import argparse import json import os import traceback import numpy as np import pandas as pd from tqdm import tqdm from utils.utils import get_question_pairs from utils.metrics import evaluate_gene_selection from tools.statistics import get_gene_regressors def average_metrics(metrics_list): """Average a list of metric dictionaries.""" if not metrics_list: return {} avg_metrics = {} for metric in metrics_list[0]: if isinstance(metrics_list[0][metric], (int, float)): avg_metrics[metric] = float(np.round(np.nanmean([p[metric] for p in metrics_list]), 2)) return avg_metrics def evaluate_dataset_selection(pred_dir, ref_dir): """ Evaluate dataset filtering and selection by comparing predicted and reference cohort info files. This function evaluates two aspects: 1. Dataset Filtering (DF): Binary classification of dataset availability (is_available) 2. Dataset Selection (DS): Accuracy in selecting the best dataset(s) for each problem Args: pred_dir: Path to prediction directory ref_dir: Path to reference directory Returns: Dictionary of evaluation metrics for dataset filtering and selection """ # Initialize lists to store per-trait metrics filtering_metrics_list = [] selection_metrics_list = [] # Track traits we've already evaluated for dataset filtering seen_traits = set() # Get all trait-condition pairs from the metadata directory task_info_file = './metadata/task_info.json' all_pairs = get_question_pairs(task_info_file) # Process each trait-condition pair with tqdm(total=len(all_pairs), desc="Evaluating dataset filtering and selection") as pbar: for i, (trait, condition) in enumerate(all_pairs): # Initialize metrics trait_filtering_metrics = {'tp': 0, 'fp': 0, 'tn': 0, 'fn': 0} problem_selection_metrics = {'accuracy': 0.0} # Get trait cohort info paths ref_trait_dir = os.path.join(ref_dir, 'preprocess', trait) pred_trait_dir = os.path.join(pred_dir, 'preprocess', trait) ref_trait_info_path = os.path.join(ref_trait_dir, 'cohort_info.json') pred_trait_info_path = os.path.join(pred_trait_dir, 'cohort_info.json') if not os.path.exists(ref_trait_info_path): print(f"Warning: Reference cohort info not found at '{ref_trait_info_path}'") pbar.update(1) continue if not os.path.exists(pred_trait_info_path): print(f"Warning: Prediction cohort info not found at '{pred_trait_info_path}'") pbar.update(1) continue try: # Load reference and prediction trait cohort info with open(ref_trait_info_path, 'r') as f: ref_trait_info = json.load(f) with open(pred_trait_info_path, 'r') as f: pred_trait_info = json.load(f) # Only evaluate trait filtering metrics if we haven't seen this trait before if trait not in seen_traits: # Evaluate dataset filtering based on is_available attribute for cohort_id in set(ref_trait_info.keys()).union(set(pred_trait_info.keys())): ref_available = ref_trait_info.get(cohort_id, {}).get('is_available', False) pred_available = pred_trait_info.get(cohort_id, {}).get('is_available', False) if ref_available and pred_available: trait_filtering_metrics['tp'] += 1 elif ref_available and not pred_available: trait_filtering_metrics['fn'] += 1 elif not ref_available and pred_available: trait_filtering_metrics['fp'] += 1 else: # not ref_available and not pred_available trait_filtering_metrics['tn'] += 1 # Calculate metrics for this trait filtering_result = calculate_metrics_from_confusion( trait_filtering_metrics['tp'], trait_filtering_metrics['fp'], trait_filtering_metrics['tn'], trait_filtering_metrics['fn'] ) # Store trait name as part of the metrics filtering_result['trait'] = trait # Add to the filtering metrics list filtering_metrics_list.append(filtering_result) # Mark this trait as seen seen_traits.add(trait) # Select best dataset(s) using the refactored function ref_selection = select_cohorts( root_dir=ref_dir, trait=trait, condition=condition ) pred_selection = select_cohorts( root_dir=pred_dir, trait=trait, condition=condition ) # Check if selections match if ref_selection == pred_selection: problem_selection_metrics['accuracy'] = 100.0 # Store trait and condition names as part of the metrics problem_selection_metrics['trait'] = trait problem_selection_metrics['condition'] = condition selection_metrics_list.append(problem_selection_metrics) # Update running average more frequently - every 5 iterations or at start/end if (i + 1) % 5 == 0 or i == 0 or i == len(all_pairs) - 1: # Display both filtering and selection metrics in a single progress bar update display_running_average( pbar, filtering_metrics_list, "Dataset filtering", ['precision', 'recall', 'f1', 'accuracy'], selection_metrics_list, "Dataset selection", ['accuracy'] ) except Exception as e: print(f"Error evaluating {trait}-{condition}: {str(e)}") print(traceback.format_exc()) pbar.update(1) # Calculate average metrics across all traits avg_filtering_metrics = average_metrics(filtering_metrics_list) avg_selection_metrics = average_metrics(selection_metrics_list) return { 'filtering_metrics': { 'per_trait': filtering_metrics_list, 'average': avg_filtering_metrics }, 'selection_metrics': { 'per_problem': selection_metrics_list, 'average': avg_selection_metrics } } def select_cohorts(root_dir, trait, condition=None, gene_info_path='./metadata/task_info.json'): """ Select the best cohort or cohort pair for analysis. Unified function that handles both one-step and two-step dataset selection. Args: root_dir: Base directory containing output data trait: Name of the trait condition: Name of the condition (optional) gene_info_path: Path to gene info metadata file (default: './metadata/task_info.json') Returns: For one-step: Selected cohort ID or None if no suitable cohort found For two-step: Tuple of (trait_cohort_id, condition_cohort_id) or None if no suitable pair found """ # Set up necessary paths trait_dir = os.path.join(root_dir, 'preprocess', trait) trait_info_path = os.path.join(trait_dir, 'cohort_info.json') # Check if trait directory and info exist if not os.path.exists(trait_info_path): print(f"Warning: Trait cohort info not found for '{trait}'") return None # Load trait info with open(trait_info_path, 'r') as f: trait_info = json.load(f) # One-step problem (only trait, or trait with Age/Gender condition) if condition is None or condition.lower() in ['age', 'gender', 'none']: # Filter usable cohorts usable_cohorts = {} for cohort_id, info in trait_info.items(): if info.get('is_usable', False): # For Age/Gender conditions, filter cohorts with that info if condition == 'Age' and not info.get('has_age', False): continue elif condition == 'Gender' and not info.get('has_gender', False): continue usable_cohorts[cohort_id] = info if not usable_cohorts: return None # Select cohort with largest sample size return max(usable_cohorts.items(), key=lambda x: x[1].get('sample_size', 0))[0] # Two-step problem (trait with another non-basic condition) else: # Set up condition paths condition_dir = os.path.join(root_dir, 'preprocess', condition) condition_info_path = os.path.join(condition_dir, 'cohort_info.json') # Check if condition directory and info exist if not os.path.exists(condition_info_path): print(f"Warning: Condition cohort info not found for '{condition}'") return None # Load condition info with open(condition_info_path, 'r') as f: condition_info = json.load(f) # Filter usable cohorts usable_trait_cohorts = {k: v for k, v in trait_info.items() if v.get('is_usable', False)} usable_condition_cohorts = {k: v for k, v in condition_info.items() if v.get('is_usable', False)} if not usable_trait_cohorts or not usable_condition_cohorts: return None # Create all possible pairs with their product of sample sizes pairs = [] for trait_id, trait_info_item in usable_trait_cohorts.items(): for cond_id, cond_info_item in usable_condition_cohorts.items(): trait_size = trait_info_item.get('sample_size', 0) cond_size = cond_info_item.get('sample_size', 0) pairs.append((trait_id, cond_id, trait_size * cond_size)) # Sort by product of sample sizes (largest first) pairs.sort(key=lambda x: x[2], reverse=True) # Find first pair with common gene regressors for trait_id, cond_id, _ in pairs: trait_data_path = os.path.join(trait_dir, f"{trait_id}.csv") condition_data_path = os.path.join(condition_dir, f"{cond_id}.csv") if os.path.exists(trait_data_path) and os.path.exists(condition_data_path): # Load the data to check for common gene regressors try: trait_data = pd.read_csv(trait_data_path, index_col=0).astype('float') condition_data = pd.read_csv(condition_data_path, index_col=0).astype('float') # Check for common gene regressors gene_regressors = get_gene_regressors(trait, condition, trait_data, condition_data, gene_info_path) if gene_regressors: return trait_id, cond_id except Exception as e: print(f"Error processing pair ({trait_id}, {cond_id}): {str(e)}") # If there's an error, try the next pair continue # No valid pair found return None def calculate_metrics_from_confusion(tp, fp, tn, fn): """ Calculate precision, recall, F1, and accuracy from confusion matrix values. Args: tp: True positives fp: False positives tn: True negatives fn: False negatives Returns: Dictionary of metrics """ precision = tp / (tp + fp) if (tp + fp) > 0 else 0.0 recall = tp / (tp + fn) if (tp + fn) > 0 else 0.0 f1 = 2 * precision * recall / (precision + recall) if (precision + recall) > 0 else 0.0 accuracy = (tp + tn) / (tp + tn + fp + fn) if (tp + tn + fp + fn) > 0 else 0.0 return { 'precision': precision * 100, 'recall': recall * 100, 'f1': f1 * 100, 'accuracy': accuracy * 100 } def calculate_jaccard(set1, set2): """Calculate Jaccard similarity between two sets.""" intersection = len(set1.intersection(set2)) union = len(set1.union(set2)) return 0.0 if union == 0 else intersection / union def calculate_pearson_correlation(df1, df2): """Calculate Pearson correlation between common features in two dataframes. Optimized for large datasets using numpy vectorization.""" common_samples = df1.index.intersection(df2.index) common_features = df1.columns.intersection(df2.columns) if len(common_samples) == 0 or len(common_features) == 0: return 0.0 # Extract only common samples and features aligned_df1 = df1.loc[common_samples, common_features] aligned_df2 = df2.loc[common_samples, common_features] # Fill missing values with column means (more efficient than column-by-column) aligned_df1 = aligned_df1.fillna(aligned_df1.mean()) aligned_df2 = aligned_df2.fillna(aligned_df2.mean()) # Handle any remaining NaNs (e.g., columns that are all NaN) aligned_df1 = aligned_df1.fillna(0.0) aligned_df2 = aligned_df2.fillna(0.0) # Vectorized Pearson correlation calculation try: # Convert to numpy arrays for faster computation X = aligned_df1.values Y = aligned_df2.values n_samples = X.shape[0] # Center the data (subtract column means) X_centered = X - np.mean(X, axis=0) Y_centered = Y - np.mean(Y, axis=0) # Calculate standard deviations for each column X_std = np.std(X, axis=0) Y_std = np.std(Y, axis=0) # Create mask for valid columns (non-zero std dev in both datasets) valid_cols = (X_std != 0) & (Y_std != 0) if not np.any(valid_cols): return 0.0 # No valid columns to correlate # Calculate correlation only for valid columns # Use the formula: corr = sum(X_centered * Y_centered) / (n * std_X * std_Y) numerator = np.sum(X_centered[:, valid_cols] * Y_centered[:, valid_cols], axis=0) denominator = n_samples * X_std[valid_cols] * Y_std[valid_cols] correlations = numerator / denominator # Handle any NaN values that might have slipped through correlations = np.nan_to_num(correlations, nan=0.0) # Return the mean correlation return float(np.mean(correlations)) except Exception as e: print(f"Error calculating Pearson correlation: {str(e)}") return 0.0 def evaluate_csv(pred_file_path, ref_file_path, subtask="linked"): """ Evaluate preprocessing by comparing prediction and reference CSV files. Args: pred_file_path: Path to the prediction CSV file ref_file_path: Path to the reference CSV file subtask: The preprocessing subtask ('gene', 'clinical', 'linked') Returns: Dictionary of evaluation metrics """ # Default metrics if file doesn't exist default_metrics = { 'attributes_jaccard': 0.0, 'samples_jaccard': 0.0, 'feature_correlation': 0.0, 'composite_similarity_correlation': 0.0 } # Check if prediction file exists if not os.path.isfile(pred_file_path): return default_metrics try: # Read CSV files df1 = pd.read_csv(pred_file_path, index_col=0) df2 = pd.read_csv(ref_file_path, index_col=0) # Reset index and column names to avoid possible errors and confusion df1.index.name = None df1.columns.name = None df2.index.name = None df2.columns.name = None # Make sure rows represent samples and columns represent features if subtask != "linked": # Transpose the DataFrames df1 = df1.T df2 = df2.T # Return default metrics if any dataframe is empty if df1.empty or df2.empty: return default_metrics # Calculate metrics attributes_jaccard = calculate_jaccard(set(df1.columns), set(df2.columns)) samples_jaccard = calculate_jaccard(set(df1.index), set(df2.index)) feature_correlation = calculate_pearson_correlation(df1, df2) composite_similarity_correlation = attributes_jaccard * samples_jaccard * feature_correlation return { 'attributes_jaccard': attributes_jaccard, 'samples_jaccard': samples_jaccard, 'feature_correlation': feature_correlation, 'composite_similarity_correlation': composite_similarity_correlation } except Exception as e: print(f"Error processing {pred_file_path} and {ref_file_path}") print(f"Error details: {str(e)}") print(traceback.format_exc()) return default_metrics def display_running_average(pbar, metrics_list, task_name, metrics_to_show=None, second_metrics_list=None, second_task_name=None, second_metrics_to_show=None): """ Display running average of metrics in the progress bar. Args: pbar: tqdm progress bar metrics_list: List of metric dictionaries task_name: Name of the task for display metrics_to_show: List of metrics to display (if None, show all numeric metrics) second_metrics_list: Optional second list of metrics to display (e.g., selection metrics) second_task_name: Name for the second task second_metrics_to_show: Metrics to show for the second task """ # Skip if there are no metrics if not metrics_list: pbar.set_description(f"{task_name}: No metrics yet") return # Calculate average metrics avg_metrics = average_metrics(metrics_list) # Determine which metrics to show if metrics_to_show is None: metrics_to_show = [k for k, v in avg_metrics.items() if isinstance(v, (int, float))] # Filter out metadata keys that aren't metrics metrics_to_show = [m for m in metrics_to_show if m not in ['trait', 'file', 'condition', 'category']] # Create compact description for progress bar desc_parts = [] for metric in metrics_to_show: if metric in avg_metrics: desc_parts.append(f"{metric[:3]}={avg_metrics[metric]:.2f}") # Process second metrics list if provided second_desc_parts = [] if second_metrics_list and second_task_name: second_avg_metrics = average_metrics(second_metrics_list) if second_metrics_to_show is None: second_metrics_to_show = [k for k, v in second_avg_metrics.items() if isinstance(v, (int, float))] # Filter out metadata keys that aren't metrics second_metrics_to_show = [m for m in second_metrics_to_show if m not in ['trait', 'file', 'condition', 'category']] for metric in second_metrics_to_show: if metric in second_avg_metrics: second_desc_parts.append(f"{metric[:3]}={second_avg_metrics[metric]:.2f}") # Build the description with both primary and secondary metrics description = f"{task_name}: " + " ".join(desc_parts) if desc_parts else f"{task_name}: No metrics yet" if second_desc_parts and second_task_name: description += f" | {second_task_name}: " + " ".join(second_desc_parts) # Set the progress bar description pbar.set_description(description) def evaluate_dataset_preprocessing(pred_dir, ref_dir, subtasks=None): """ Evaluate preprocessing by comparing predicted and reference datasets. Args: pred_dir: Path to prediction directory ref_dir: Path to reference directory subtasks: List of subtasks to evaluate ('gene', 'clinical', 'linked') or None to evaluate all Returns: Dictionary of evaluation metrics for each subtask """ results = {} if subtasks is None: subtasks = ["gene", "clinical", "linked"] pred_preprocess_dir = os.path.join(pred_dir, "preprocess") ref_preprocess_dir = os.path.join(ref_dir, "preprocess") if not os.path.exists(pred_preprocess_dir): print(f"Warning: Preprocessing prediction directory '{pred_preprocess_dir}' does not exist.") return {subtask: {} for subtask in subtasks} for subtask in subtasks: metrics_list = [] processed_count = 0 # Get list of trait directories trait_dirs = [] for t in os.listdir(ref_preprocess_dir): ref_trait_dir = os.path.join(ref_preprocess_dir, t) if os.path.isdir(ref_trait_dir): trait_dirs.append(t) # Count total files to process for better progress tracking total_files = 0 for trait in trait_dirs: ref_trait_dir = os.path.join(ref_preprocess_dir, trait) # Determine the subdirectory path based on subtask if subtask in ["gene", "clinical"]: sub_dir = os.path.join(ref_trait_dir, f"{subtask}_data") else: # linked sub_dir = ref_trait_dir if os.path.isdir(sub_dir): csv_files = [f for f in os.listdir(sub_dir) if f.endswith(".csv")] total_files += len(csv_files) # Process each trait directory with progress bar with tqdm(total=len(trait_dirs), desc=f"Evaluating {subtask} data preprocessing") as pbar: for trait_idx, trait in enumerate(trait_dirs): ref_trait_dir = os.path.join(ref_preprocess_dir, trait) # Determine the subdirectory path based on subtask if subtask in ["gene", "clinical"]: sub_dir = os.path.join(ref_trait_dir, f"{subtask}_data") else: # linked sub_dir = ref_trait_dir if not os.path.isdir(sub_dir): pbar.update(1) continue # Process each CSV file csv_files = [f for f in sorted(os.listdir(sub_dir)) if f.endswith(".csv")] for file_idx, file in enumerate(csv_files): ref_file_path = os.path.join(sub_dir, file) # Get corresponding prediction file path if subtask in ["gene", "clinical"]: pred_file_path = os.path.join(pred_preprocess_dir, trait, f"{subtask}_data", file) else: # linked pred_file_path = os.path.join(pred_preprocess_dir, trait, file) # Skip if prediction file doesn't exist if not os.path.exists(pred_file_path): continue try: # Evaluate the file pair file_metrics = evaluate_csv(pred_file_path, ref_file_path, subtask) # Add trait and file information file_metrics['trait'] = trait file_metrics['file'] = file metrics_list.append(file_metrics) processed_count += 1 # Update running average more frequently: # - At first file # - Every 5 files # - At last file per trait # - At last trait if (processed_count % 5 == 0 or processed_count == 1 or file_idx == len(csv_files) - 1 or trait_idx == len(trait_dirs) - 1): # Show progress pbar.write(f"\nProcessed {processed_count}/{total_files} files") # Display metrics display_running_average( pbar, metrics_list, f"{subtask.capitalize()} preprocessing", ['feature_correlation', 'composite_similarity_correlation'] ) except Exception as e: print(f"Error evaluating {trait}/{file}: {str(e)}") pbar.update(1) # Store both per-file metrics and averages results[subtask] = { 'per_file': metrics_list, 'average': average_metrics(metrics_list) } return results def evaluate_statistical_analysis(pred_dir, ref_dir): """Evaluate statistical analysis (gene selection) task.""" results = {} pred_regress_dir = os.path.join(pred_dir, 'regress') ref_regress_dir = os.path.join(ref_dir, 'regress') if not os.path.exists(pred_regress_dir): print(f"Warning: Statistical analysis prediction directory '{pred_regress_dir}' does not exist.") return {}, {} # Get all trait directories at once to prepare for processing trait_dirs = [t for t in sorted(os.listdir(ref_regress_dir)) if os.path.isdir(os.path.join(ref_regress_dir, t))] # Count and prepare all files for processing all_files = [] for trait in trait_dirs: ref_trait_path = os.path.join(ref_regress_dir, trait) json_files = [f for f in sorted(os.listdir(ref_trait_path)) if f.startswith('significant_genes') and f.endswith('.json')] for filename in json_files: parts = filename.split('_') condition = '_'.join(parts[3:])[:-5] ref_file = os.path.join(ref_trait_path, filename) pred_file = os.path.join(pred_regress_dir, trait, filename) all_files.append((trait, condition, ref_file, pred_file)) metrics_for_display = [] with tqdm(total=len(all_files), desc="Evaluating statistical analysis") as pbar: for i, (trait, condition, ref_file, pred_file) in enumerate(all_files): try: metrics = evaluate_problem_result(ref_file, pred_file) results[(trait, condition)] = metrics # Add trait and condition for display purposes metrics_copy = metrics.copy() metrics_copy['trait'] = trait metrics_copy['condition'] = condition metrics_for_display.append(metrics_copy) # Update the progress bar display at regular intervals # Display on 1st, every 5th, and last file if i == 0 or (i + 1) % 5 == 0 or i == len(all_files) - 1: display_running_average( pbar, metrics_for_display, "Statistical analysis", ['precision', 'recall', 'f1', 'jaccard'] ) except Exception as e: print(f"Error evaluating {pred_file}: {str(e)}") # Update the progress pbar.update(1) # Categorize and aggregate the results categorized_avg_metrics = categorize_and_aggregate(results) return results, categorized_avg_metrics def evaluate_problem_result(ref_file, pred_file): """Calculate metrics for gene selection evaluation.""" assert os.path.exists(ref_file), "Reference file does not exist" with open(ref_file, 'r') as rfile: ref = json.load(rfile) ref_genes = ref["significant_genes"]["Variable"] # If the 'pred_file' does not exist, it indicates the agent's regression code fails to run on this question metrics = {'success': 0.0, 'precision': np.nan, 'recall': np.nan, 'f1': np.nan, 'auroc': np.nan, 'gsea_es': np.nan, 'trait_pred_accuracy': np.nan, 'trait_pred_f1': np.nan} if os.path.exists(pred_file): with open(pred_file, 'r') as file: result = json.load(file) pred_genes = result["significant_genes"]["Variable"] metrics.update(evaluate_gene_selection(pred_genes, ref_genes)) # Optionally, record performance on trait prediction. try: metrics['trait_pred_accuracy'] = result["cv_performance"]["prediction"]["accuracy"] except KeyError: pass try: metrics['trait_pred_f1'] = result["cv_performance"]["prediction"]["f1"] except KeyError: pass metrics['success'] = 100.0 return metrics def categorize_and_aggregate(results): """Categorize and aggregate metrics by condition type.""" categorized_results = {'Unconditional one-step': [], 'Conditional one-step': [], 'Two-step': []} for pair, metrics in results.items(): condition = pair[1] if condition is None or condition.lower() == "none": category = 'Unconditional one-step' elif condition.lower() in ["age", "gender"]: category = 'Conditional one-step' else: category = 'Two-step' categorized_results[category].append(metrics) aggregated_metrics = {} for category, metrics_list in categorized_results.items(): aggregated_metrics[category] = average_metrics(metrics_list) aggregated_metrics['Overall'] = average_metrics( [metric for sublist in categorized_results.values() for metric in sublist]) return aggregated_metrics def main(pred_dir, ref_dir, tasks=None, preprocess_subtasks=None): """ Main evaluation function that can evaluate different tasks. Args: pred_dir: Path to prediction directory ref_dir: Path to reference directory tasks: List of tasks to evaluate ('selection', 'preprocessing', 'analysis') or None to evaluate all preprocess_subtasks: List of preprocessing subtasks to evaluate ('gene', 'clinical', 'linked') or None to evaluate all Returns: Dictionary of evaluation results for each task """ if tasks is None: tasks = ["selection", "preprocessing", "analysis"] results = {} # Evaluate dataset selection if "selection" in tasks: print("\n=== Evaluating Dataset Selection ===") results["selection"] = evaluate_dataset_selection(pred_dir, ref_dir) # Print selection results immediately print("\nDataset Selection Results:") if "filtering_metrics" in results["selection"]: filtering_avg = results["selection"]["filtering_metrics"]["average"] print("\nFiltering Average Metrics:") for metric, value in filtering_avg.items(): if isinstance(value, (int, float)): print(f" {metric}: {value:.4f}") if "selection_metrics" in results["selection"]: selection_avg = results["selection"]["selection_metrics"]["average"] print("\nSelection Average Metrics:") for metric, value in selection_avg.items(): if isinstance(value, (int, float)): print(f" {metric}: {value:.4f}") # Evaluate preprocessing if "preprocessing" in tasks: print("\n=== Evaluating Dataset Preprocessing ===") results["preprocessing"] = evaluate_dataset_preprocessing(pred_dir, ref_dir, preprocess_subtasks) # Print preprocessing results immediately print("\nDataset Preprocessing Results:") for subtask, subtask_results in results["preprocessing"].items(): if "average" in subtask_results: avg_metrics = subtask_results["average"] print(f"\n{subtask.capitalize()} Average Metrics:") for metric, value in avg_metrics.items(): if isinstance(value, (int, float)): print(f" {metric}: {value:.4f}") else: print(f" No results available for {subtask}") # Evaluate statistical analysis if "analysis" in tasks: print("\n=== Evaluating Statistical Analysis ===") problem_results, categorized_metrics = evaluate_statistical_analysis(pred_dir, ref_dir) results["analysis"] = { "problem_results": problem_results, "categorized": categorized_metrics } # Print analysis results immediately print("\nStatistical Analysis Results:") for category, metrics in categorized_metrics.items(): print(f"\n{category} Metrics:") for metric, value in metrics.items(): if isinstance(value, (int, float)): print(f" {metric}: {value:.4f}") return results if __name__ == "__main__": parser = argparse.ArgumentParser(description="Evaluation script for GeneTex") parser.add_argument("-p", "--pred-dir", type=str, default="./pred", help="Path to the prediction directory") parser.add_argument("-r", "--ref-dir", type=str, default="./output", help="Path to the reference directory") parser.add_argument("-t", "--tasks", type=str, nargs="+", choices=["selection", "preprocessing", "analysis"], default=None, help="Tasks to evaluate (default: all)") parser.add_argument("-s", "--preprocess-subtasks", type=str, nargs="+", choices=["gene", "clinical", "linked"], default=None, help="Preprocessing subtasks to evaluate (default: all)") args = parser.parse_args() try: # Run main evaluation - results are printed in the main function results = main(args.pred_dir, args.ref_dir, args.tasks, args.preprocess_subtasks) except Exception as e: print(f"Error in evaluation process: {str(e)}") print(traceback.format_exc())