# Path Configuration from tools.preprocess import * # Processing context trait = "Bipolar_disorder" cohort = "GSE120340" # Input paths in_trait_dir = "../DATA/GEO/Bipolar_disorder" in_cohort_dir = "../DATA/GEO/Bipolar_disorder/GSE120340" # Output paths out_data_file = "./output/preprocess/1/Bipolar_disorder/GSE120340.csv" out_gene_data_file = "./output/preprocess/1/Bipolar_disorder/gene_data/GSE120340.csv" out_clinical_data_file = "./output/preprocess/1/Bipolar_disorder/clinical_data/GSE120340.csv" json_path = "./output/preprocess/1/Bipolar_disorder/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Decide if gene expression data is available # From the background info, this is an Affymetrix gene expression dataset. is_gene_available = True # 2. Identify data availability and create row references # Row 0 has multiple disease states (control, SCZ, BD(-), BD(+)), use it as the trait data. trait_row = 0 age_row = None gender_row = None # 2.2 Define data conversion functions def convert_trait(x: str): """ Convert disease state to a binary indicator for Bipolar_disorder: 1 if BD(-) or BD(+), 0 for controls/SCZ, None otherwise. """ # Parse the part after the colon parts = x.split(":") val = parts[-1].strip().lower() if len(parts) > 1 else x.strip().lower() if "bd" in val: return 1 elif "control" in val or "scz" in val: return 0 else: return None def convert_age(x: str): return None # No age data available def convert_gender(x: str): return None # No gender data available # 3. Save metadata (initial filtering) is_trait_available = (trait_row is not None) _ = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical feature extraction # Only proceed if trait_row is not None (i.e., trait data is available). if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) print(preview_df(selected_clinical_df, n=5)) selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Observing the gene identifiers, they appear to be Affymetrix microarray probe IDs (e.g., '10000_at', '10009_at'), # not standard gene symbols. Therefore, gene mapping is required. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1 & 2. Identify the columns in 'gene_annotation' that correspond to the probe IDs and gene symbols. # From our observation, 'ID' matches the probe IDs in the gene data, # and 'Description' contains the gene symbol or gene name information. mapping_df = get_gene_mapping( annotation=gene_annotation, prob_col='ID', # Column storing probe IDs gene_col='Description' # Column storing gene symbol (or gene name) information ) # 3. Apply the mapping to convert probe-level measurements to gene-level expression data. gene_data = apply_gene_mapping( expression_df=gene_data, mapping_df=mapping_df ) # (The resulting 'gene_data' now contains the aggregated gene expression values, indexed by gene symbol.) # STEP7 # 1. Normalize the obtained gene data using the NCBI Gene synonym database normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link the clinical and genetic data # Replace df_clinical with the actual clinical dataframe from previous steps, i.e., selected_clinical_df linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values systematically using the actual column name (stored in variable trait) linked_data_processed = handle_missing_values(linked_data, trait_col=trait) # 4. Check for biased trait and remove any biased demographic features trait_biased, linked_data_final = judge_and_remove_biased_features(linked_data_processed, trait) # 5. Final quality validation and metadata saving is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data_final, note="Dataset processed with GEO pipeline. Checked for missing values and bias." ) # 6. If dataset is usable, save the final linked data if is_usable: linked_data_final.to_csv(out_data_file)