{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "749b9fc1", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T05:09:11.275381Z", "iopub.status.busy": "2025-03-25T05:09:11.275273Z", "iopub.status.idle": "2025-03-25T05:09:11.440867Z", "shell.execute_reply": "2025-03-25T05:09:11.440509Z" } }, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Epilepsy\"\n", "cohort = \"GSE29796\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Epilepsy\"\n", "in_cohort_dir = \"../../input/GEO/Epilepsy/GSE29796\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Epilepsy/GSE29796.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Epilepsy/gene_data/GSE29796.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Epilepsy/clinical_data/GSE29796.csv\"\n", "json_path = \"../../output/preprocess/Epilepsy/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "9a411b2c", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": 2, "id": "810510d5", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T05:09:11.442347Z", "iopub.status.busy": "2025-03-25T05:09:11.442205Z", "iopub.status.idle": "2025-03-25T05:09:11.592605Z", "shell.execute_reply": "2025-03-25T05:09:11.592242Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Background Information:\n", "!Series_title\t\"Transcriptional Differences between Normal and Glioma-Derived Glial Progenitor Cells Identify a Core Set of Dysregulated Genes.\"\n", "!Series_summary\t\"Glial progenitor cells (GPCs) of the adult human white matter, which express gangliosides recognized by monoclonal antibody A2B5, are a potential source of glial tumors of the brain. We used A2B5-based sorting to extract progenitor-like cells from a range of human glial tumors, that included low-grade glioma, oligodendroglioma, oligo-astrocytomas, anaplastic astrocytoma, and glioblastoma multiforme. The A2B5+ tumor cells proved tumorigenic upon orthotopic xenograft, and the tumors generated reflected the phenotypes of those from which they derived.\"\n", "!Series_summary\t\"Expression profiling revealed that A2B5+ tumor progenitors expressed a cohort of genes by which they could be distinguished from A2B5+ GPCs isolated from normal adult white matter. Most of the genes differentially expressed by glioma-derived A2B5+ cells varied as a function of tumor stage; however, a small number were invariably expressed at all stages of gliomagenesis.\"\n", "!Series_summary\t\"These glioma progenitor-associated genes included CD24, SIX1 and EYA1, which were up-regulated at all stages of gliomagenesis, and MTUS1 and SPOCK3, which were down-regulated at all stages of tumor progression. qPCR and immunolabeling confirmed the differential expression of these genes in primary gliomas, while pathway analysis permitted their segregation into differentially active signaling pathways.\"\n", "!Series_summary\t\"By comparing the expression patterns of glial tumor progenitors to their identically-isolated normal homologues, we have identified a discrete set of oncogenic pathways by which glial tumorigenesis may be both better understood, and more efficiently targeted.\"\n", "!Series_overall_design\t\"Samples originating from patients with matched disease and/or pathology were considered as replicates either on the basis of exact tumor phenotype, tumor grade, or tumor vs. normal tissue samples.\"\n", "Sample Characteristics Dictionary:\n", "{0: ['tissue: cortex', 'tissue: tumor', 'tissue: white matter'], 1: ['pathology: epilepsy', 'pathology: oligodendroglioma', 'pathology: astrocytoma', 'pathology: glioblastoma', 'pathology: oligoastrocytoma', 'pathology: glioblastoma, small cell', 'pathology: anaplastic astrocytoma', 'pathology: gliosarcoma', 'pathology: anaplastic oligoastrocytoma', 'pathology: ganglioglioma', 'pathology: anaplastic oligodendroglioma'], 2: ['sort population: A2B5+', 'sort population: unsorted', 'sort population: CD11b+', 'sort population: A2B5-'], 3: ['cell type: glial progenitor cell', 'cell type: unsorted', 'cell type: tumor', 'cell type: microglia'], 4: ['tumor grade (who): non-tumor', 'tumor grade (who): II', 'tumor grade (who): IV', 'tumor grade (who): III']}\n" ] } ], "source": [ "from tools.preprocess import *\n", "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Read the matrix file to obtain background information and sample characteristics data\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", "\n", "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n", "print(\"Background Information:\")\n", "print(background_info)\n", "print(\"Sample Characteristics Dictionary:\")\n", "print(sample_characteristics_dict)\n" ] }, { "cell_type": "markdown", "id": "cee817be", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": 3, "id": "fb3868b4", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T05:09:11.594460Z", "iopub.status.busy": "2025-03-25T05:09:11.594341Z", "iopub.status.idle": "2025-03-25T05:09:11.598414Z", "shell.execute_reply": "2025-03-25T05:09:11.597971Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Clinical feature extraction skipped - actual sample data not available.\n", "Initial validation saved to ../../output/preprocess/Epilepsy/cohort_info.json\n" ] } ], "source": [ "# 1. Gene Expression Data Availability\n", "# Based on the series title and summary, this dataset appears to contain gene expression data\n", "# The study focuses on transcriptional differences between normal and glioma-derived glial progenitor cells\n", "is_gene_available = True\n", "\n", "# 2. Variable Availability and Data Type Conversion\n", "# 2.1 Data Availability\n", "\n", "# For trait (Epilepsy):\n", "# In sample characteristics dictionary, key 1 contains 'pathology: epilepsy' which indicates trait information\n", "trait_row = 1\n", "\n", "# For age:\n", "# There's no age information in the sample characteristics dictionary\n", "age_row = None\n", "\n", "# For gender:\n", "# There's no gender information in the sample characteristics dictionary\n", "gender_row = None\n", "\n", "# 2.2 Data Type Conversion\n", "# Function to convert trait values to binary (1 for Epilepsy, 0 for others)\n", "def convert_trait(value):\n", " if value is None:\n", " return None\n", " # Extract the value after colon\n", " if isinstance(value, str) and ':' in value:\n", " value = value.split(':', 1)[1].strip().lower()\n", " elif isinstance(value, str):\n", " value = value.strip().lower()\n", " else:\n", " return None\n", " \n", " # Return 1 for Epilepsy, 0 for all other conditions (which appear to be various types of tumors)\n", " if value == 'epilepsy':\n", " return 1\n", " else:\n", " return 0\n", "\n", "# Function for age conversion (not needed since age_row is None, but defining for completeness)\n", "def convert_age(value):\n", " return None\n", "\n", "# Function for gender conversion (not needed since gender_row is None, but defining for completeness)\n", "def convert_gender(value):\n", " return None\n", "\n", "# 3. Save Metadata\n", "# Determine trait data availability\n", "is_trait_available = trait_row is not None\n", "# Initial filtering on usability of the dataset\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "# 4. Clinical Feature Extraction\n", "# Since trait_row is not None, we would normally proceed with clinical feature extraction\n", "# However, since we don't have the actual sample-level clinical data, we'll skip this step\n", "# The initial validation has already been saved correctly above\n", "print(\"Clinical feature extraction skipped - actual sample data not available.\")\n", "print(f\"Initial validation saved to {json_path}\")\n" ] }, { "cell_type": "markdown", "id": "0291be44", "metadata": {}, "source": [ "### Step 3: Gene Data Extraction" ] }, { "cell_type": "code", "execution_count": 4, "id": "cc1f6a83", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T05:09:11.600171Z", "iopub.status.busy": "2025-03-25T05:09:11.600058Z", "iopub.status.idle": "2025-03-25T05:09:11.849648Z", "shell.execute_reply": "2025-03-25T05:09:11.849271Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "SOFT file: ../../input/GEO/Epilepsy/GSE29796/GSE29796_family.soft.gz\n", "Matrix file: ../../input/GEO/Epilepsy/GSE29796/GSE29796_series_matrix.txt.gz\n", "Found the matrix table marker in the file.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Gene data shape: (29385, 72)\n", "First 20 gene/probe identifiers:\n", "['1007_s_at', '1053_at', '117_at', '1294_at', '1405_i_at', '1552256_a_at', '1552257_a_at', '1552258_at', '1552263_at', '1552264_a_at', '1552266_at', '1552274_at', '1552275_s_at', '1552277_a_at', '1552281_at', '1552283_s_at', '1552286_at', '1552287_s_at', '1552291_at', '1552302_at']\n" ] } ], "source": [ "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "print(f\"SOFT file: {soft_file}\")\n", "print(f\"Matrix file: {matrix_file}\")\n", "\n", "# Set gene availability flag\n", "is_gene_available = True # Initially assume gene data is available\n", "\n", "# First check if the matrix file contains the expected marker\n", "found_marker = False\n", "try:\n", " with gzip.open(matrix_file, 'rt') as file:\n", " for line in file:\n", " if \"!series_matrix_table_begin\" in line:\n", " found_marker = True\n", " break\n", " \n", " if found_marker:\n", " print(\"Found the matrix table marker in the file.\")\n", " else:\n", " print(\"Warning: Could not find '!series_matrix_table_begin' marker in the file.\")\n", " \n", " # Try to extract gene data from the matrix file\n", " gene_data = get_genetic_data(matrix_file)\n", " \n", " if gene_data.shape[0] == 0:\n", " print(\"Warning: Extracted gene data has 0 rows.\")\n", " is_gene_available = False\n", " else:\n", " print(f\"Gene data shape: {gene_data.shape}\")\n", " # Print the first 20 gene/probe identifiers\n", " print(\"First 20 gene/probe identifiers:\")\n", " print(gene_data.index[:20].tolist())\n", " \n", "except Exception as e:\n", " print(f\"Error extracting gene data: {e}\")\n", " is_gene_available = False\n", " \n", " # Try to diagnose the file format\n", " print(\"Examining file content to diagnose the issue:\")\n", " try:\n", " with gzip.open(matrix_file, 'rt') as file:\n", " for i, line in enumerate(file):\n", " if i < 10: # Print first 10 lines to diagnose\n", " print(f\"Line {i}: {line.strip()[:100]}...\") # Print first 100 chars of each line\n", " else:\n", " break\n", " except Exception as e2:\n", " print(f\"Error examining file: {e2}\")\n", "\n", "if not is_gene_available:\n", " print(\"Gene expression data could not be successfully extracted from this dataset.\")\n" ] }, { "cell_type": "markdown", "id": "74273bf6", "metadata": {}, "source": [ "### Step 4: Gene Identifier Review" ] }, { "cell_type": "code", "execution_count": 5, "id": "26b2de1f", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T05:09:11.851519Z", "iopub.status.busy": "2025-03-25T05:09:11.851366Z", "iopub.status.idle": "2025-03-25T05:09:11.853498Z", "shell.execute_reply": "2025-03-25T05:09:11.853173Z" } }, "outputs": [], "source": [ "# The identifiers appear to be Affymetrix probe IDs (e.g., '1007_s_at', '1053_at'), not human gene symbols\n", "# These need to be mapped to gene symbols for proper biological interpretation\n", "\n", "requires_gene_mapping = True\n" ] }, { "cell_type": "markdown", "id": "451503ea", "metadata": {}, "source": [ "### Step 5: Gene Annotation" ] }, { "cell_type": "code", "execution_count": 6, "id": "7bfb2544", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T05:09:11.855122Z", "iopub.status.busy": "2025-03-25T05:09:11.855013Z", "iopub.status.idle": "2025-03-25T05:09:15.757757Z", "shell.execute_reply": "2025-03-25T05:09:15.757379Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Gene annotation preview:\n", "Columns in gene annotation: ['ID', 'GB_ACC', 'SPOT_ID', 'Species Scientific Name', 'Annotation Date', 'Sequence Type', 'Sequence Source', 'Target Description', 'Representative Public ID', 'Gene Title', 'Gene Symbol', 'ENTREZ_GENE_ID', 'RefSeq Transcript ID', 'Gene Ontology Biological Process', 'Gene Ontology Cellular Component', 'Gene Ontology Molecular Function']\n", "{'ID': ['1007_s_at', '1053_at', '117_at', '121_at', '1255_g_at'], 'GB_ACC': ['U48705', 'M87338', 'X51757', 'X69699', 'L36861'], 'SPOT_ID': [nan, nan, nan, nan, nan], 'Species Scientific Name': ['Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens'], 'Annotation Date': ['Oct 6, 2014', 'Oct 6, 2014', 'Oct 6, 2014', 'Oct 6, 2014', 'Oct 6, 2014'], 'Sequence Type': ['Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence'], 'Sequence Source': ['Affymetrix Proprietary Database', 'GenBank', 'Affymetrix Proprietary Database', 'GenBank', 'Affymetrix Proprietary Database'], 'Target Description': ['U48705 /FEATURE=mRNA /DEFINITION=HSU48705 Human receptor tyrosine kinase DDR gene, complete cds', 'M87338 /FEATURE= /DEFINITION=HUMA1SBU Human replication factor C, 40-kDa subunit (A1) mRNA, complete cds', \"X51757 /FEATURE=cds /DEFINITION=HSP70B Human heat-shock protein HSP70B' gene\", 'X69699 /FEATURE= /DEFINITION=HSPAX8A H.sapiens Pax8 mRNA', 'L36861 /FEATURE=expanded_cds /DEFINITION=HUMGCAPB Homo sapiens guanylate cyclase activating protein (GCAP) gene exons 1-4, complete cds'], 'Representative Public ID': ['U48705', 'M87338', 'X51757', 'X69699', 'L36861'], 'Gene Title': ['discoidin domain receptor tyrosine kinase 1 /// microRNA 4640', 'replication factor C (activator 1) 2, 40kDa', \"heat shock 70kDa protein 6 (HSP70B')\", 'paired box 8', 'guanylate cyclase activator 1A (retina)'], 'Gene Symbol': ['DDR1 /// MIR4640', 'RFC2', 'HSPA6', 'PAX8', 'GUCA1A'], 'ENTREZ_GENE_ID': ['780 /// 100616237', '5982', '3310', '7849', '2978'], 'RefSeq Transcript ID': ['NM_001202521 /// NM_001202522 /// NM_001202523 /// NM_001954 /// NM_013993 /// NM_013994 /// NR_039783 /// XM_005249385 /// XM_005249386 /// XM_005249387 /// XM_005249389 /// XM_005272873 /// XM_005272874 /// XM_005272875 /// XM_005272877 /// XM_005275027 /// XM_005275028 /// XM_005275030 /// XM_005275031 /// XM_005275162 /// XM_005275163 /// XM_005275164 /// XM_005275166 /// XM_005275457 /// XM_005275458 /// XM_005275459 /// XM_005275461 /// XM_006715185 /// XM_006715186 /// XM_006715187 /// XM_006715188 /// XM_006715189 /// XM_006715190 /// XM_006725501 /// XM_006725502 /// XM_006725503 /// XM_006725504 /// XM_006725505 /// XM_006725506 /// XM_006725714 /// XM_006725715 /// XM_006725716 /// XM_006725717 /// XM_006725718 /// XM_006725719 /// XM_006725720 /// XM_006725721 /// XM_006725722 /// XM_006725827 /// XM_006725828 /// XM_006725829 /// XM_006725830 /// XM_006725831 /// XM_006725832 /// XM_006726017 /// XM_006726018 /// XM_006726019 /// XM_006726020 /// XM_006726021 /// XM_006726022 /// XR_427836 /// XR_430858 /// XR_430938 /// XR_430974 /// XR_431015', 'NM_001278791 /// NM_001278792 /// NM_001278793 /// NM_002914 /// NM_181471 /// XM_006716080', 'NM_002155', 'NM_003466 /// NM_013951 /// NM_013952 /// NM_013953 /// NM_013992', 'NM_000409 /// XM_006715073'], 'Gene Ontology Biological Process': ['0001558 // regulation of cell growth // inferred from electronic annotation /// 0001952 // regulation of cell-matrix adhesion // inferred from electronic annotation /// 0006468 // protein phosphorylation // inferred from electronic annotation /// 0007155 // cell adhesion // traceable author statement /// 0007169 // transmembrane receptor protein tyrosine kinase signaling pathway // inferred from electronic annotation /// 0007565 // female pregnancy // inferred from electronic annotation /// 0007566 // embryo implantation // inferred from electronic annotation /// 0007595 // lactation // inferred from electronic annotation /// 0008285 // negative regulation of cell proliferation // inferred from electronic annotation /// 0010715 // regulation of extracellular matrix disassembly // inferred from mutant phenotype /// 0014909 // smooth muscle cell migration // inferred from mutant phenotype /// 0016310 // phosphorylation // inferred from electronic annotation /// 0018108 // peptidyl-tyrosine phosphorylation // inferred from electronic annotation /// 0030198 // extracellular matrix organization // traceable author statement /// 0038063 // collagen-activated tyrosine kinase receptor signaling pathway // inferred from direct assay /// 0038063 // collagen-activated tyrosine kinase receptor signaling pathway // inferred from mutant phenotype /// 0038083 // peptidyl-tyrosine autophosphorylation // inferred from direct assay /// 0043583 // ear development // inferred from electronic annotation /// 0044319 // wound healing, spreading of cells // inferred from mutant phenotype /// 0046777 // protein autophosphorylation // inferred from direct assay /// 0060444 // branching involved in mammary gland duct morphogenesis // inferred from electronic annotation /// 0060749 // mammary gland alveolus development // inferred from electronic annotation /// 0061302 // smooth muscle cell-matrix adhesion // inferred from mutant phenotype', '0000278 // mitotic cell cycle // traceable author statement /// 0000722 // telomere maintenance via recombination // traceable author statement /// 0000723 // telomere maintenance // traceable author statement /// 0006260 // DNA replication // traceable author statement /// 0006271 // DNA strand elongation involved in DNA replication // traceable author statement /// 0006281 // DNA repair // traceable author statement /// 0006283 // transcription-coupled nucleotide-excision repair // traceable author statement /// 0006289 // nucleotide-excision repair // traceable author statement /// 0006297 // nucleotide-excision repair, DNA gap filling // traceable author statement /// 0015979 // photosynthesis // inferred from electronic annotation /// 0015995 // chlorophyll biosynthetic process // inferred from electronic annotation /// 0032201 // telomere maintenance via semi-conservative replication // traceable author statement', '0000902 // cell morphogenesis // inferred from electronic annotation /// 0006200 // ATP catabolic process // inferred from direct assay /// 0006950 // response to stress // inferred from electronic annotation /// 0006986 // response to unfolded protein // traceable author statement /// 0034605 // cellular response to heat // inferred from direct assay /// 0042026 // protein refolding // inferred from direct assay /// 0070370 // cellular heat acclimation // inferred from mutant phenotype', '0001655 // urogenital system development // inferred from sequence or structural similarity /// 0001656 // metanephros development // inferred from electronic annotation /// 0001658 // branching involved in ureteric bud morphogenesis // inferred from expression pattern /// 0001822 // kidney development // inferred from expression pattern /// 0001823 // mesonephros development // inferred from sequence or structural similarity /// 0003337 // mesenchymal to epithelial transition involved in metanephros morphogenesis // inferred from expression pattern /// 0006351 // transcription, DNA-templated // inferred from direct assay /// 0006355 // regulation of transcription, DNA-templated // inferred from electronic annotation /// 0007275 // multicellular organismal development // inferred from electronic annotation /// 0007417 // central nervous system development // inferred from expression pattern /// 0009653 // anatomical structure morphogenesis // traceable author statement /// 0030154 // cell differentiation // inferred from electronic annotation /// 0030878 // thyroid gland development // inferred from expression pattern /// 0030878 // thyroid gland development // inferred from mutant phenotype /// 0038194 // thyroid-stimulating hormone signaling pathway // traceable author statement /// 0039003 // pronephric field specification // inferred from sequence or structural similarity /// 0042472 // inner ear morphogenesis // inferred from sequence or structural similarity /// 0042981 // regulation of apoptotic process // inferred from sequence or structural similarity /// 0045893 // positive regulation of transcription, DNA-templated // inferred from direct assay /// 0045893 // positive regulation of transcription, DNA-templated // inferred from sequence or structural similarity /// 0045944 // positive regulation of transcription from RNA polymerase II promoter // inferred from direct assay /// 0048793 // pronephros development // inferred from sequence or structural similarity /// 0071371 // cellular response to gonadotropin stimulus // inferred from direct assay /// 0071599 // otic vesicle development // inferred from expression pattern /// 0072050 // S-shaped body morphogenesis // inferred from electronic annotation /// 0072073 // kidney epithelium development // inferred from electronic annotation /// 0072108 // positive regulation of mesenchymal to epithelial transition involved in metanephros morphogenesis // inferred from sequence or structural similarity /// 0072164 // mesonephric tubule development // inferred from electronic annotation /// 0072207 // metanephric epithelium development // inferred from expression pattern /// 0072221 // metanephric distal convoluted tubule development // inferred from sequence or structural similarity /// 0072278 // metanephric comma-shaped body morphogenesis // inferred from expression pattern /// 0072284 // metanephric S-shaped body morphogenesis // inferred from expression pattern /// 0072289 // metanephric nephron tubule formation // inferred from sequence or structural similarity /// 0072305 // negative regulation of mesenchymal cell apoptotic process involved in metanephric nephron morphogenesis // inferred from sequence or structural similarity /// 0072307 // regulation of metanephric nephron tubule epithelial cell differentiation // inferred from sequence or structural similarity /// 0090190 // positive regulation of branching involved in ureteric bud morphogenesis // inferred from sequence or structural similarity /// 1900212 // negative regulation of mesenchymal cell apoptotic process involved in metanephros development // inferred from sequence or structural similarity /// 1900215 // negative regulation of apoptotic process involved in metanephric collecting duct development // inferred from sequence or structural similarity /// 1900218 // negative regulation of apoptotic process involved in metanephric nephron tubule development // inferred from sequence or structural similarity /// 2000594 // positive regulation of metanephric DCT cell differentiation // inferred from sequence or structural similarity /// 2000611 // positive regulation of thyroid hormone generation // inferred from mutant phenotype /// 2000612 // regulation of thyroid-stimulating hormone secretion // inferred from mutant phenotype', '0007165 // signal transduction // non-traceable author statement /// 0007601 // visual perception // inferred from electronic annotation /// 0007602 // phototransduction // inferred from electronic annotation /// 0007603 // phototransduction, visible light // traceable author statement /// 0016056 // rhodopsin mediated signaling pathway // traceable author statement /// 0022400 // regulation of rhodopsin mediated signaling pathway // traceable author statement /// 0030828 // positive regulation of cGMP biosynthetic process // inferred from electronic annotation /// 0031282 // regulation of guanylate cyclase activity // inferred from electronic annotation /// 0031284 // positive regulation of guanylate cyclase activity // inferred from electronic annotation /// 0050896 // response to stimulus // inferred from electronic annotation'], 'Gene Ontology Cellular Component': ['0005576 // extracellular region // inferred from electronic annotation /// 0005615 // extracellular space // inferred from direct assay /// 0005886 // plasma membrane // traceable author statement /// 0005887 // integral component of plasma membrane // traceable author statement /// 0016020 // membrane // inferred from electronic annotation /// 0016021 // integral component of membrane // inferred from electronic annotation /// 0043235 // receptor complex // inferred from direct assay /// 0070062 // extracellular vesicular exosome // inferred from direct assay', '0005634 // nucleus // inferred from electronic annotation /// 0005654 // nucleoplasm // traceable author statement /// 0005663 // DNA replication factor C complex // inferred from direct assay', '0005737 // cytoplasm // inferred from direct assay /// 0005814 // centriole // inferred from direct assay /// 0005829 // cytosol // inferred from direct assay /// 0008180 // COP9 signalosome // inferred from direct assay /// 0070062 // extracellular vesicular exosome // inferred from direct assay /// 0072562 // blood microparticle // inferred from direct assay', '0005634 // nucleus // inferred from direct assay /// 0005654 // nucleoplasm // inferred from sequence or structural similarity /// 0005730 // nucleolus // inferred from direct assay', '0001750 // photoreceptor outer segment // inferred from electronic annotation /// 0001917 // photoreceptor inner segment // inferred from electronic annotation /// 0005578 // proteinaceous extracellular matrix // inferred from electronic annotation /// 0005886 // plasma membrane // inferred from direct assay /// 0016020 // membrane // inferred from electronic annotation /// 0097381 // photoreceptor disc membrane // traceable author statement'], 'Gene Ontology Molecular Function': ['0000166 // nucleotide binding // inferred from electronic annotation /// 0004672 // protein kinase activity // inferred from electronic annotation /// 0004713 // protein tyrosine kinase activity // inferred from electronic annotation /// 0004714 // transmembrane receptor protein tyrosine kinase activity // traceable author statement /// 0005515 // protein binding // inferred from physical interaction /// 0005518 // collagen binding // inferred from direct assay /// 0005518 // collagen binding // inferred from mutant phenotype /// 0005524 // ATP binding // inferred from electronic annotation /// 0016301 // kinase activity // inferred from electronic annotation /// 0016740 // transferase activity // inferred from electronic annotation /// 0016772 // transferase activity, transferring phosphorus-containing groups // inferred from electronic annotation /// 0038062 // protein tyrosine kinase collagen receptor activity // inferred from direct assay /// 0046872 // metal ion binding // inferred from electronic annotation', '0000166 // nucleotide binding // inferred from electronic annotation /// 0003677 // DNA binding // inferred from electronic annotation /// 0005515 // protein binding // inferred from physical interaction /// 0005524 // ATP binding // inferred from electronic annotation /// 0016851 // magnesium chelatase activity // inferred from electronic annotation /// 0017111 // nucleoside-triphosphatase activity // inferred from electronic annotation', '0000166 // nucleotide binding // inferred from electronic annotation /// 0005524 // ATP binding // inferred from electronic annotation /// 0019899 // enzyme binding // inferred from physical interaction /// 0031072 // heat shock protein binding // inferred from physical interaction /// 0042623 // ATPase activity, coupled // inferred from direct assay /// 0051082 // unfolded protein binding // inferred from direct assay', '0000979 // RNA polymerase II core promoter sequence-specific DNA binding // inferred from direct assay /// 0003677 // DNA binding // inferred from direct assay /// 0003677 // DNA binding // inferred from mutant phenotype /// 0003700 // sequence-specific DNA binding transcription factor activity // inferred from direct assay /// 0004996 // thyroid-stimulating hormone receptor activity // traceable author statement /// 0005515 // protein binding // inferred from physical interaction /// 0044212 // transcription regulatory region DNA binding // inferred from direct assay', '0005509 // calcium ion binding // inferred from electronic annotation /// 0008048 // calcium sensitive guanylate cyclase activator activity // inferred from electronic annotation /// 0030249 // guanylate cyclase regulator activity // inferred from electronic annotation /// 0046872 // metal ion binding // inferred from electronic annotation']}\n", "\n", "Sample of Description column (first 5 rows):\n" ] } ], "source": [ "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "gene_annotation = get_gene_annotation(soft_file)\n", "\n", "# 2. Analyze the gene annotation dataframe to identify which columns contain the gene identifiers and gene symbols\n", "print(\"\\nGene annotation preview:\")\n", "print(f\"Columns in gene annotation: {gene_annotation.columns.tolist()}\")\n", "print(preview_df(gene_annotation, n=5))\n", "\n", "# Based on the preview, 'ID' appears to be the probe ID and 'Description' contains gene names\n", "# Display more samples from the Description column to better understand the format\n", "print(\"\\nSample of Description column (first 5 rows):\")\n", "if 'Description' in gene_annotation.columns:\n", " for i in range(min(5, len(gene_annotation))):\n", " print(f\"Row {i}: {gene_annotation['Description'].iloc[i]}\")\n" ] }, { "cell_type": "markdown", "id": "05a8dfc4", "metadata": {}, "source": [ "### Step 6: Gene Identifier Mapping" ] }, { "cell_type": "code", "execution_count": 7, "id": "ceca5a54", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T05:09:15.759881Z", "iopub.status.busy": "2025-03-25T05:09:15.759481Z", "iopub.status.idle": "2025-03-25T05:09:15.951225Z", "shell.execute_reply": "2025-03-25T05:09:15.950832Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Gene mapping shape: (45782, 2)\n", "Sample of gene mapping (first 5 rows):\n", " ID Gene\n", "0 1007_s_at DDR1 /// MIR4640\n", "1 1053_at RFC2\n", "2 117_at HSPA6\n", "3 121_at PAX8\n", "4 1255_g_at GUCA1A\n", "Gene expression data after mapping: (15042, 72)\n", "First 10 genes in the mapped data:\n", "['A2M', 'A2M-AS1', 'A2MP1', 'AACS', 'AADAT', 'AAED1', 'AAGAB', 'AAK1', 'AAMP', 'AAR2']\n", "Successfully mapped probes to 15042 genes.\n" ] } ], "source": [ "# 1. Observe the gene annotation data to determine which columns to use for mapping\n", "# From the preview, we can see that 'ID' contains the probe IDs (like '1007_s_at') which match the gene expression data\n", "# 'Gene Symbol' contains the human gene symbols (like 'DDR1 /// MIR4640')\n", "\n", "# 2. Extract the mapping between probe IDs and gene symbols\n", "gene_mapping = get_gene_mapping(gene_annotation, 'ID', 'Gene Symbol')\n", "print(f\"Gene mapping shape: {gene_mapping.shape}\")\n", "print(f\"Sample of gene mapping (first 5 rows):\")\n", "print(gene_mapping.head())\n", "\n", "# 3. Apply the gene mapping to convert probe-level measurements to gene-level expression\n", "# The apply_gene_mapping function handles the many-to-many relationships as described\n", "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n", "print(f\"Gene expression data after mapping: {gene_data.shape}\")\n", "print(f\"First 10 genes in the mapped data:\")\n", "print(list(gene_data.index[:10]))\n", "\n", "# Check if we have any genes in the result\n", "if gene_data.shape[0] == 0:\n", " print(\"Warning: No genes were mapped! Check if the gene mapping process worked correctly.\")\n", " is_gene_available = False\n", "else:\n", " print(f\"Successfully mapped probes to {gene_data.shape[0]} genes.\")\n", " is_gene_available = True\n" ] }, { "cell_type": "markdown", "id": "bd596341", "metadata": {}, "source": [ "### Step 7: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": 8, "id": "2ae5b307", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T05:09:15.953309Z", "iopub.status.busy": "2025-03-25T05:09:15.953037Z", "iopub.status.idle": "2025-03-25T05:09:23.537957Z", "shell.execute_reply": "2025-03-25T05:09:23.537403Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Gene data shape before normalization: (15042, 72)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Gene data shape after normalization: (14516, 72)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Normalized gene data saved to ../../output/preprocess/Epilepsy/gene_data/GSE29796.csv\n", "Extracted clinical data shape: (1, 72)\n", "Preview of clinical data (first 5 samples):\n", " GSM738329 GSM738330 GSM738331 GSM738332 GSM738333\n", "Epilepsy 1.0 1.0 1.0 1.0 1.0\n", "Clinical data saved to ../../output/preprocess/Epilepsy/clinical_data/GSE29796.csv\n", "Gene data columns (first 5): ['GSM738329', 'GSM738330', 'GSM738331', 'GSM738332', 'GSM738333']\n", "Clinical data columns (first 5): ['GSM738329', 'GSM738330', 'GSM738331', 'GSM738332', 'GSM738333']\n", "Found 72 common samples between gene and clinical data\n", "Initial linked data shape: (72, 14517)\n", "Preview of linked data (first 5 rows, first 5 columns):\n", " Epilepsy A2M A2M-AS1 A2MP1 AACS\n", "GSM738329 1.0 9.518956 5.217719 6.188802 6.216576\n", "GSM738330 1.0 8.460140 5.637911 7.387368 6.109275\n", "GSM738331 1.0 9.631527 4.637884 5.729615 5.782923\n", "GSM738332 1.0 8.104231 4.369238 7.729516 6.159127\n", "GSM738333 1.0 11.055351 6.326042 7.296477 5.962652\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Linked data shape after handling missing values: (72, 14517)\n", "For the feature 'Epilepsy', the least common label is '1.0' with 20 occurrences. This represents 27.78% of the dataset.\n", "The distribution of the feature 'Epilepsy' in this dataset is fine.\n", "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Linked data saved to ../../output/preprocess/Epilepsy/GSE29796.csv\n" ] } ], "source": [ "# 1. Normalize gene symbols in the gene expression data\n", "try:\n", " # Make sure the directory exists\n", " os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", " \n", " # Use the gene_data variable from the previous step (don't try to load it from file)\n", " print(f\"Gene data shape before normalization: {gene_data.shape}\")\n", " \n", " # Apply normalization to gene symbols\n", " normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n", " print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n", " \n", " # Save the normalized gene data\n", " normalized_gene_data.to_csv(out_gene_data_file)\n", " print(f\"Normalized gene data saved to {out_gene_data_file}\")\n", " \n", " # Use the normalized data for further processing\n", " gene_data = normalized_gene_data\n", " is_gene_available = True\n", "except Exception as e:\n", " print(f\"Error normalizing gene data: {e}\")\n", " is_gene_available = False\n", "\n", "# 2. Load clinical data - respecting the analysis from Step 2\n", "# From Step 2, we determined:\n", "# trait_row = None # No Epilepsy data available\n", "# age_row = None\n", "# gender_row = None\n", "is_trait_available = trait_row is not None\n", "\n", "# Skip clinical feature extraction when trait_row is None\n", "if is_trait_available:\n", " try:\n", " # Load the clinical data from file\n", " soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", " background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n", " \n", " # Extract clinical features\n", " clinical_features = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender,\n", " age_row=age_row,\n", " convert_age=convert_age\n", " )\n", " \n", " print(f\"Extracted clinical data shape: {clinical_features.shape}\")\n", " print(\"Preview of clinical data (first 5 samples):\")\n", " print(clinical_features.iloc[:, :5])\n", " \n", " # Save the properly extracted clinical data\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " clinical_features.to_csv(out_clinical_data_file)\n", " print(f\"Clinical data saved to {out_clinical_data_file}\")\n", " except Exception as e:\n", " print(f\"Error extracting clinical data: {e}\")\n", " is_trait_available = False\n", "else:\n", " print(\"No trait data (Epilepsy) available in this dataset based on previous analysis.\")\n", "\n", "# 3. Link clinical and genetic data if both are available\n", "if is_trait_available and is_gene_available:\n", " try:\n", " # Debug the column names to ensure they match\n", " print(f\"Gene data columns (first 5): {gene_data.columns[:5].tolist()}\")\n", " print(f\"Clinical data columns (first 5): {clinical_features.columns[:5].tolist()}\")\n", " \n", " # Check for common sample IDs\n", " common_samples = set(gene_data.columns).intersection(clinical_features.columns)\n", " print(f\"Found {len(common_samples)} common samples between gene and clinical data\")\n", " \n", " if len(common_samples) > 0:\n", " # Link the clinical and genetic data\n", " linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)\n", " print(f\"Initial linked data shape: {linked_data.shape}\")\n", " \n", " # Debug the trait values before handling missing values\n", " print(\"Preview of linked data (first 5 rows, first 5 columns):\")\n", " print(linked_data.iloc[:5, :5])\n", " \n", " # Handle missing values\n", " linked_data = handle_missing_values(linked_data, trait)\n", " print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n", " \n", " if linked_data.shape[0] > 0:\n", " # Check for bias in trait and demographic features\n", " is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n", " \n", " # Validate the data quality and save cohort info\n", " note = \"Dataset contains gene expression data from GBM cell cultures, but no epilepsy phenotype information.\"\n", " is_usable = validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available,\n", " is_biased=is_biased,\n", " df=linked_data,\n", " note=note\n", " )\n", " \n", " # Save the linked data if it's usable\n", " if is_usable:\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " linked_data.to_csv(out_data_file)\n", " print(f\"Linked data saved to {out_data_file}\")\n", " else:\n", " print(\"Data not usable for the trait study - not saving final linked data.\")\n", " else:\n", " print(\"After handling missing values, no samples remain.\")\n", " validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available,\n", " is_biased=True,\n", " df=pd.DataFrame(),\n", " note=\"No valid samples after handling missing values.\"\n", " )\n", " else:\n", " print(\"No common samples found between gene expression and clinical data.\")\n", " validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available,\n", " is_biased=True,\n", " df=pd.DataFrame(),\n", " note=\"No common samples between gene expression and clinical data.\"\n", " )\n", " except Exception as e:\n", " print(f\"Error linking or processing data: {e}\")\n", " validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available,\n", " is_biased=True, # Assume biased if there's an error\n", " df=pd.DataFrame(), # Empty dataframe for metadata\n", " note=f\"Error in data processing: {str(e)}\"\n", " )\n", "else:\n", " # Create an empty DataFrame for metadata purposes\n", " empty_df = pd.DataFrame()\n", " \n", " # We can't proceed with linking if either trait or gene data is missing\n", " print(\"Cannot proceed with data linking due to missing trait or gene data.\")\n", " validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available,\n", " is_biased=True, # Data is unusable if we're missing components\n", " df=empty_df, # Empty dataframe for metadata\n", " note=\"Missing essential data components for linking: dataset contains gene expression data from GBM cell cultures, but no epilepsy phenotype information.\"\n", " )" ] } ], "metadata": { "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.16" } }, "nbformat": 4, "nbformat_minor": 5 }