# Path Configuration from tools.preprocess import * # Processing context trait = "Atherosclerosis" cohort = "GSE133601" # Input paths in_trait_dir = "../DATA/GEO/Atherosclerosis" in_cohort_dir = "../DATA/GEO/Atherosclerosis/GSE133601" # Output paths out_data_file = "./output/preprocess/1/Atherosclerosis/GSE133601.csv" out_gene_data_file = "./output/preprocess/1/Atherosclerosis/gene_data/GSE133601.csv" out_clinical_data_file = "./output/preprocess/1/Atherosclerosis/clinical_data/GSE133601.csv" json_path = "./output/preprocess/1/Atherosclerosis/cohort_info.json" # STEP 1: Initial Data Loading # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, prefixes_a=background_prefixes, prefixes_b=clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # 1) Gene Expression Data Availability is_gene_available = True # The background describes a transcriptional survey, so gene expression data is likely available. # 2) Variable Availability and Data Type Conversion # From the sample characteristics dictionary, no entries correspond to Atherosclerosis, age, or gender data. trait_row = None age_row = None gender_row = None def convert_trait(value: str) -> Optional[int]: # No specific data for the trait is present, so return None. return None def convert_age(value: str) -> Optional[float]: # No age data found, so return None. return None def convert_gender(value: str) -> Optional[int]: # No gender data found, so return None. return None # 3) Save Metadata (Initial Filtering) # If trait_row is None, then trait data is considered unavailable is_trait_available = (trait_row is not None) validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4) Clinical Feature Extraction # Since trait_row is None, we skip clinical feature extraction # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # The gene identifiers listed (e.g., '10000_at', '10001_at') are Affymetrix probe IDs, not standard human gene symbols. # Hence, they require mapping to official gene symbols. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1 & 2. Identify the columns in `gene_annotation` that match the probe IDs and the gene symbols. # Based on the preview, 'ID' stores the probe identifiers (e.g., '10000_at'), # while 'Description' appears to store gene descriptions/symbols. prob_col = 'ID' gene_col = 'Description' # Get the gene mapping dataframe from the annotation mapping_df = get_gene_mapping(gene_annotation, prob_col=prob_col, gene_col=gene_col) # 3. Convert probe-level measurements into gene-level measurements gene_data = apply_gene_mapping(gene_data, mapping_df) import os import pandas as pd # STEP 7 # 1. Normalize the gene expression data to standard gene symbols. normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print("Normalized gene expression data saved to:", out_gene_data_file) # Check if clinical data exists. If not, we cannot link or proceed with trait-based analysis. if not os.path.exists(out_clinical_data_file): # We must perform final validation so that the cohort is recorded as unusable (missing trait data). dummy_df = pd.DataFrame() trait_biased = True # Mark as biased or unusable because we lack any trait information is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=trait_biased, df=dummy_df, note="No trait data found. This dataset is not usable for final analysis." ) print("Clinical data file not found. Skipping linking and final data export.") else: # 2. Link the clinical data with genetic data selected_clinical_df = pd.read_csv(out_clinical_data_file, header=0) # By design, each row in this CSV might represent a clinical feature (e.g., trait, age, gender). # Since trait_row was None, we typically wouldn't have a valid trait row, but let's proceed safely: linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values systematically. df = handle_missing_values(linked_data, trait) # 4. Determine whether the trait or demographic features are biased; remove biased demographic features. trait_biased, df = judge_and_remove_biased_features(df, trait) # 5. Perform final validation with full dataset information. is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, # We do have a clinical file now is_biased=trait_biased, df=df, note="Final step with linking, missing-value handling, bias checks." ) # 6. If the data is usable, save the final linked data. if is_usable: df.to_csv(out_data_file) print(f"Final linked data saved to: {out_data_file}") else: print("Dataset is not usable or severely biased. No final data saved.")