# Path Configuration from tools.preprocess import * # Processing context trait = "Atherosclerosis" cohort = "GSE83500" # Input paths in_trait_dir = "../DATA/GEO/Atherosclerosis" in_cohort_dir = "../DATA/GEO/Atherosclerosis/GSE83500" # Output paths out_data_file = "./output/preprocess/1/Atherosclerosis/GSE83500.csv" out_gene_data_file = "./output/preprocess/1/Atherosclerosis/gene_data/GSE83500.csv" out_clinical_data_file = "./output/preprocess/1/Atherosclerosis/clinical_data/GSE83500.csv" json_path = "./output/preprocess/1/Atherosclerosis/cohort_info.json" # STEP 1: Initial Data Loading # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, prefixes_a=background_prefixes, prefixes_b=clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability is_gene_available = True # Based on the microarray-based gene expression mention # 2.1 Variable Availability # The entire cohort has atherosclerosis, so it does not vary => trait_row = None trait_row = None age_row = 1 # "age: ..." gender_row = 2 # "Sex: ..." # 2.2 Data Type Conversions def convert_trait(value: str): # No trait variation in this dataset => return None return None def convert_age(value: str): # Example: "age: 69" parts = value.split(":") if len(parts) < 2: return None age_str = parts[1].strip() try: return float(age_str) except ValueError: return None def convert_gender(value: str): # Example: "Sex: Male" or "Sex: Female" parts = value.split(":") if len(parts) < 2: return None gender_str = parts[1].strip().lower() if gender_str == 'male': return 1 elif gender_str == 'female': return 0 return None # 3. Save Metadata (initial filtering) is_trait_available = (trait_row is not None) validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # Skip because trait_row is None (trait not available) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # The provided gene identifiers (e.g., '11715100_at') are Affymetrix probe IDs, not human gene symbols. # Therefore, they require mapping to gene symbols. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Identify the columns for probe IDs and gene symbols in the annotation dataframe. # From the preview, the "ID" column matches the probe identifiers in gene_data, # and "Gene Symbol" column contains the actual gene symbols. # 2. Get the gene mapping dataframe using these columns mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Gene Symbol") # 3. Convert probe-level data into gene-level data using the mapping gene_data = apply_gene_mapping(gene_data, mapping_df) # For verification, print out the shape and first few gene symbols print("Gene data shape after mapping:", gene_data.shape) print("First 20 gene symbols in the mapped data:", list(gene_data.index[:20])) # STEP 7 # Since trait data is unavailable (trait_row = None), we do NOT have any clinical data to link. # We'll only normalize the gene data, then finalize validation indicating no trait data. # 1. Normalize the gene expression data to standard gene symbols. normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print("Normalized gene expression data saved to:", out_gene_data_file) # 2. Skip linking and missing value handling because we have no clinical data for trait-based analysis. # 3. For final validation, we must provide a DataFrame and an is_biased flag. Since there's no trait, # we set is_trait_available=False, and use an empty DataFrame with is_biased=False. empty_df = pd.DataFrame() is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=False, # Arbitrarily False; trait is missing anyway. df=empty_df, note="No trait data available; dataset cannot be used for trait-based analysis." ) if is_usable: print("Unexpectedly marked usable despite missing trait data.") else: print("Dataset is not usable due to missing trait data. No final data saved.")