# Path Configuration from tools.preprocess import * # Processing context trait = "Atherosclerosis" cohort = "GSE125771" # Input paths in_trait_dir = "../DATA/GEO/Atherosclerosis" in_cohort_dir = "../DATA/GEO/Atherosclerosis/GSE125771" # Output paths out_data_file = "./output/preprocess/1/Atherosclerosis/GSE125771.csv" out_gene_data_file = "./output/preprocess/1/Atherosclerosis/gene_data/GSE125771.csv" out_clinical_data_file = "./output/preprocess/1/Atherosclerosis/clinical_data/GSE125771.csv" json_path = "./output/preprocess/1/Atherosclerosis/cohort_info.json" # STEP 1: Initial Data Loading # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, prefixes_a=background_prefixes, prefixes_b=clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) import pandas as pd from typing import Optional, Callable # 1. Determine gene expression availability is_gene_available = True # Based on the background info ("RNA expression data") # 2. Determine variable availability and define converter functions # Inspecting the dictionary: # 0 -> ['tissue: carotid-atherosclerotic-plaque'] (only one unique value, not useful for association) # 1 -> ['ID: ...'] (sample IDs, not needed) # 2 -> ['Sex: Male', 'Sex: Female'] (gender info) # 3 -> ['age: 73', 'age: 60', ...] (age info) trait_row = None # Only a single unique value in row 0, so treat trait as not available age_row = 3 # Multiple unique values gender_row = 2 # Contains both "Male" and "Female" # Data type conversion functions def convert_trait(value: str) -> Optional[int]: """No trait data in this dataset (None). Function provided for completeness.""" return None def convert_age(value: str) -> Optional[float]: """Extract numeric age from the string after 'age: '. Unknown/invalid -> None.""" try: val_str = value.split(':', 1)[1].strip() return float(val_str) except: return None def convert_gender(value: str) -> Optional[int]: """ Convert gender to binary. - "Female" -> 0 - "Male" -> 1 Unknown -> None """ try: val_str = value.split(':', 1)[1].strip().lower() if val_str == 'male': return 1 elif val_str == 'female': return 0 else: return None except: return None # 3. Conduct initial filtering on usability # Trait data is unavailable since trait_row is None is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # Only proceed if trait_row is not None. Here, it is None, so we skip. # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on the listed identifiers (e.g., "TC01000001.hg.1"), these are not recognized human gene symbols. # They appear to be proprietary or custom probe identifiers that likely require mapping to standard gene symbols. print("These gene identifiers are not standard human gene symbols.\nrequires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Identify the matching column for the probe identifiers ("ID") and the column containing gene symbol information ("gene_assignment"). # 2. Obtain the mapping dataframe. mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="gene_assignment") # 3. Apply mapping to convert the probe-level expression to gene-level expression. gene_data = apply_gene_mapping(gene_data, mapping_df) import os import pandas as pd # STEP 7 # 1. Normalize the gene expression data to standard gene symbols. normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print("Normalized gene expression data saved to:", out_gene_data_file) # Check if clinical data exists. If not, we cannot link or proceed with trait-based analysis. if not os.path.exists(out_clinical_data_file): # We must perform final validation so that the cohort is recorded as unusable (missing trait data). dummy_df = pd.DataFrame() trait_biased = True # Mark as biased or unusable because we lack any trait information is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=trait_biased, df=dummy_df, note="No trait data found. This dataset is not usable for final analysis." ) print("Clinical data file not found. Skipping linking and final data export.") else: # 2. Link the clinical data with genetic data selected_clinical_df = pd.read_csv(out_clinical_data_file, header=0) # By design, each row in this CSV might represent a clinical feature (e.g., trait, age, gender). # Since trait_row was None, we typically wouldn't have a valid trait row, but let's proceed safely: linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values systematically. df = handle_missing_values(linked_data, trait) # 4. Determine whether the trait or demographic features are biased; remove biased demographic features. trait_biased, df = judge_and_remove_biased_features(df, trait) # 5. Perform final validation with full dataset information. is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, # We do have a clinical file now is_biased=trait_biased, df=df, note="Final step with linking, missing-value handling, bias checks." ) # 6. If the data is usable, save the final linked data. if is_usable: df.to_csv(out_data_file) print(f"Final linked data saved to: {out_data_file}") else: print("Dataset is not usable or severely biased. No final data saved.")