# Path Configuration from tools.preprocess import * # Processing context trait = "Atherosclerosis" cohort = "GSE57691" # Input paths in_trait_dir = "../DATA/GEO/Atherosclerosis" in_cohort_dir = "../DATA/GEO/Atherosclerosis/GSE57691" # Output paths out_data_file = "./output/preprocess/1/Atherosclerosis/GSE57691.csv" out_gene_data_file = "./output/preprocess/1/Atherosclerosis/gene_data/GSE57691.csv" out_clinical_data_file = "./output/preprocess/1/Atherosclerosis/clinical_data/GSE57691.csv" json_path = "./output/preprocess/1/Atherosclerosis/cohort_info.json" # STEP 1: Initial Data Loading # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, prefixes_a=background_prefixes, prefixes_b=clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # Step 1: Determine gene availability is_gene_available = True # From the background info, it clearly states "Genome-wide expression analysis" # Step 2: Identify data availability and define row indices for trait, age, and gender # Based on inspection of the sample characteristics dictionary: trait_row = 0 # Matches the "disease state" field age_row = None # Age info not provided gender_row = None # Gender info not provided # Step 2 (continued): Define data type conversions def convert_trait(value: str): # Extract the substring after colon parts = value.split(':') if len(parts) < 2: return None val = parts[-1].strip().lower() # Map "control" to 0; all other known disease states to 1 if 'control' in val: return 0 elif 'aaa' in val or 'aod' in val: return 1 return None # No age or gender data available, so define stubs that always return None def convert_age(value: str): return None def convert_gender(value: str): return None # Step 3: Conduct initial filtering and save metadata # Trait data is considered available if trait_row is not None is_trait_available = (trait_row is not None) # We are in the middle of preprocessing, so is_final=False # This function will record partial metadata if the dataset fails # or return to continue if it passes (with is_gene_available & is_trait_available). is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # Step 4: Extract clinical features if trait data is available if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview and save the extracted clinical features preview_data = preview_df(selected_clinical_df) print("Clinical features preview:", preview_data) selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Identify which columns in the gene annotation correspond to probe identifiers and gene symbols # From the preview, "ID" contains "ILMN_..." probe identifiers, and "Symbol" holds gene symbols. # 2. Create a gene mapping dataframe from the annotation dataframe mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Symbol") # 3. Convert probe-level measurements to gene-level expression gene_data = apply_gene_mapping(gene_data, mapping_df) # (Optionally preview the result if desired) print("Mapped gene expression data shape:", gene_data.shape) print("First 5 genes in the mapped data:", gene_data.index[:5].tolist()) # STEP 7 import pandas as pd # 1. Normalize the gene expression data to standard gene symbols. normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print("Normalized gene expression data saved to:", out_gene_data_file) # 2. Read back the clinical data, reassign its single row index to the trait name, and link with genetic data. selected_clinical_df = pd.read_csv(out_clinical_data_file, header=0) selected_clinical_df.index = [trait] # Ensure the clinical row is labeled by the trait linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values systematically. df = handle_missing_values(linked_data, trait) # 4. Determine whether the trait or demographic features are biased; remove biased demographic features. trait_biased, df = judge_and_remove_biased_features(df, trait) # 5. Perform final validation with full dataset information. is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=df, note="Final step with linking, missing-value handling, bias checks." ) # 6. If the data is usable, save the final linked data. if is_usable: df.to_csv(out_data_file) print(f"Final linked data saved to: {out_data_file}") else: print("Dataset is not usable or severely biased. No final data saved.")