# Path Configuration from tools.preprocess import * # Processing context trait = "Bipolar_disorder" cohort = "GSE120342" # Input paths in_trait_dir = "../DATA/GEO/Bipolar_disorder" in_cohort_dir = "../DATA/GEO/Bipolar_disorder/GSE120342" # Output paths out_data_file = "./output/preprocess/1/Bipolar_disorder/GSE120342.csv" out_gene_data_file = "./output/preprocess/1/Bipolar_disorder/gene_data/GSE120342.csv" out_clinical_data_file = "./output/preprocess/1/Bipolar_disorder/clinical_data/GSE120342.csv" json_path = "./output/preprocess/1/Bipolar_disorder/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1) Determine if this dataset likely contains suitable gene expression data is_gene_available = True # Based on "Aberrant transcriptomes..." mention # 2) Identify data availability and create conversion functions # From the sample characteristics: # { # 0: ['disease state: control', 'disease state: SCZ', 'disease state: BD(-)', 'disease state: BD(+)'], # 1: ['laterality: left', 'laterality: right'] # } # There is only information about disease state and laterality. No explicit age or gender metadata. # For trait: we can use row 0, as it contains BD-, BD+, SCZ, control. # For age and gender information: None (not available). trait_row = 0 age_row = None gender_row = None def convert_trait(value: str): parts = value.split(":", 1) val = parts[1].strip() if len(parts) > 1 else value.strip() # Convert BD to 1, others (SCZ, control) to 0 if val in ["control", "SCZ"]: return 0 elif val in ["BD(-)", "BD(+)"]: return 1 else: return None # Since age and gender rows are not available, we set their convert functions to None convert_age = None convert_gender = None # 3) Conduct initial filtering and save metadata is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4) Clinical feature extraction if trait data is available if trait_row is not None: df_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) print(preview_df(df_clinical, n=5, max_items=200)) df_clinical.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # The listed identifiers (e.g., "cg00000292") appear to be CpG probe IDs rather than standard human gene symbols. # Therefore, mapping is needed to associate each probe with corresponding gene information. requires_gene_mapping = True # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Decide on the columns to use as probe ID and gene symbol probe_col = "ID" # Matches the gene expression dataframe index (e.g., 'cg00000292') symbol_col = "Symbol" # Contains the gene symbols from the annotation # 2. Get a gene mapping dataframe gene_mapping_df = get_gene_mapping(gene_annotation, probe_col, symbol_col) # 3. Convert probe-level measurements to gene expression data gene_data = apply_gene_mapping(gene_data, gene_mapping_df) # STEP7 # 1. Normalize the obtained gene data using the NCBI Gene synonym database normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link the clinical and genetic data linked_data = geo_link_clinical_genetic_data(df_clinical, normalized_gene_data) # 3. Handle missing values systematically using the actual column name (stored in variable trait) linked_data_processed = handle_missing_values(linked_data, trait_col=trait) # 4. Check for biased trait and remove any biased demographic features trait_biased, linked_data_final = judge_and_remove_biased_features(linked_data_processed, trait) # 5. Final quality validation and metadata saving is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data_final, note="Dataset processed with GEO pipeline. Checked for missing values and bias." ) # 6. If dataset is usable, save the final linked data if is_usable: linked_data_final.to_csv(out_data_file)