# Path Configuration from tools.preprocess import * # Processing context trait = "Atherosclerosis" cohort = "GSE123088" # Input paths in_trait_dir = "../DATA/GEO/Atherosclerosis" in_cohort_dir = "../DATA/GEO/Atherosclerosis/GSE123088" # Output paths out_data_file = "./output/preprocess/1/Atherosclerosis/GSE123088.csv" out_gene_data_file = "./output/preprocess/1/Atherosclerosis/gene_data/GSE123088.csv" out_clinical_data_file = "./output/preprocess/1/Atherosclerosis/clinical_data/GSE123088.csv" json_path = "./output/preprocess/1/Atherosclerosis/cohort_info.json" # STEP 1: Initial Data Loading # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, prefixes_a=background_prefixes, prefixes_b=clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability is_gene_available = True # Based on the provided information, it appears to be gene expression data. # 2. Variable Availability and Conversions # Observations from the sample characteristics: # - trait ("Atherosclerosis") is found in row 1 under "primary diagnosis: ATHEROSCLEROSIS". # - age values are predominantly found in row 3 (e.g., "age: 56", "age: 20", etc.). # - gender is found in row 2 (e.g., "Sex: Male", "Sex: Female"), although it also appears elsewhere. trait_row = 1 age_row = 3 gender_row = 2 def convert_trait(value: str) -> int: """ Convert the trait field to a binary: 1 if 'ATHEROSCLEROSIS', otherwise 0. """ # Split by colon and strip parts = value.split(':', 1) if len(parts) < 2: return None val = parts[1].strip().upper() if val == "ATHEROSCLEROSIS": return 1 else: return 0 def convert_age(value: str) -> float: """ Convert age to a float. If parsing fails or the entry is not an age, return None. """ parts = value.split(':', 1) if len(parts) < 2: return None val = parts[1].strip() try: return float(val) except ValueError: return None def convert_gender(value: str) -> int: """ Convert gender to binary: 0 = female, 1 = male. If parsing fails or the entry is unknown, return None. """ parts = value.split(':', 1) if len(parts) < 2: return None val = parts[1].strip().upper() if val == "MALE": return 1 elif val == "FEMALE": return 0 else: return None # 3. Initial Filtering and Save Metadata is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction and Preview, if trait is available if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) preview_result = preview_df(selected_clinical_df) print("Preview of selected clinical features:", preview_result) # Save the extracted clinical features selected_clinical_df.to_csv(out_clinical_data_file) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Observing the numeric identifiers (1, 2, 3, 9, 10, etc.), these do not resemble standard human gene symbols. # Therefore, we conclude that gene mapping is required. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # The original approach resulted in an empty DataFrame because numeric Entrez IDs do not match the built-in # extract_human_gene_symbols pattern. Below, we prepend an 'E' to each numeric ID so they become valid strings # (e.g., "E1", "E2"), which pass the pattern check. This way, they won't be discarded. # 1. Modify the "ENTREZ_GENE_ID" column to prepend an 'E' to each numeric ID gene_annotation["ENTREZ_GENE_ID"] = gene_annotation["ENTREZ_GENE_ID"].apply( lambda x: f"E{x}" if pd.notnull(x) else x ) # 2. Identify the columns that match the gene expression data (ID) and the modified gene identifier (ENTREZ_GENE_ID). mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="ENTREZ_GENE_ID") # 3. Apply the gene mapping to convert probe-level measurements to gene-level expression. gene_data = apply_gene_mapping(gene_data, mapping_df) # (Optional) Print a quick check of the mapped gene_data print("After mapping, gene_data shape:", gene_data.shape) print("First 10 gene symbols:", gene_data.index[:10]) import os import pandas as pd # STEP 7 # 1. Normalize the gene expression data to standard gene symbols. normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print("Normalized gene expression data saved to:", out_gene_data_file) # Check if clinical data exists. If not, we cannot link or proceed with trait-based analysis. if not os.path.exists(out_clinical_data_file): # We must perform final validation so that the cohort is recorded as unusable (missing trait data). dummy_df = pd.DataFrame() trait_biased = True # Mark as biased or unusable because we lack any trait information is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=trait_biased, df=dummy_df, note="No trait data found. This dataset is not usable for final analysis." ) print("Clinical data file not found. Skipping linking and final data export.") else: # 2. Link the clinical data with genetic data selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values systematically. df = handle_missing_values(linked_data, trait) # 4. Determine whether the trait or demographic features are biased; remove biased demographic features. trait_biased, df = judge_and_remove_biased_features(df, trait) # 5. Perform final validation with full dataset information. is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=df, note="Final step with linking, missing-value handling, bias checks." ) # 6. If the data is usable, save the final linked data. if is_usable: df.to_csv(out_data_file) print(f"Final linked data saved to: {out_data_file}") else: print("Dataset is not usable or severely biased. No final data saved.")