# Path Configuration from tools.preprocess import * # Processing context trait = "Atherosclerosis" cohort = "GSE109048" # Input paths in_trait_dir = "../DATA/GEO/Atherosclerosis" in_cohort_dir = "../DATA/GEO/Atherosclerosis/GSE109048" # Output paths out_data_file = "./output/preprocess/1/Atherosclerosis/GSE109048.csv" out_gene_data_file = "./output/preprocess/1/Atherosclerosis/gene_data/GSE109048.csv" out_clinical_data_file = "./output/preprocess/1/Atherosclerosis/clinical_data/GSE109048.csv" json_path = "./output/preprocess/1/Atherosclerosis/cohort_info.json" # STEP 1: Initial Data Loading # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, prefixes_a=background_prefixes, prefixes_b=clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability is_gene_available = True # Based on the background info indicating gene expression profiling (platelet mRNA). # 2. Variable Availability and Data Type Conversion # Examine sample characteristics: {0: ['tissue: Platelets'], 1: ['diagnosis: sCAD', 'diagnosis: healthy', 'diagnosis: STEMI']} # We see diagnosis info in row 1. We'll interpret "sCAD" or "STEMI" as having Atherosclerosis (1) and "healthy" as (0). trait_row = 1 age_row = None gender_row = None # Define conversion functions def convert_trait(value: str) -> Optional[int]: """ Convert the diagnosis info (sCAD, STEMI, healthy) to a binary code: 1 for atherosclerosis (sCAD or STEMI), 0 for healthy, None if unknown. """ parts = value.split(':') if len(parts) < 2: return None val = parts[1].strip().lower() if val in ["scad", "stemi"]: return 1 elif val == "healthy": return 0 else: return None def convert_age(value: str) -> Optional[float]: """ No age data available, so we simply return None. """ return None def convert_gender(value: str) -> Optional[int]: """ No gender data available, so we simply return None. """ return None # 3. Save Metadata (initial filtering) is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction (only if trait data is available) if trait_row is not None: # Assume 'clinical_data' DataFrame is already loaded in the environment selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features preview_data = preview_df(selected_clinical_df) print("Preview of extracted clinical features:", preview_data) # Save the clinical data to CSV selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on observation, these identifiers (e.g., '2824546_st') appear to be microarray probe IDs, not typical human gene symbols. # Therefore, they require mapping to gene symbols. print("They are microarray probe IDs and require further mapping to standard gene symbols.") print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP 6: Gene Identifier Mapping # We have probe IDs in the gene expression data that look like "2824546_st", # but the annotation has columns "ID" and "probeset_id" with values like "TC01000001.hg.1". # The library function 'get_gene_mapping' expects the probe column to be named "ID", # and will raise a KeyError if we pass in a different column name (e.g., "probeset_id"). # Here, we manually build the mapping DataFrame to avoid the KeyError. # Define the columns in the annotation DataFrame that correspond to probe ID and gene info prob_col = "probeset_id" gene_col = "gene_assignment" # 1. Manually build the mapping DataFrame to avoid the mismatch with the library function. if prob_col not in gene_annotation.columns or gene_col not in gene_annotation.columns: print(f"Columns '{prob_col}' or '{gene_col}' not found in annotation. Skipping mapping.") else: mapping_df = gene_annotation.loc[:, [prob_col, gene_col]].dropna().copy() # Rename to "ID" and "Gene" for downstream consistency mapping_df = mapping_df.rename(columns={prob_col: 'ID', gene_col: 'Gene'}) mapping_df['ID'] = mapping_df['ID'].astype(str) # 2. Check overlap between annotation IDs and expression data index common_ids = set(mapping_df['ID']).intersection(set(gene_data.index)) if not common_ids: print("No matching probe IDs found between gene_data and annotation. Skipping mapping.") else: # 3. Apply the mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(gene_data, mapping_df) print("Mapped gene_data shape:", gene_data.shape) print(gene_data.head()) import os import pandas as pd # STEP 7 # 1. Normalize the gene expression data to standard gene symbols. normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print("Normalized gene expression data saved to:", out_gene_data_file) # Check if clinical data exists before linking if not os.path.exists(out_clinical_data_file): # Without clinical data, we cannot do trait-based analysis dummy_df = pd.DataFrame() trait_biased = True # Mark as unusable because we lack trait information is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=trait_biased, df=dummy_df, note="No trait data found. This dataset is not usable for final analysis." ) print("Clinical data file not found. Skipping linking and final data export.") else: # 2. Link the clinical and genetic data # Read the clinical CSV with index_col=0 to preserve the feature name (trait row label) selected_clinical_df = pd.read_csv(out_clinical_data_file, header=0, index_col=0) # If there's exactly one row (our trait row), rename it to 'trait' if selected_clinical_df.shape[0] == 1: selected_clinical_df.index = [trait] linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values df = handle_missing_values(linked_data, trait) # 4. Determine whether the trait or demographic features are biased trait_biased, df = judge_and_remove_biased_features(df, trait) # 5. Perform final validation is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=df, note="Final step with linking, missing-value handling, and bias checks." ) # 6. If the data is usable, save the final linked data if is_usable: df.to_csv(out_data_file) print(f"Final linked data saved to: {out_data_file}") else: print("Dataset is not usable or severely biased. No final data saved.")