# Path Configuration from tools.preprocess import * # Processing context trait = "Atherosclerosis" cohort = "GSE123086" # Input paths in_trait_dir = "../DATA/GEO/Atherosclerosis" in_cohort_dir = "../DATA/GEO/Atherosclerosis/GSE123086" # Output paths out_data_file = "./output/preprocess/1/Atherosclerosis/GSE123086.csv" out_gene_data_file = "./output/preprocess/1/Atherosclerosis/gene_data/GSE123086.csv" out_clinical_data_file = "./output/preprocess/1/Atherosclerosis/clinical_data/GSE123086.csv" json_path = "./output/preprocess/1/Atherosclerosis/cohort_info.json" # STEP 1: Initial Data Loading # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, prefixes_a=background_prefixes, prefixes_b=clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Determine gene expression data availability is_gene_available = True # Based on the microarray gene expression description # 2. Identify rows and define conversion functions trait_row = 1 # Row containing primary diagnoses info including ATHEROSCLEROSIS age_row = 3 # Row containing various "age: ..." entries gender_row = 2 # Row containing "Sex: Male" or "Sex: Female" entries def convert_trait(value: str): """Convert to binary: 1 if contains 'ATHEROSCLEROSIS', else 0.""" parts = value.split(':', 1) if len(parts) < 2: return None val = parts[1].strip().upper() return 1 if 'ATHEROSCLEROSIS' in val else 0 def convert_age(value: str): """Convert to continuous age in years. Unknown or non-numeric => None.""" parts = value.split(':', 1) if len(parts) < 2: return None val = parts[1].strip() try: return float(val) except ValueError: return None def convert_gender(value: str): """Convert to binary: Female => 0, Male => 1, else None.""" parts = value.split(':', 1) if len(parts) < 2: return None val = parts[1].strip().upper() if val == 'MALE': return 1 elif val == 'FEMALE': return 0 return None # 3. Initial filtering and metadata save is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical feature extraction and preview if trait data is available if trait_row is not None: extracted_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) preview = preview_df(extracted_clinical_df) print("Preview of extracted clinical features:", preview) extracted_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on the numeric format, these are not typical human gene symbols and likely require mapping. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # Gene Identifier Mapping prob_col = "ID" # The column in gene_annotation that matches the gene_data index gene_col = "ENTREZ_GENE_ID" # The column in gene_annotation to treat as the gene symbol for mapping # 1. Get the gene mapping dataframe mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col) # 2. Convert probe-level measurements to gene expression data gene_data = apply_gene_mapping(gene_data, mapping_df) # 3. Preview mapped gene_data print("Preview of gene_data after mapping:") print(preview_df(gene_data)) import os import pandas as pd # STEP 7 # 1. Normalize the gene expression data to standard gene symbols. normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print("Normalized gene expression data saved to:", out_gene_data_file) # Check if clinical data exists. If not, we cannot link or proceed with trait-based analysis. if not os.path.exists(out_clinical_data_file): # We must perform final validation so that the cohort is recorded as unusable (missing trait data). dummy_df = pd.DataFrame() trait_biased = True # Mark as biased or unusable because we lack any trait information is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=trait_biased, df=dummy_df, note="No trait data found. This dataset is not usable for final analysis." ) print("Clinical data file not found. Skipping linking and final data export.") else: # 2. Read the clinical data without using index_col; assign the correct row index manually. selected_clinical_df = pd.read_csv(out_clinical_data_file, header=0) # We have exactly three rows: trait, Age, Gender selected_clinical_df.index = [trait, "Age", "Gender"] # Link the clinical data with genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values systematically. df = handle_missing_values(linked_data, trait) # 4. Determine whether the trait or demographic features are biased; remove biased demographic features. trait_biased, df = judge_and_remove_biased_features(df, trait) # 5. Perform final validation with full dataset information. is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=df, note="Final step with linking, missing-value handling, bias checks." ) # 6. If the data is usable, save the final linked data. if is_usable: df.to_csv(out_data_file) print(f"Final linked data saved to: {out_data_file}") else: print("Dataset is not usable or is severely biased. No final data saved.")