a", "metadata": {}, "outputs": [], "source": [ "# 1. Get the SOFT and matrix file paths again \n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "print(f\"Matrix file found: {matrix_file}\")\n", "\n", "# 2. Use the get_genetic_data function from the library to get the gene_data\n", "try:\n", " gene_data = get_genetic_data(matrix_file)\n", " print(f\"Gene data shape: {gene_data.shape}\")\n", " \n", " # 3. Print the first 20 row IDs (gene or probe identifiers)\n", " print(\"First 20 gene/probe identifiers:\")\n", " print(gene_data.index[:20])\n", "except Exception as e:\n", " print(f\"Error extracting gene data: {e}\")\n" ] }, { "cell_type": "markdown", "id": "bd4c3ce0", "metadata": {}, "source": [ "### Step 4: Gene Identifier Review" ] }, { "cell_type": "code", "execution_count": null, "id": "36a14da9", "metadata": {}, "outputs": [], "source": [ "# The identifiers starting with \"ILMN_\" are Illumina probe IDs, not human gene symbols\n", "# These are microarray probe identifiers from Illumina BeadArray platform\n", "# They need to be mapped to standard gene symbols\n", "\n", "requires_gene_mapping = True\n" ] }, { "cell_type": "markdown", "id": "60f3727e", "metadata": {}, "source": [ "### Step 5: Gene Annotation" ] }, { "cell_type": "code", "execution_count": null, "id": "497b0e2b", "metadata": {}, "outputs": [], "source": [ "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n", "gene_annotation = get_gene_annotation(soft_file)\n", "\n", "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n", "print(\"Gene annotation preview:\")\n", "print(preview_df(gene_annotation))\n" ] }, { "cell_type": "markdown", "id": "7640a8e4", "metadata": {}, "source": [ "### Step 6: Gene Identifier Mapping" ] }, { "cell_type": "code", "execution_count": null, "id": "a525af11", "metadata": {}, "outputs": [], "source": [ "# 1. Identify the columns for probe IDs and gene symbols in the gene annotation\n", "# Based on the preview, 'ID' contains the probe identifiers (same format as gene expression data index: ILMN_XXXXXXX)\n", "# 'Symbol' contains the gene symbols\n", "probe_id_col = 'ID'\n", "gene_symbol_col = 'Symbol'\n", "\n", "# 2. Create the gene mapping dataframe using the identified columns\n", "gene_mapping = get_gene_mapping(gene_annotation, prob_col=probe_id_col, gene_col=gene_symbol_col)\n", "print(f\"Gene mapping dataframe shape: {gene_mapping.shape}\")\n", "print(\"First few rows of gene mapping:\")\n", "print(gene_mapping.head())\n", "\n", "# 3. Apply the gene mapping to convert probe-level measurements to gene-level expression\n", "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n", "print(f\"Gene expression data shape after mapping: {gene_data.shape}\")\n", "print(\"First few genes after mapping:\")\n", "print(gene_data.index[:10])\n", "\n", "# Save the gene expression data\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "gene_data.to_csv(out_gene_data_file)\n", "print(f\"Gene expression data saved to {out_gene_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "e4d83a2d", "metadata": {}, "source": [ "### Step 7: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": null, "id": "ac04c5a1", "metadata": {}, "outputs": [], "source": [ "# 1. Normalize gene symbols in the gene expression data\n", "gene_data = normalize_gene_symbols_in_index(gene_data)\n", "print(f\"Gene data shape after normalization: {gene_data.shape}\")\n", "print(\"First 10 normalized gene symbols:\")\n", "print(gene_data.index[:10])\n", "\n", "# Save the normalized gene data\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "gene_data.to_csv(out_gene_data_file)\n", "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n", "\n", "# 2. Load the clinical data that was saved in Step 2\n", "clinical_data_path = out_clinical_data_file\n", "if os.path.exists(clinical_data_path):\n", " clinical_data = pd.read_csv(clinical_data_path)\n", " print(f\"Clinical data loaded from {clinical_data_path}, shape: {clinical_data.shape}\")\n", " \n", " # Load the original clinical data from the matrix file to ensure we have proper structure\n", " # Since we need to match the sample IDs between gene data and clinical data\n", " _, original_clinical_data = get_background_and_clinical_data(matrix_file)\n", " \n", " # Transpose gene data so samples are in rows\n", " gene_data_t = gene_data.transpose()\n", " print(f\"Transposed gene data shape: {gene_data_t.shape}\")\n", " \n", " # Create a linked dataframe\n", " linked_data = pd.DataFrame()\n", " \n", " # Add trait data (first column of clinical_data)\n", " if clinical_data.shape[1] >= 1:\n", " # The clinical data might need to be transposed to match gene data sample ordering\n", " if len(clinical_data) == 2 and clinical_data.shape[1] == 17: # Based on preview in Step 2\n", " # Transpose clinical data so samples are rows\n", " clinical_data_t = clinical_data.transpose()\n", " \n", " # Rename columns appropriately\n", " if clinical_data_t.shape[1] == 2:\n", " clinical_data_t.columns = [trait, 'Age']\n", " \n", " # Create DataFrame with clinical data columns first\n", " linked_data = clinical_data_t.copy()\n", " \n", " # Add gene expression data\n", " for gene in gene_data.index:\n", " if gene in linked_data.columns:\n", " # Avoid duplicate column names\n", " continue\n", " linked_data[gene] = gene_data_t[gene].values\n", " \n", " print(f\"Linked data shape: {linked_data.shape}\")\n", " \n", " # 3. Handle missing values\n", " linked_data = handle_missing_values(linked_data, trait)\n", " print(f\"Shape after handling missing values: {linked_data.shape}\")\n", " \n", " # 4. Determine if trait and demographic features are biased\n", " is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n", " \n", " # 5. Conduct final quality validation\n", " is_usable = validate_and_save_cohort_info(\n", " is_final=True, \n", " cohort=cohort, \n", " info_path=json_path, \n", " is_gene_available=True, \n", " is_trait_available=True,\n", " is_biased=is_biased,\n", " df=linked_data,\n", " note=\"This dataset contains gene expression data from celiac disease patients on gluten-free diet versus controls.\"\n", " )\n", " \n", " # 6. Save linked data if usable\n", " if is_usable:\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " linked_data.to_csv(out_data_file)\n", " print(f\"Linked data saved to {out_data_file}\")\n", " else:\n", " print(\"Dataset deemed not usable based on quality validation, linked data not saved.\")\n", " else:\n", " print(\"Clinical data structure doesn't match expected format (2 columns).\")\n", " is_usable = validate_and_save_cohort_info(\n", " is_final=True, \n", " cohort=cohort, \n", " info_path=json_path, \n", " is_gene_available=True, \n", " is_trait_available=False,\n", " is_biased=True,\n", " df=pd.DataFrame(),\n", " note=\"Clinical data structure doesn't match expected format.\"\n", " )\n", " else:\n", " print(\"Clinical data structure doesn't match expected format.\")\n", " is_usable = validate_and_save_cohort_info(\n", " is_final=True, \n", " cohort=cohort, \n", " info_path=json_path, \n", " is_gene_available=True, \n", " is_trait_available=False,\n", " is_biased=True,\n", " df=pd.DataFrame(),\n", " note=\"Clinical data structure doesn't match expected format.\"\n", " )\n", " else:\n", " print(\"Clinical data is empty or missing trait column, cannot create linked data.\")\n", " is_usable = validate_and_save_cohort_info(\n", " is_final=True, \n", " cohort=cohort, \n", " info_path=json_path, \n", " is_gene_available=True, \n", " is_trait_available=False,\n", " is_biased=True,\n", " df=pd.DataFrame(),\n", " note=\"Clinical data loaded but appears to be empty or missing trait information.\"\n", " )\n", "else:\n", " print(f\"Clinical data file {clinical_data_path} not found, cannot create linked data.\")\n", " is_usable = validate_and_save_cohort_info(\n", " is_final=True, \n", " cohort=cohort, \n", " info_path=json_path, \n", " is_gene_available=True, \n", " is_trait_available=False,\n", " is_biased=True,\n", " df=pd.DataFrame(),\n", " note=\"Clinical data file not found.\"\n", " )\n", "\n", "print(f\"Dataset usability status: {'Usable' if is_usable else 'Not usable'}\")" ] } ], "metadata": {}, "nbformat": 4, "nbformat_minor": 5 }