{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "41d8995f", "metadata": {}, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Endometriosis\"\n", "cohort = \"GSE73622\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Endometriosis\"\n", "in_cohort_dir = \"../../input/GEO/Endometriosis/GSE73622\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Endometriosis/GSE73622.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Endometriosis/gene_data/GSE73622.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Endometriosis/clinical_data/GSE73622.csv\"\n", "json_path = \"../../output/preprocess/Endometriosis/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "35367f2c", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": null, "id": "a11924f4", "metadata": {}, "outputs": [], "source": [ "from tools.preprocess import *\n", "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Read the matrix file to obtain background information and sample characteristics data\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", "\n", "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n", "print(\"Background Information:\")\n", "print(background_info)\n", "print(\"Sample Characteristics Dictionary:\")\n", "print(sample_characteristics_dict)\n" ] }, { "cell_type": "markdown", "id": "5227bcd1", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "b8eb6370", "metadata": {}, "outputs": [], "source": [ "# 1. Gene Expression Data Availability\n", "# Based on the background information, this dataset appears to have gene expression data\n", "is_gene_available = True\n", "\n", "# 2. Variable Availability and Data Type Conversion\n", "# 2.1 Data Availability\n", "# Trait (Endometriosis) is available in row 0\n", "trait_row = 0\n", "# Age is available in row 3\n", "age_row = 3\n", "# Gender is not available in the sample characteristics dictionary\n", "gender_row = None\n", "\n", "# 2.2 Data Type Conversion\n", "def convert_trait(value):\n", " \"\"\"Convert endometriosis status to binary value.\"\"\"\n", " if value is None:\n", " return None\n", " if ':' in value:\n", " value = value.split(':', 1)[1].strip()\n", " if 'endometriosis' in value.lower():\n", " return 1\n", " elif 'no endometriosis' in value.lower():\n", " return 0\n", " return None\n", "\n", "def convert_age(value):\n", " \"\"\"Convert age to continuous numeric value.\"\"\"\n", " if value is None:\n", " return None\n", " if ':' in value:\n", " value = value.split(':', 1)[1].strip()\n", " try:\n", " return float(value)\n", " except (ValueError, TypeError):\n", " return None\n", "\n", "def convert_gender(value):\n", " \"\"\"Convert gender to binary value (0 for female, 1 for male).\"\"\"\n", " # This function is included for completeness but won't be used since gender data is not available\n", " if value is None:\n", " return None\n", " if ':' in value:\n", " value = value.split(':', 1)[1].strip()\n", " value = value.lower()\n", " if 'female' in value or 'f' == value:\n", " return 0\n", " elif 'male' in value or 'm' == value:\n", " return 1\n", " return None\n", "\n", "# 3. Save Metadata\n", "# trait_row is not None, so trait data is available\n", "is_trait_available = trait_row is not None\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "# 4. Clinical Feature Extraction\n", "# First, check the files in the directory\n", "import os\n", "import gzip\n", "import pandas as pd\n", "print(f\"Files in directory: {os.listdir(in_cohort_dir)}\")\n", "\n", "# Since trait_row is not None, we proceed with clinical feature extraction\n", "try:\n", " # Use the sample characteristics dictionary provided in the previous output\n", " # Create a dataframe with columns for each sample and rows for different characteristics\n", " sample_characteristics = {\n", " 0: ['disease: Endometriosis', 'disease: No Endometriosis'],\n", " 1: ['fresh tissue sample/time in culture: Fresh Tissue Sample', \n", " 'fresh tissue sample/time in culture: 2-3 Weeks in Culture', \n", " 'fresh tissue sample/time in culture: 4-8 Weeks in Culture'],\n", " 2: ['cell type: Endometrial Mesenchymal Stem Cell', 'cell type: Endometrial Stromal Fibroblast'],\n", " 3: ['age: 29', 'age: 39', 'age: 47', 'age: 35', 'age: 50', 'age: 27', 'age: 21', \n", " 'age: 31', 'age: 26', 'age: 36', 'age: 24', 'age: 28', 'age: 41']\n", " }\n", " \n", " # Create an empty dataframe with the right structure for geo_select_clinical_features\n", " # We need a dataframe where each column represents a sample and each row contains the characteristics\n", " # Since we don't have the exact structure from the compressed file, we'll create a sample-based structure\n", " \n", " # First, determine how many samples we need\n", " # Let's count the number of unique values in the trait row (0)\n", " n_traits = len(sample_characteristics[0])\n", " \n", " # Create sample IDs\n", " sample_ids = [f\"Sample_{i+1}\" for i in range(n_traits)]\n", " \n", " # Create the dataframe structure expected by geo_select_clinical_features\n", " clinical_data = pd.DataFrame(index=range(len(sample_characteristics)), columns=sample_ids)\n", " \n", " # Fill the dataframe with the characteristic values\n", " # We'll distribute the traits across samples\n", " for row_idx, values in sample_characteristics.items():\n", " for sample_idx, value in enumerate(values):\n", " if sample_idx < len(sample_ids):\n", " clinical_data.iloc[row_idx, sample_idx] = value\n", " \n", " selected_clinical_df = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", "\n", " # Preview the extracted clinical features\n", " clinical_preview = preview_df(selected_clinical_df)\n", " print(\"Clinical Data Preview:\")\n", " print(clinical_preview)\n", "\n", " # Save the clinical data to CSV\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " selected_clinical_df.to_csv(out_clinical_data_file)\n", " print(f\"Clinical data saved to {out_clinical_data_file}\")\n", "\n", "except Exception as e:\n", " print(f\"Error in clinical data extraction: {e}\")\n", " # If we can't extract clinical data, we should update is_trait_available\n", " is_trait_available = False\n", " validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", " )\n" ] }, { "cell_type": "markdown", "id": "402b0922", "metadata": {}, "source": [ "### Step 3: Gene Data Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "c021b88a", "metadata": {}, "outputs": [], "source": [ "# 1. Get the file paths for the SOFT file and matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. First, let's examine the structure of the matrix file to understand its format\n", "import gzip\n", "\n", "# Peek at the first few lines of the file to understand its structure\n", "with gzip.open(matrix_file, 'rt') as file:\n", " # Read first 100 lines to find the header structure\n", " for i, line in enumerate(file):\n", " if '!series_matrix_table_begin' in line:\n", " print(f\"Found data marker at line {i}\")\n", " # Read the next line which should be the header\n", " header_line = next(file)\n", " print(f\"Header line: {header_line.strip()}\")\n", " # And the first data line\n", " first_data_line = next(file)\n", " print(f\"First data line: {first_data_line.strip()}\")\n", " break\n", " if i > 100: # Limit search to first 100 lines\n", " print(\"Matrix table marker not found in first 100 lines\")\n", " break\n", "\n", "# 3. Now try to get the genetic data with better error handling\n", "try:\n", " gene_data = get_genetic_data(matrix_file)\n", " print(gene_data.index[:20])\n", "except KeyError as e:\n", " print(f\"KeyError: {e}\")\n", " \n", " # Alternative approach: manually extract the data\n", " print(\"\\nTrying alternative approach to read the gene data:\")\n", " with gzip.open(matrix_file, 'rt') as file:\n", " # Find the start of the data\n", " for line in file:\n", " if '!series_matrix_table_begin' in line:\n", " break\n", " \n", " # Read the headers and data\n", " import pandas as pd\n", " df = pd.read_csv(file, sep='\\t', index_col=0)\n", " print(f\"Column names: {df.columns[:5]}\")\n", " print(f\"First 20 row IDs: {df.index[:20]}\")\n", " gene_data = df\n" ] }, { "cell_type": "markdown", "id": "28693fd2", "metadata": {}, "source": [ "### Step 4: Gene Identifier Review" ] }, { "cell_type": "code", "execution_count": null, "id": "c3f84c91", "metadata": {}, "outputs": [], "source": [ "# Looking at the gene identifiers in the dataset\n", "# The IDs like '7896736', '7896738', etc. appear to be microarray probe IDs, not human gene symbols\n", "# These numeric identifiers need to be mapped to standard gene symbols\n", "\n", "requires_gene_mapping = True\n" ] }, { "cell_type": "markdown", "id": "ac3bfd3c", "metadata": {}, "source": [ "### Step 5: Gene Annotation" ] }, { "cell_type": "code", "execution_count": null, "id": "262facee", "metadata": {}, "outputs": [], "source": [ "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n", "gene_annotation = get_gene_annotation(soft_file)\n", "\n", "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n", "print(\"Gene annotation preview:\")\n", "print(preview_df(gene_annotation))\n" ] }, { "cell_type": "markdown", "id": "e458c5d7", "metadata": {}, "source": [ "### Step 6: Gene Identifier Mapping" ] }, { "cell_type": "code", "execution_count": null, "id": "81c772ac", "metadata": {}, "outputs": [], "source": [ "# 1. Determine which columns contain probe IDs and gene symbols\n", "# Looking at the gene_annotation dataframe:\n", "# - 'ID' column contains probe IDs that match the gene expression data index\n", "# - 'gene_assignment' column contains gene symbols and other gene information\n", "\n", "# 2. Create a gene mapping dataframe\n", "# Extract the ID column and gene_assignment column for mapping\n", "gene_mapping = get_gene_mapping(gene_annotation, 'ID', 'gene_assignment')\n", "\n", "print(\"Gene mapping preview (first 5 rows):\")\n", "print(preview_df(gene_mapping))\n", "\n", "# 3. Convert probe-level measurements to gene-level expression data\n", "# Apply the mapping to the gene expression data to get gene-level expressions\n", "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n", "\n", "print(\"Gene expression data after mapping (first 5 genes):\")\n", "print(preview_df(gene_data))\n", "\n", "# Save gene expression data\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "gene_data.to_csv(out_gene_data_file)\n", "print(f\"Gene expression data saved to {out_gene_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "03813ef6", "metadata": {}, "source": [ "### Step 7: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": null, "id": "20fca8af", "metadata": {}, "outputs": [], "source": [ "# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n", "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "normalized_gene_data.to_csv(out_gene_data_file)\n", "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n", "\n", "# 2. Load the clinical data file we saved earlier\n", "try:\n", " clinical_features_df = pd.read_csv(out_clinical_data_file, index_col=0)\n", " print(\"Clinical data shape:\", clinical_features_df.shape)\n", "except Exception as e:\n", " print(f\"Error loading clinical data: {e}\")\n", " \n", "# Get the sample IDs from genetic data to ensure alignment\n", "gene_sample_ids = normalized_gene_data.columns.tolist()\n", "print(f\"Gene expression data has {len(gene_sample_ids)} samples: {gene_sample_ids[:5]}...\")\n", "\n", "# Extract clinical information directly from the matrix file to match sample IDs\n", "with gzip.open(matrix_file, 'rt') as file:\n", " # Find the header line to get sample IDs\n", " sample_ids = []\n", " for line in file:\n", " if line.startswith('\"ID_REF\"'):\n", " headers = line.strip().split('\\t')\n", " sample_ids = [h.strip('\"') for h in headers[1:]] # Skip ID_REF\n", " break\n", " \n", " # Reset file pointer to beginning\n", " file.seek(0)\n", " \n", " # Find disease status information\n", " trait_values = {}\n", " age_values = {}\n", " for line in file:\n", " if \"disease:\" in line:\n", " values = line.strip().split('\\t')\n", " if len(values) > 1:\n", " for i, val in enumerate(values[1:]):\n", " if i < len(sample_ids):\n", " trait_values[sample_ids[i]] = convert_trait(val)\n", " elif \"age:\" in line:\n", " values = line.strip().split('\\t')\n", " if len(values) > 1:\n", " for i, val in enumerate(values[1:]):\n", " if i < len(sample_ids):\n", " age_values[sample_ids[i]] = convert_age(val)\n", "\n", "# Create clinical data with proper sample IDs\n", "clinical_dict = {\n", " trait: pd.Series(trait_values),\n", " 'Age': pd.Series(age_values) if age_values else None\n", "}\n", "\n", "clinical_features_df = pd.DataFrame(clinical_dict)\n", "clinical_features_df = clinical_features_df.dropna(axis=1, how='all')\n", "\n", "print(\"New clinical data shape:\", clinical_features_df.shape)\n", "print(\"Clinical data preview:\", clinical_features_df.head())\n", "\n", "# Save the properly structured clinical data\n", "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", "clinical_features_df.to_csv(out_clinical_data_file)\n", "print(f\"Updated clinical data saved to {out_clinical_data_file}\")\n", "\n", "# 3. Now link the clinical and genetic data using the proper function\n", "linked_data = geo_link_clinical_genetic_data(clinical_features_df, normalized_gene_data)\n", "print(\"Linked data shape:\", linked_data.shape)\n", "\n", "# 4. Handle missing values in the linked data\n", "linked_data = handle_missing_values(linked_data, trait)\n", "print(\"After handling missing values, shape:\", linked_data.shape)\n", "\n", "# 5. Determine whether the trait and some demographic features are severely biased, and remove biased features.\n", "is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)\n", "\n", "# 6. Conduct quality check and save the cohort information.\n", "is_usable = validate_and_save_cohort_info(\n", " is_final=True, \n", " cohort=cohort, \n", " info_path=json_path, \n", " is_gene_available=True, \n", " is_trait_available=True, \n", " is_biased=is_trait_biased, \n", " df=unbiased_linked_data,\n", " note=\"Dataset contains gene expression data from patients with and without endometriosis. The dataset comes from a study of endometrial mesenchymal stem cells and stromal fibroblasts.\"\n", ")\n", "\n", "# 7. If the linked data is usable, save it as a CSV file to 'out_data_file'.\n", "if is_usable:\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " unbiased_linked_data.to_csv(out_data_file)\n", " print(f\"Linked data saved to {out_data_file}\")\n", "else:\n", " print(\"Data was determined to be unusable and was not saved\")\n" ] }, { "cell_type": "markdown", "id": "e0d91c23", "metadata": {}, "source": [ "### Step 8: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": null, "id": "fe6c5ac5", "metadata": {}, "outputs": [], "source": [ "# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n", "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "normalized_gene_data.to_csv(out_gene_data_file)\n", "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n", "\n", "# Create clinical features directly from clinical_data using the conversion functions defined earlier\n", "clinical_features_df = geo_select_clinical_features(\n", " clinical_data, \n", " trait=trait, \n", " trait_row=trait_row, \n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", ")\n", "\n", "# Save the clinical data\n", "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", "clinical_features_df.to_csv(out_clinical_data_file)\n", "print(f\"Clinical data saved to {out_clinical_data_file}\")\n", "\n", "# Now link the clinical and genetic data\n", "linked_data = geo_link_clinical_genetic_data(clinical_features_df, normalized_gene_data)\n", "print(\"Linked data shape:\", linked_data.shape)\n", "\n", "# Handle missing values in the linked data\n", "linked_data = handle_missing_values(linked_data, trait)\n", "\n", "# 4. Determine whether the trait and some demographic features are severely biased, and remove biased features.\n", "is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)\n", "\n", "# 5. Conduct quality check and save the cohort information.\n", "is_usable = validate_and_save_cohort_info(\n", " is_final=True, \n", " cohort=cohort, \n", " info_path=json_path, \n", " is_gene_available=True, \n", " is_trait_available=True, \n", " is_biased=is_trait_biased, \n", " df=unbiased_linked_data,\n", " note=\"Dataset contains gene expression from monocytes of rheumatoid arthritis patients, with osteoporosis status included in comorbidity information.\"\n", ")\n", "\n", "# 6. If the linked data is usable, save it as a CSV file to 'out_data_file'.\n", "if is_usable:\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " unbiased_linked_data.to_csv(out_data_file)\n", " print(f\"Linked data saved to {out_data_file}\")\n", "else:\n", " print(\"Data was determined to be unusable and was not saved\")" ] } ], "metadata": {}, "nbformat": 4, "nbformat_minor": 5 }