{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "6997e14b", "metadata": {}, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Endometriosis\"\n", "cohort = \"GSE37837\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Endometriosis\"\n", "in_cohort_dir = \"../../input/GEO/Endometriosis/GSE37837\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Endometriosis/GSE37837.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Endometriosis/gene_data/GSE37837.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Endometriosis/clinical_data/GSE37837.csv\"\n", "json_path = \"../../output/preprocess/Endometriosis/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "02b8386e", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": null, "id": "21e29777", "metadata": {}, "outputs": [], "source": [ "from tools.preprocess import *\n", "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Read the matrix file to obtain background information and sample characteristics data\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", "\n", "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n", "print(\"Background Information:\")\n", "print(background_info)\n", "print(\"Sample Characteristics Dictionary:\")\n", "print(sample_characteristics_dict)\n" ] }, { "cell_type": "markdown", "id": "86961c98", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "3d721f7d", "metadata": {}, "outputs": [], "source": [ "# 1. Check if gene expression data is available\n", "# From the background information, we see this dataset contains genome-wide expression analysis\n", "# using Agilent whole human genome oligo microarray\n", "is_gene_available = True\n", "\n", "# 2. Determine variable availability and create conversion functions\n", "\n", "# 2.1 Trait Data\n", "# Here, endometriosis status can be determined from the 'tissue' field (row 2)\n", "# Looking at the unique values, we can see \"Autologous_eutopic\" vs \"Endometrioma_ectopic\"\n", "trait_row = 2\n", "\n", "def convert_trait(value):\n", " if isinstance(value, str) and ':' in value:\n", " value = value.split(':', 1)[1].strip()\n", " if isinstance(value, str) and \"Endometrioma_ectopic\" in value:\n", " return 1 # Endometriotic tissue\n", " elif isinstance(value, str) and \"Autologous_eutopic\" in value:\n", " return 0 # Normal endometrial tissue\n", " return None\n", "\n", "# 2.2 Age Data\n", "# Age is available in row 0\n", "age_row = 0\n", "\n", "def convert_age(value):\n", " if isinstance(value, str) and ':' in value:\n", " value = value.split(':', 1)[1].strip()\n", " try:\n", " if isinstance(value, str):\n", " # Extract numeric age value\n", " age = int(value.split()[0])\n", " return age # Return as continuous value\n", " except:\n", " pass\n", " return None\n", "\n", "# 2.3 Gender Data\n", "# All samples are from females according to row 1\n", "# Since this is a constant feature (only one value), we'll mark it as not available\n", "gender_row = None\n", "\n", "def convert_gender(value):\n", " # Not needed since gender is not variable in this dataset, but included for completeness\n", " if isinstance(value, str) and ':' in value:\n", " value = value.split(':', 1)[1].strip()\n", " if isinstance(value, str) and \"female\" in value.lower():\n", " return 0\n", " elif isinstance(value, str) and \"male\" in value.lower():\n", " return 1\n", " return None\n", "\n", "# 3. Save metadata using the validate_and_save_cohort_info function\n", "# Determine if trait data is available\n", "is_trait_available = trait_row is not None\n", "\n", "# Validate and save initial cohort info\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "# 4. Extract clinical features if trait data is available\n", "if trait_row is not None:\n", " # The Sample Characteristics Dictionary was provided in the previous step\n", " sample_chars = {0: ['age (y): 29', 'age (y): 40', 'age (y): 33', 'age (y): 45', 'age (y): 24', 'age (y): 38', 'age (y): 28', 'age (y): 25', 'age (y): 31', 'age (y): 37', 'age (y): 30', 'age (y): 34'], 1: ['gender: female (fertile)'], 2: ['tissue: Autologous_eutopic', 'tissue: Endometrioma_ectopic'], 3: ['subject id: E17', 'subject id: E20', 'subject id: E23', 'subject id: E26', 'subject id: E31', 'subject id: E32', 'subject id: E33', 'subject id: E40', 'subject id: E43', 'subject id: E48', 'subject id: E49', 'subject id: E52', 'subject id: E56', 'subject id: E57', 'subject id: E68', 'subject id: E70', 'subject id: E73', 'subject id: E75'], 4: ['menstrual phase: Proliferative', 'menstrual phase: Secretory'], 5: ['endometrioma severity stage: Severe (stage 4)', 'endometrioma severity stage: Moderate (stage 3)'], 6: ['parity: Pregnancy_1; live offspriing_1', 'parity: Pregnancy_6; live offspriing_6', 'parity: Pregnancy_3; live offspriing_3', 'parity: Pregnancy_3; live offspriing_2', 'parity: Pregnancy_2; live offspriing_1', 'parity: Pregnancy_4; live offspriing_2', 'parity: Pregnancy_2; live offspriing_2', 'parity: Pregnancy_4; live offspriing_4']}\n", " \n", " # First, let's create a dataframe where rows are the feature indices and columns are the sample IDs\n", " # Start with an empty list to hold the sample IDs\n", " sample_ids = []\n", " # Extract subject IDs from row 3\n", " for sample_id_str in sample_chars[3]:\n", " if ':' in sample_id_str:\n", " sample_id = sample_id_str.split(':', 1)[1].strip()\n", " sample_ids.append(sample_id)\n", " \n", " # Create an empty dataframe with rows as feature indices and columns as sample IDs\n", " clinical_data = pd.DataFrame(index=sample_chars.keys(), columns=sample_ids)\n", " \n", " # Now fill the dataframe\n", " # For each feature row and sample, determine the appropriate value\n", " for row_idx, values in sample_chars.items():\n", " for sample_id in sample_ids:\n", " # For each sample, find the most appropriate value\n", " # For now, we'll just use the first value in the list\n", " if values:\n", " clinical_data.loc[row_idx, sample_id] = values[0]\n", " \n", " # Use geo_select_clinical_features to extract clinical features\n", " selected_clinical_df = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", " \n", " # Preview the extracted clinical features\n", " preview = preview_df(selected_clinical_df)\n", " print(\"Preview of clinical data:\")\n", " for key, value in preview.items():\n", " print(f\"{key}: {value}\")\n", " \n", " # Save the extracted clinical features to file\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " selected_clinical_df.to_csv(out_clinical_data_file)\n" ] }, { "cell_type": "markdown", "id": "f8842678", "metadata": {}, "source": [ "### Step 3: Gene Data Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "7bb12fef", "metadata": {}, "outputs": [], "source": [ "# 1. Get the file paths for the SOFT file and matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. First, let's examine the structure of the matrix file to understand its format\n", "import gzip\n", "\n", "# Peek at the first few lines of the file to understand its structure\n", "with gzip.open(matrix_file, 'rt') as file:\n", " # Read first 100 lines to find the header structure\n", " for i, line in enumerate(file):\n", " if '!series_matrix_table_begin' in line:\n", " print(f\"Found data marker at line {i}\")\n", " # Read the next line which should be the header\n", " header_line = next(file)\n", " print(f\"Header line: {header_line.strip()}\")\n", " # And the first data line\n", " first_data_line = next(file)\n", " print(f\"First data line: {first_data_line.strip()}\")\n", " break\n", " if i > 100: # Limit search to first 100 lines\n", " print(\"Matrix table marker not found in first 100 lines\")\n", " break\n", "\n", "# 3. Now try to get the genetic data with better error handling\n", "try:\n", " gene_data = get_genetic_data(matrix_file)\n", " print(gene_data.index[:20])\n", "except KeyError as e:\n", " print(f\"KeyError: {e}\")\n", " \n", " # Alternative approach: manually extract the data\n", " print(\"\\nTrying alternative approach to read the gene data:\")\n", " with gzip.open(matrix_file, 'rt') as file:\n", " # Find the start of the data\n", " for line in file:\n", " if '!series_matrix_table_begin' in line:\n", " break\n", " \n", " # Read the headers and data\n", " import pandas as pd\n", " df = pd.read_csv(file, sep='\\t', index_col=0)\n", " print(f\"Column names: {df.columns[:5]}\")\n", " print(f\"First 20 row IDs: {df.index[:20]}\")\n", " gene_data = df\n" ] }, { "cell_type": "markdown", "id": "ee466cb3", "metadata": {}, "source": [ "### Step 4: Gene Identifier Review" ] }, { "cell_type": "code", "execution_count": null, "id": "bdcf0926", "metadata": {}, "outputs": [], "source": [ "# Observing the gene identifiers in the data\n", "# Based on the preview, we see identifiers like 'A_23_P100001' which are Agilent microarray probe IDs, \n", "# not standard human gene symbols\n", "# These IDs need to be mapped to gene symbols for biological interpretation\n", "\n", "requires_gene_mapping = True\n" ] }, { "cell_type": "markdown", "id": "16b1a1f6", "metadata": {}, "source": [ "### Step 5: Gene Annotation" ] }, { "cell_type": "code", "execution_count": null, "id": "a91eadb3", "metadata": {}, "outputs": [], "source": [ "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n", "gene_annotation = get_gene_annotation(soft_file)\n", "\n", "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n", "print(\"Gene annotation preview:\")\n", "print(preview_df(gene_annotation))\n" ] }, { "cell_type": "markdown", "id": "ae7fa827", "metadata": {}, "source": [ "### Step 6: Gene Identifier Mapping" ] }, { "cell_type": "code", "execution_count": null, "id": "a63aa368", "metadata": {}, "outputs": [], "source": [ "# Examine the gene annotation to identify mapping columns\n", "# From the preview, we can see that 'ID' in the gene annotation corresponds to the probe identifiers\n", "# 'GENE_SYMBOL' contains the human gene symbols we want to map to\n", "\n", "# 1. Extract the mapping between probe IDs and gene symbols using the get_gene_mapping function\n", "probe_col = 'ID'\n", "gene_symbol_col = 'GENE_SYMBOL'\n", "gene_mapping = get_gene_mapping(gene_annotation, probe_col, gene_symbol_col)\n", "\n", "# 2. Print a sample of the mapping to verify\n", "print(\"Gene mapping preview (probe ID to gene symbol):\")\n", "print(gene_mapping.head())\n", "\n", "# 3. Apply the gene mapping to convert probe-level data to gene expression data\n", "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n", "\n", "# 4. Preview the first few rows of the gene expression data\n", "print(\"\\nGene expression data preview after mapping:\")\n", "print(gene_data.head())\n", "\n", "# 5. Report the shape of the gene expression data\n", "print(f\"\\nGene expression data shape: {gene_data.shape}\")\n" ] }, { "cell_type": "markdown", "id": "ae3fc5c2", "metadata": {}, "source": [ "### Step 7: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": null, "id": "1ffd4abf", "metadata": {}, "outputs": [], "source": [ "# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n", "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "normalized_gene_data.to_csv(out_gene_data_file)\n", "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n", "\n", "# Load clinical features from the previously saved file\n", "clinical_features_df = pd.read_csv(out_clinical_data_file, index_col=0)\n", "\n", "# Create a mapping between GSM IDs and subject IDs from the SOFT file\n", "gsm_to_subject_mapping = {}\n", "\n", "# Extract the mapping from the SOFT file\n", "with gzip.open(soft_file, 'rt') as f:\n", " for line in f:\n", " if line.startswith('!Sample_geo_accession'):\n", " gsm_id = line.strip().split('=')[1].strip('\"')\n", " elif line.startswith('!Sample_source_name_ch1'):\n", " if 'E' in line:\n", " # Extract subject ID (usually in format \"subject id: E##\")\n", " subject_id = 'E' + line.split('E')[1].split()[0]\n", " gsm_to_subject_mapping[gsm_id] = subject_id\n", "\n", "# If mapping was created successfully, transform clinical features to align with GSM IDs\n", "if gsm_to_subject_mapping:\n", " # Create a new clinical dataframe using GSM IDs as index\n", " new_clinical_df = pd.DataFrame(index=normalized_gene_data.columns)\n", " \n", " # Map trait values from subject IDs to GSM IDs\n", " for gsm_id, subject_id in gsm_to_subject_mapping.items():\n", " if gsm_id in new_clinical_df.index and subject_id in clinical_features_df.columns:\n", " for feature in clinical_features_df.index:\n", " if feature == trait:\n", " new_clinical_df.loc[gsm_id, feature] = clinical_features_df.loc[feature, subject_id]\n", " elif feature == 'Age':\n", " new_clinical_df.loc[gsm_id, feature] = clinical_features_df.loc[feature, subject_id]\n", " \n", " clinical_features_df = new_clinical_df.T # Transpose to get features as rows\n", "else:\n", " # If mapping failed, create clinical data from scratch based on SOFT file information\n", " # Extract tissue and age information from the SOFT file\n", " tissue_dict = {}\n", " age_dict = {}\n", " \n", " with gzip.open(soft_file, 'rt') as f:\n", " current_gsm = None\n", " for line in f:\n", " line = line.strip()\n", " if line.startswith('!Sample_geo_accession'):\n", " current_gsm = line.split('=')[1].strip('\"')\n", " elif current_gsm and line.startswith('!Sample_characteristics_ch1'):\n", " value = line.split('=')[1].strip('\"')\n", " if 'tissue:' in value:\n", " tissue_dict[current_gsm] = 1 if \"Endometrioma_ectopic\" in value else 0\n", " elif 'age (y):' in value:\n", " try:\n", " age = int(value.split(':')[1].strip().split()[0])\n", " age_dict[current_gsm] = age\n", " except (IndexError, ValueError):\n", " pass\n", " \n", " # Create clinical dataframe with GSM IDs as index\n", " new_clinical_df = pd.DataFrame(index=normalized_gene_data.columns)\n", " new_clinical_df[trait] = new_clinical_df.index.map(tissue_dict)\n", " new_clinical_df['Age'] = new_clinical_df.index.map(age_dict)\n", " \n", " # Transpose to get features as rows\n", " clinical_features_df = new_clinical_df.T\n", "\n", "# Now link the clinical and genetic data\n", "linked_data = pd.concat([clinical_features_df, normalized_gene_data], axis=0)\n", "print(\"Linked data shape:\", linked_data.shape)\n", "\n", "# Handle missing values in the linked data\n", "linked_data = handle_missing_values(linked_data, trait)\n", "\n", "# 4. Determine whether the trait and some demographic features are severely biased, and remove biased features.\n", "is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)\n", "\n", "# 5. Conduct quality check and save the cohort information.\n", "is_usable = validate_and_save_cohort_info(\n", " is_final=True, \n", " cohort=cohort, \n", " info_path=json_path, \n", " is_gene_available=True, \n", " is_trait_available=True, \n", " is_biased=is_trait_biased, \n", " df=unbiased_linked_data,\n", " note=\"Dataset contains gene expression from eutopic and ectopic endometrial tissues from women with endometriosis.\"\n", ")\n", "\n", "# 6. If the linked data is usable, save it as a CSV file to 'out_data_file'.\n", "if is_usable:\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " unbiased_linked_data.to_csv(out_data_file)\n", " print(f\"Linked data saved to {out_data_file}\")\n", "else:\n", " print(\"Data was determined to be unusable and was not saved\")\n" ] }, { "cell_type": "markdown", "id": "29e458a3", "metadata": {}, "source": [ "### Step 8: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": null, "id": "5c0f254e", "metadata": {}, "outputs": [], "source": [ "# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n", "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "normalized_gene_data.to_csv(out_gene_data_file)\n", "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n", "\n", "# Create a dictionary to store GSM to tissue type mapping\n", "gsm_to_tissue = {}\n", "gsm_to_age = {}\n", "\n", "# Extract tissue type and age for each GSM ID directly from the SOFT file\n", "with gzip.open(soft_file, 'rt') as f:\n", " current_gsm = None\n", " for line in f:\n", " line = line.strip()\n", " if line.startswith('!Sample_geo_accession'):\n", " current_gsm = line.split('=')[1].strip('\"')\n", " elif current_gsm and line.startswith('!Sample_characteristics_ch1'):\n", " value = line.split('=')[1].strip('\"')\n", " if 'tissue:' in value:\n", " gsm_to_tissue[current_gsm] = 1 if \"Endometrioma_ectopic\" in value else 0\n", " elif 'age (y):' in value:\n", " try:\n", " age = int(value.split(':')[1].strip().split()[0])\n", " gsm_to_age[current_gsm] = age\n", " except (IndexError, ValueError):\n", " pass\n", "\n", "# Print sample of mappings to verify data extraction\n", "print(f\"Sample of tissue mappings: {list(gsm_to_tissue.items())[:5]}\")\n", "print(f\"Sample of age mappings: {list(gsm_to_age.items())[:5]}\")\n", "print(f\"Total GSMs with tissue data: {len(gsm_to_tissue)}\")\n", "print(f\"Total GSMs with age data: {len(gsm_to_age)}\")\n", "\n", "# Create clinical data as a DataFrame with appropriate structure for linking\n", "# Using the gene expression data column names as sample IDs\n", "clinical_data = pd.DataFrame(index=[trait, 'Age'])\n", "\n", "# Add data for each sample\n", "for gsm in normalized_gene_data.columns:\n", " if gsm in gsm_to_tissue:\n", " clinical_data.at[trait, gsm] = gsm_to_tissue[gsm]\n", " if gsm in gsm_to_age:\n", " clinical_data.at['Age', gsm] = gsm_to_age[gsm]\n", "\n", "# Verify clinical data content\n", "print(\"Clinical data shape:\", clinical_data.shape)\n", "print(\"Clinical data sample:\")\n", "print(clinical_data.iloc[:, :5])\n", "\n", "# Save clinical data\n", "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", "clinical_data.to_csv(out_clinical_data_file)\n", "print(f\"Clinical data saved to {out_clinical_data_file}\")\n", "\n", "# Link clinical and genetic data\n", "linked_data = pd.concat([clinical_data, normalized_gene_data])\n", "print(\"Linked data shape:\", linked_data.shape)\n", "\n", "# Print a quick check of the trait column\n", "trait_values = clinical_data.loc[trait]\n", "print(f\"Number of samples with trait values: {sum(~pd.isna(trait_values))}\")\n", "print(f\"Trait value counts: {trait_values.value_counts().to_dict()}\")\n", "\n", "# Handle missing values using the library function\n", "processed_df = handle_missing_values(linked_data, trait)\n", "print(\"Shape after handling missing values:\", processed_df.shape)\n", "\n", "# Check if any data remains after handling missing values\n", "if processed_df.shape[0] == 0 or processed_df.shape[1] == 0:\n", " print(\"WARNING: No data remains after handling missing values.\")\n", " # In this case, we'll set is_trait_biased to True as the dataset is unusable\n", " is_trait_biased = True\n", " unbiased_linked_data = processed_df\n", "else:\n", " # Determine whether the trait and demographic features are severely biased\n", " is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(processed_df, trait)\n", "\n", "# Conduct quality validation and save cohort information\n", "is_usable = validate_and_save_cohort_info(\n", " is_final=True, \n", " cohort=cohort, \n", " info_path=json_path, \n", " is_gene_available=True, \n", " is_trait_available=True, \n", " is_biased=is_trait_biased, \n", " df=unbiased_linked_data,\n", " note=\"Dataset contains gene expression from eutopic and ectopic endometrial tissues from women with endometriosis.\"\n", ")\n", "\n", "# If the linked data is usable, save it\n", "if is_usable:\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " unbiased_linked_data.to_csv(out_data_file)\n", " print(f\"Processed data saved to {out_data_file}\")\n", "else:\n", " print(\"Data was determined to be unusable and was not saved\")" ] } ], "metadata": {}, "nbformat": 4, "nbformat_minor": 5 }