# Path Configuration from tools.preprocess import * # Processing context trait = "Atherosclerosis" cohort = "GSE87005" # Input paths in_trait_dir = "../DATA/GEO/Atherosclerosis" in_cohort_dir = "../DATA/GEO/Atherosclerosis/GSE87005" # Output paths out_data_file = "./output/preprocess/1/Atherosclerosis/GSE87005.csv" out_gene_data_file = "./output/preprocess/1/Atherosclerosis/gene_data/GSE87005.csv" out_clinical_data_file = "./output/preprocess/1/Atherosclerosis/clinical_data/GSE87005.csv" json_path = "./output/preprocess/1/Atherosclerosis/cohort_info.json" # STEP 1: Initial Data Loading # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, prefixes_a=background_prefixes, prefixes_b=clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability is_gene_available = True # Based on the transcriptomic profiling info # 2. Variable Availability trait_row = None # No column found that corresponds to "Atherosclerosis" age_row = None # No column found for age gender_row = None # No column found for gender # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> Optional[float]: parts = value.split(':', 1) val = parts[-1].strip() if len(parts) > 1 else value.strip() return None # No valid trait data; returning None for all inputs def convert_age(value: str) -> Optional[float]: parts = value.split(':', 1) val = parts[-1].strip() if len(parts) > 1 else value.strip() return None # No valid age data; returning None for all inputs def convert_gender(value: str) -> Optional[int]: parts = value.split(':', 1) val = parts[-1].strip().lower() if len(parts) > 1 else value.strip().lower() return None # No valid gender data; returning None for all inputs # 3. Save Metadata (initial filtering) is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # Skip this step because trait_row is None (trait data not available) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # The gene identifiers appear to be microarray probe IDs rather than standard human gene symbols. print("These appear to be microarray probe IDs that require mapping to gene symbols.") print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP 6: Gene Identifier Mapping # 1) From the annotation preview, we see the same kind of IDs are stored in column "ID", # and the gene symbols are in column "GENE_SYMBOL". # 2) Get the mapping dataframe. mapping_df = get_gene_mapping( annotation=gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL' ) # 3) Convert probe-level measurements to gene-level data. gene_data = apply_gene_mapping(gene_data, mapping_df) # STEP 7 import pandas as pd import os # 1. Normalize the gene expression data to standard gene symbols. normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print("Normalized gene expression data saved to:", out_gene_data_file) # Check if the clinical file actually exists if not os.path.exists(out_clinical_data_file): # Trait data was not available, so no clinical file was ever written print("Clinical data file not found; trait data not available.") # Perform final validation indicating the trait is missing, and provide is_biased=False # plus an empty DataFrame to fulfill the function signature for final validation. is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=False, # Must be a boolean, even though trait isn't available df=pd.DataFrame(), # Provide an empty DataFrame to finalize note="No trait data available to finish pipeline." ) if not is_usable: print("No final data saved.") else: print("Data unexpectedly marked usable despite no trait data.") else: # 2. Read the clinical data file and link with genetic data selected_clinical_df = pd.read_csv(out_clinical_data_file, header=0) # If there's only one row, label its index with the trait name if len(selected_clinical_df) == 1: selected_clinical_df.index = [trait] linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values df = handle_missing_values(linked_data, trait) # 4. Determine whether the trait or demographic features are biased; remove biased demographic features. trait_biased, df = judge_and_remove_biased_features(df, trait) # 5. Perform final validation with full dataset is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=df, note="Final step with linking, missing-value handling, bias checks." ) # 6. If data is usable, save the final linked data. if is_usable: df.to_csv(out_data_file) print(f"Final linked data saved to: {out_data_file}") else: print("Dataset is not usable or severely biased. No final data saved.")