{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "828e19e1", "metadata": {}, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Cervical_Cancer\"\n", "cohort = \"GSE107754\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Cervical_Cancer\"\n", "in_cohort_dir = \"../../input/GEO/Cervical_Cancer/GSE107754\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Cervical_Cancer/GSE107754.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Cervical_Cancer/gene_data/GSE107754.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Cervical_Cancer/clinical_data/GSE107754.csv\"\n", "json_path = \"../../output/preprocess/Cervical_Cancer/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "fbe7c637", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": null, "id": "eebc18b2", "metadata": {}, "outputs": [], "source": [ "from tools.preprocess import *\n", "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Read the matrix file to obtain background information and sample characteristics data\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", "\n", "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n", "print(\"Background Information:\")\n", "print(background_info)\n", "print(\"Sample Characteristics Dictionary:\")\n", "print(sample_characteristics_dict)\n" ] }, { "cell_type": "markdown", "id": "4715e3e5", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "85d5a7ea", "metadata": {}, "outputs": [], "source": [ "# 1. Gene Expression Data Availability\n", "# Based on the background information, this dataset appears to contain gene expression data\n", "# The Series_title and Series_summary mention \"whole human genome gene expression microarrays\"\n", "is_gene_available = True\n", "\n", "# 2. Variable Availability and Data Type Conversion\n", "\n", "# 2.1 Data Availability\n", "# Examining the Sample Characteristics Dictionary:\n", "\n", "# For Trait (Cervical Cancer):\n", "# From key 2, we can see 'tissue: Cervical cancer' and 'tissue: Cervix cancer'\n", "trait_row = 2\n", "\n", "# For Age:\n", "# There's no age information in the sample characteristics dictionary\n", "age_row = None\n", "\n", "# For Gender:\n", "# From key 0, we can see 'gender: Male' and 'gender: Female'\n", "gender_row = 0\n", "\n", "# 2.2 Data Type Conversion\n", "def convert_trait(value):\n", " \"\"\"Convert trait (cancer type) to binary (1 for cervical cancer, 0 for other cancers)\"\"\"\n", " if value is None:\n", " return None\n", " \n", " # Extract the value after the colon\n", " if ':' in value:\n", " value = value.split(':', 1)[1].strip().lower()\n", " \n", " # Check for cervical cancer\n", " if 'cervix cancer' in value or 'cervical cancer' in value:\n", " return 1\n", " else:\n", " return 0\n", "\n", "# No age data, but define the function for consistency\n", "def convert_age(value):\n", " \"\"\"Convert age to continuous value\"\"\"\n", " if value is None:\n", " return None\n", " \n", " if ':' in value:\n", " value = value.split(':', 1)[1].strip()\n", " \n", " try:\n", " return float(value)\n", " except (ValueError, TypeError):\n", " return None\n", "\n", "def convert_gender(value):\n", " \"\"\"Convert gender to binary (0 for female, 1 for male)\"\"\"\n", " if value is None:\n", " return None\n", " \n", " if ':' in value:\n", " value = value.split(':', 1)[1].strip().lower()\n", " \n", " if 'female' in value:\n", " return 0\n", " elif 'male' in value:\n", " return 1\n", " else:\n", " return None\n", "\n", "# 3. Save Metadata\n", "is_trait_available = trait_row is not None\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "# 4. Clinical Feature Extraction\n", "if trait_row is not None:\n", " # Load clinical data\n", " try:\n", " # Assuming clinical_data has been defined in a previous step\n", " clinical_features = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", " \n", " # Preview the clinical features\n", " preview = preview_df(clinical_features)\n", " print(\"Clinical Features Preview:\")\n", " print(preview)\n", " \n", " # Save clinical features to CSV\n", " clinical_features.to_csv(out_clinical_data_file)\n", " print(f\"Clinical features saved to {out_clinical_data_file}\")\n", " except NameError:\n", " print(\"Error: clinical_data not defined. Make sure to load clinical data in a previous step.\")\n" ] }, { "cell_type": "markdown", "id": "dcd8fff0", "metadata": {}, "source": [ "### Step 3: Gene Data Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "c88922ed", "metadata": {}, "outputs": [], "source": [ "# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.\n", "gene_data = get_genetic_data(matrix_file)\n", "\n", "# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.\n", "print(gene_data.index[:20])\n" ] }, { "cell_type": "markdown", "id": "38a8fe40", "metadata": {}, "source": [ "### Step 4: Gene Identifier Review" ] }, { "cell_type": "code", "execution_count": null, "id": "1cbb25cc", "metadata": {}, "outputs": [], "source": [ "# These identifiers are from Agilent microarray probes (the A_23_P format is characteristic of Agilent)\n", "# They are not standard human gene symbols, but probe IDs that need to be mapped to gene symbols\n", "# Based on my biomedical knowledge, these are microarray probe identifiers, not gene symbols\n", "\n", "requires_gene_mapping = True\n" ] }, { "cell_type": "markdown", "id": "fe470d5d", "metadata": {}, "source": [ "### Step 5: Gene Annotation" ] }, { "cell_type": "code", "execution_count": null, "id": "1acf226f", "metadata": {}, "outputs": [], "source": [ "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n", "gene_annotation = get_gene_annotation(soft_file)\n", "\n", "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n", "print(\"Gene annotation preview:\")\n", "print(preview_df(gene_annotation))\n" ] }, { "cell_type": "markdown", "id": "cf71cab1", "metadata": {}, "source": [ "### Step 6: Gene Identifier Mapping" ] }, { "cell_type": "code", "execution_count": null, "id": "a8f3a8a7", "metadata": {}, "outputs": [], "source": [ "# 1. Identify the appropriate columns for gene identifier and gene symbol\n", "# Based on the preview of the gene annotation data, 'ID' matches the gene expression data identifiers\n", "# and 'GENE_SYMBOL' contains the gene symbols we need\n", "\n", "# 2. Get the gene mapping dataframe using the function from the library\n", "gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')\n", "\n", "# Print a preview of the mapping to verify\n", "print(\"Gene mapping preview (first 5 rows):\")\n", "print(gene_mapping.head())\n", "\n", "# 3. Apply gene mapping to convert probe-level measurements to gene expression data\n", "# This function handles the case where one probe maps to multiple genes\n", "# For these cases, it splits the expression values equally among mapped genes\n", "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n", "\n", "# Print the shape of the resulting gene expression matrix\n", "print(f\"\\nGene expression matrix shape after mapping: {gene_data.shape}\")\n", "# Preview the first few genes\n", "print(\"\\nFirst 5 gene symbols after mapping:\")\n", "print(gene_data.index[:5])\n" ] }, { "cell_type": "markdown", "id": "2c040eaf", "metadata": {}, "source": [ "### Step 7: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": null, "id": "e87569e2", "metadata": {}, "outputs": [], "source": [ "# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n", "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "normalized_gene_data.to_csv(out_gene_data_file)\n", "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n", "\n", "# Create clinical features directly from clinical_data using the conversion functions defined earlier\n", "clinical_features_df = geo_select_clinical_features(\n", " clinical_data, \n", " trait=trait, \n", " trait_row=trait_row, \n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", ")\n", "\n", "# Save the clinical data\n", "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", "clinical_features_df.to_csv(out_clinical_data_file)\n", "print(f\"Clinical data saved to {out_clinical_data_file}\")\n", "\n", "# Now link the clinical and genetic data\n", "linked_data = geo_link_clinical_genetic_data(clinical_features_df, normalized_gene_data)\n", "print(\"Linked data shape:\", linked_data.shape)\n", "\n", "# Handle missing values in the linked data\n", "linked_data = handle_missing_values(linked_data, trait)\n", "\n", "# 4. Determine whether the trait and some demographic features are severely biased, and remove biased features.\n", "is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)\n", "\n", "# 5. Conduct quality check and save the cohort information.\n", "is_usable = validate_and_save_cohort_info(\n", " is_final=True, \n", " cohort=cohort, \n", " info_path=json_path, \n", " is_gene_available=True, \n", " is_trait_available=True, \n", " is_biased=is_trait_biased, \n", " df=unbiased_linked_data,\n", " note=\"This is an HPV-transformed keratinocyte cell line study focusing on transformation stages: 1 for anchorage independent (more advanced cancer stage), 0 for earlier stages.\"\n", ")\n", "\n", "# 6. If the linked data is usable, save it as a CSV file to 'out_data_file'.\n", "if is_usable:\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " unbiased_linked_data.to_csv(out_data_file)\n", " print(f\"Linked data saved to {out_data_file}\")\n", "else:\n", " print(\"Data was determined to be unusable and was not saved\")" ] } ], "metadata": {}, "nbformat": 4, "nbformat_minor": 5 }