{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "cd8b22b7", "metadata": {}, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Celiac_Disease\"\n", "cohort = \"GSE87629\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Celiac_Disease\"\n", "in_cohort_dir = \"../../input/GEO/Celiac_Disease/GSE87629\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Celiac_Disease/GSE87629.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Celiac_Disease/gene_data/GSE87629.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Celiac_Disease/clinical_data/GSE87629.csv\"\n", "json_path = \"../../output/preprocess/Celiac_Disease/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "923a604f", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": null, "id": "4c028ed6", "metadata": {}, "outputs": [], "source": [ "from tools.preprocess import *\n", "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Read the matrix file to obtain background information and sample characteristics data\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", "\n", "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n", "print(\"Background Information:\")\n", "print(background_info)\n", "print(\"Sample Characteristics Dictionary:\")\n", "print(sample_characteristics_dict)\n" ] }, { "cell_type": "markdown", "id": "5e59e5e5", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "162d98ea", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import os\n", "import json\n", "from typing import Dict, Any, Callable, Optional\n", "\n", "# 1. Gene Expression Data Availability\n", "# Based on the background information, this dataset contains gene expression data from DNA microarray\n", "is_gene_available = True\n", "\n", "# 2. Variable Availability and Data Type Conversion\n", "# 2.1 Data Availability\n", "# For trait: we can use the biopsy data (villus height to crypt depth) as a measure of celiac disease severity\n", "trait_row = 5 # biopsy data, villus height to crypt depth\n", "\n", "# No age information is available in the sample characteristics\n", "age_row = None\n", "\n", "# No gender information is available in the sample characteristics\n", "gender_row = None\n", "\n", "# 2.2 Data Type Conversion\n", "def convert_trait(value):\n", " \"\"\"Convert villus height to crypt depth ratio to a continuous value.\"\"\"\n", " if not value or value == 'NA' or ':' not in value:\n", " return None\n", " \n", " try:\n", " # Extract the numeric value after the colon\n", " parts = value.split(':', 1)\n", " if len(parts) < 2:\n", " return None\n", " \n", " # Convert to float\n", " numeric_value = float(parts[1].strip())\n", " return numeric_value\n", " except (ValueError, TypeError):\n", " return None\n", "\n", "def convert_age(value):\n", " \"\"\"Placeholder function for age conversion.\"\"\"\n", " return None\n", "\n", "def convert_gender(value):\n", " \"\"\"Placeholder function for gender conversion.\"\"\"\n", " return None\n", "\n", "# 3. Save Metadata\n", "# Determine if trait data is available\n", "is_trait_available = trait_row is not None\n", "\n", "# Validate and save cohort info\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "# 4. Clinical Feature Extraction\n", "if trait_row is not None:\n", " # Sample characteristics dictionary from the previous step\n", " sample_char_dict = {\n", " 0: ['individual: celiac patient A', 'individual: celiac patient C', 'individual: celiac patient G', 'individual: celiac patient H', 'individual: celiac patient K', 'individual: celiac patient L', 'individual: celiac patient M', 'individual: celiac patient N', 'individual: celiac patient O', 'individual: celiac patient P', 'individual: celiac patient Q', 'individual: celiac patient R', 'individual: celiac patient S', 'individual: celiac patient T', 'individual: celiac patient U', 'individual: celiac patient V', 'individual: celiac patient W', 'individual: celiac patient X', 'individual: celiac patient Y', 'individual: celiac patient Z'],\n", " 1: ['disease state: biopsy confirmed celiac disease on gluten-free diet greater than one year'],\n", " 2: ['treatment: control', 'treatment: 6 weeks gluten challenge'],\n", " 3: ['tissue: peripheral whole blood'],\n", " 4: ['cell type: purified pool of B and T cells'],\n", " 5: ['biopsy data, villus height to crypt depth: 2.9', 'biopsy data, villus height to crypt depth: 2.6', 'biopsy data, villus height to crypt depth: 1.1', 'biopsy data, villus height to crypt depth: 0.5', 'biopsy data, villus height to crypt depth: 0.3', 'biopsy data, villus height to crypt depth: 2', 'biopsy data, villus height to crypt depth: 0.4', 'biopsy data, villus height to crypt depth: 2.4', 'biopsy data, villus height to crypt depth: 1.4', 'biopsy data, villus height to crypt depth: 2.7', 'biopsy data, villus height to crypt depth: 3.5', 'biopsy data, villus height to crypt depth: 0.7', 'biopsy data, villus height to crypt depth: 0.2', 'biopsy data, villus height to crypt depth: 2.8', 'biopsy data, villus height to crypt depth: 3', 'biopsy data, villus height to crypt depth: 0.8', 'biopsy data, villus height to crypt depth: 1.2', 'biopsy data, villus height to crypt depth: 1.7', 'biopsy data, villus height to crypt depth: 2.5', 'biopsy data, villus height to crypt depth: 2.1', 'biopsy data, villus height to crypt depth: 3.1'],\n", " 6: ['hybridization batch: 1']\n", " }\n", " \n", " # Convert to a proper format for the geo_select_clinical_features function\n", " # We need to create a DataFrame where each row is a feature type and columns are samples\n", " # First, get the maximum number of samples for any feature\n", " max_samples = max(len(values) for values in sample_char_dict.values())\n", " \n", " # Create a DataFrame with features as rows and pad with NaN for missing values\n", " data = {}\n", " for row_id, values in sample_char_dict.items():\n", " data[row_id] = values + [None] * (max_samples - len(values))\n", " \n", " clinical_data = pd.DataFrame(data).T # Transpose to have features as rows\n", " \n", " # Extract clinical features\n", " clinical_features = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", " \n", " # Preview the clinical features\n", " preview = preview_df(clinical_features)\n", " print(f\"Clinical features preview: {preview}\")\n", " \n", " # Create directory if it doesn't exist\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " \n", " # Save clinical features to CSV\n", " clinical_features.to_csv(out_clinical_data_file, index=False)\n", " print(f\"Clinical features saved to: {out_clinical_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "d1e058a0", "metadata": {}, "source": [ "### Step 3: Gene Data Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "766799fc", "metadata": {}, "outputs": [], "source": [ "# 1. Get the SOFT and matrix file paths again \n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "print(f\"Matrix file found: {matrix_file}\")\n", "\n", "# 2. Use the get_genetic_data function from the library to get the gene_data\n", "try:\n", " gene_data = get_genetic_data(matrix_file)\n", " print(f\"Gene data shape: {gene_data.shape}\")\n", " \n", " # 3. Print the first 20 row IDs (gene or probe identifiers)\n", " print(\"First 20 gene/probe identifiers:\")\n", " print(gene_data.index[:20])\n", "except Exception as e:\n", " print(f\"Error extracting gene data: {e}\")\n" ] }, { "cell_type": "markdown", "id": "29fef58d", "metadata": {}, "source": [ "### Step 4: Gene Identifier Review" ] }, { "cell_type": "code", "execution_count": null, "id": "06a52f5a", "metadata": {}, "outputs": [], "source": [ "# Looking at the identifiers, I can recognize these as Illumina probe IDs (ILMN_xxxxxxx format)\n", "# These are not standard human gene symbols and will need to be mapped to gene symbols\n", "\n", "requires_gene_mapping = True\n" ] }, { "cell_type": "markdown", "id": "8796b3c5", "metadata": {}, "source": [ "### Step 5: Gene Annotation" ] }, { "cell_type": "code", "execution_count": null, "id": "b024383c", "metadata": {}, "outputs": [], "source": [ "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n", "gene_annotation = get_gene_annotation(soft_file)\n", "\n", "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n", "print(\"Gene annotation preview:\")\n", "print(preview_df(gene_annotation))\n" ] }, { "cell_type": "markdown", "id": "173d1067", "metadata": {}, "source": [ "### Step 6: Gene Identifier Mapping" ] }, { "cell_type": "code", "execution_count": null, "id": "677e16e3", "metadata": {}, "outputs": [], "source": [ "# 1. Determine the columns for mapping\n", "# Looking at the gene annotation preview, 'ID' seems to contain the probe identifiers (ILMN_xxxxxxx)\n", "# and 'Symbol' contains the gene symbols\n", "prob_col = 'ID'\n", "gene_col = 'Symbol'\n", "\n", "print(f\"Using columns for mapping: {prob_col} -> {gene_col}\")\n", "\n", "# 2. Get a gene mapping dataframe\n", "mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)\n", "print(f\"Mapping dataframe shape: {mapping_df.shape}\")\n", "print(\"First few rows of mapping dataframe:\")\n", "print(mapping_df.head())\n", "\n", "# 3. Apply gene mapping to convert probe-level measurements to gene expression data\n", "gene_data = apply_gene_mapping(gene_data, mapping_df)\n", "print(f\"Gene expression data shape after mapping: {gene_data.shape}\")\n", "print(\"First few gene symbols after mapping:\")\n", "print(gene_data.index[:10])\n", "\n", "# Preview the first few rows of gene expression data\n", "print(\"Preview of gene expression data:\")\n", "preview_gene_data = preview_df(gene_data)\n", "print(preview_gene_data)\n", "\n", "# Create directory if it doesn't exist\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "\n", "# Save gene expression data to CSV\n", "gene_data.to_csv(out_gene_data_file)\n", "print(f\"Gene expression data saved to: {out_gene_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "44383014", "metadata": {}, "source": [ "### Step 7: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": null, "id": "a9b702cb", "metadata": {}, "outputs": [], "source": [ "# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n", "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n", "normalized_gene_data.to_csv(out_gene_data_file)\n", "print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n", "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n", "\n", "# Load clinical data from the saved file\n", "clinical_df = pd.read_csv(out_clinical_data_file)\n", "print(f\"Clinical data shape: {clinical_df.shape}\")\n", "\n", "# Rename the first column to be our trait\n", "clinical_df = pd.DataFrame({trait: clinical_df.iloc[:, 0]})\n", "print(f\"Reformatted clinical data shape: {clinical_df.shape}\")\n", "print(f\"Clinical data columns: {clinical_df.columns}\")\n", "\n", "# 2. Link the clinical and genetic data\n", "linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)\n", "print(f\"Linked data shape before handling missing values: {linked_data.shape}\")\n", "\n", "# 3. Handle missing values in the linked data\n", "linked_data = handle_missing_values(linked_data, trait)\n", "print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n", "\n", "# 4. Determine whether the trait and demographic features are severely biased\n", "is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)\n", "\n", "# 5. Conduct quality check and save the cohort information\n", "note = \"Dataset contains gene expression from B and T cells in celiac disease patients during a gluten challenge. The biopsy data (villus height to crypt depth ratio) is used as a continuous measure of celiac disease severity.\"\n", "\n", "is_usable = validate_and_save_cohort_info(\n", " is_final=True, \n", " cohort=cohort, \n", " info_path=json_path, \n", " is_gene_available=True, \n", " is_trait_available=True, \n", " is_biased=is_trait_biased, \n", " df=unbiased_linked_data,\n", " note=note\n", ")\n", "\n", "# 6. If the linked data is usable, save it as a CSV file\n", "if is_usable:\n", " print(f\"Data is usable. Saving to {out_data_file}\")\n", " # Create directory if it doesn't exist\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " unbiased_linked_data.to_csv(out_data_file)\n", "else:\n", " print(\"Data is not usable. Not saving linked data file.\")\n" ] }, { "cell_type": "markdown", "id": "4949198a", "metadata": {}, "source": [ "### Step 8: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": null, "id": "4b7e2724", "metadata": {}, "outputs": [], "source": [ "# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n", "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n", "normalized_gene_data.to_csv(out_gene_data_file)\n", "print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n", "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n", "\n", "# Debug: examine the structure of clinical_data\n", "print(\"Clinical data structure:\")\n", "print(f\"Shape: {clinical_data.shape}\")\n", "print(\"First row of clinical data:\")\n", "print(clinical_data.iloc[0])\n", "\n", "# Extract clinical features properly\n", "# The first row contains sample accession IDs\n", "sample_ids = clinical_data.iloc[0].values\n", "print(f\"Number of sample IDs: {len(sample_ids)}\")\n", "print(\"First few sample IDs:\", sample_ids[:5])\n", "\n", "# Extract clinical features\n", "selected_clinical_df = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=None,\n", " convert_age=None,\n", " gender_row=None,\n", " convert_gender=None\n", ")\n", "\n", "print(\"Selected clinical data:\")\n", "print(f\"Shape: {selected_clinical_df.shape}\")\n", "print(\"First few elements:\")\n", "print(selected_clinical_df.iloc[:, :5])\n", "\n", "# 2. Link the clinical and genetic data using the correct function\n", "linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n", "print(f\"Linked data shape: {linked_data.shape}\")\n", "print(\"Linked data columns:\", linked_data.columns[:10]) # Show first 10 columns\n", "\n", "# Check if we have any samples with trait data\n", "if linked_data.shape[0] > 0 and trait in linked_data.columns:\n", " # 3. Handle missing values in the linked data\n", " linked_data_clean = handle_missing_values(linked_data, trait)\n", " print(f\"Linked data shape after handling missing values: {linked_data_clean.shape}\")\n", " \n", " if linked_data_clean.shape[0] > 0:\n", " # 4. Determine whether the trait and demographic features are severely biased\n", " is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data_clean, trait)\n", " \n", " # 5. Conduct quality check and save cohort information\n", " note = \"Dataset contains gene expression from B and T cells in celiac disease patients during a gluten challenge. The biopsy data (villus height to crypt depth ratio) is used as a continuous measure of celiac disease severity.\"\n", " \n", " is_usable = validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=True,\n", " is_trait_available=True,\n", " is_biased=is_trait_biased,\n", " df=unbiased_linked_data,\n", " note=note\n", " )\n", " \n", " # 6. If the linked data is usable, save it as a CSV file\n", " if is_usable:\n", " print(f\"Data is usable. Saving to {out_data_file}\")\n", " # Create directory if it doesn't exist\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " unbiased_linked_data.to_csv(out_data_file)\n", " else:\n", " print(\"Data is not usable. Not saving linked data file.\")\n", " else:\n", " print(\"No samples remaining after cleaning missing values.\")\n", " is_usable = validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=True,\n", " is_trait_available=True,\n", " is_biased=True,\n", " df=pd.DataFrame(),\n", " note=\"No valid samples remained after cleaning. Cannot proceed with analysis.\"\n", " )\n", "else:\n", " print(\"No trait column in linked data. Cannot proceed with analysis.\")\n", " is_usable = validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=True,\n", " is_trait_available=False,\n", " is_biased=True,\n", " df=pd.DataFrame(),\n", " note=\"Failed to properly link clinical and genetic data. No trait column present in linked data.\"\n", " )\n", " print(\"Data is not usable. Not saving linked data file.\")" ] } ], "metadata": {}, "nbformat": 4, "nbformat_minor": 5 }