# Path Configuration from tools.preprocess import * # Processing context trait = "Bipolar_disorder" cohort = "GSE45484" # Input paths in_trait_dir = "../DATA/GEO/Bipolar_disorder" in_cohort_dir = "../DATA/GEO/Bipolar_disorder/GSE45484" # Output paths out_data_file = "./output/preprocess/1/Bipolar_disorder/GSE45484.csv" out_gene_data_file = "./output/preprocess/1/Bipolar_disorder/gene_data/GSE45484.csv" out_clinical_data_file = "./output/preprocess/1/Bipolar_disorder/clinical_data/GSE45484.csv" json_path = "./output/preprocess/1/Bipolar_disorder/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability is_gene_available = True # Based on "Analysis of gene-expression changes..." we have gene expression data. # 2. Variable Availability and Data Type Conversion # From the sample characteristics, it appears all subjects have bipolar disorder (the trait), # so there's no variation for "Bipolar_disorder". Hence trait_row = None. trait_row = None # For age, key=4 has many distinct values, so age is available. age_row = 4 # For gender, key=3 has two distinct values: "sex: M" and "sex: F", so gender is available. gender_row = 3 # Define conversion functions. They parse the string after the colon (':'), then convert. def convert_trait(value: str): # No variation in trait. This won't be used because trait_row=None, but we still define it. return None def convert_age(value: str): # Example: "age: 46" # Split on colon and strip spaces parts = value.split(':') if len(parts) < 2: return None try: return float(parts[1].strip()) except ValueError: return None def convert_gender(value: str): # Example: "sex: M" or "sex: F" # Split on colon and strip spaces parts = value.split(':') if len(parts) < 2: return None gender_str = parts[1].strip().upper() if gender_str == 'M': return 1 elif gender_str == 'F': return 0 return None # 3. Save Metadata. Trait data is not available since trait_row=None. is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # We only proceed if trait_row is not None. Here, trait_row=None, so skip this step. # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on the gene identifiers (e.g., ILMN_1651199), these are Illumina probe identifiers. # Therefore, we require gene symbol mapping. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Identify columns for probe IDs ("ID") and gene symbols ("Symbol") from the annotation data. # 2. Get the gene mapping dataframe. gene_mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol') # 3. Convert probe-level measurements to gene-level measurements. gene_data = apply_gene_mapping(gene_data, gene_mapping_df) # STEP7 import pandas as pd # 1. Normalize gene symbols in the obtained gene data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # Since in Step 2 we determined that 'trait_row' is None, the trait is not actually available (all samples had the same trait). # Therefore, there's no valid 'selected_clinical_df' to link. We must skip the processing steps that rely on trait information. if trait_row is None: # Final validation with trait unavailable. We still need to pass df and is_biased for is_final=True. # Here, we consider the dataset "biased" for trait analysis, as it has no variation in the trait. is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, df=pd.DataFrame(), # Provide an empty DataFrame note="No trait variation found; skipping clinical linking." ) else: # If trait were available, we would have proceeded with linking, missing value handling, bias checks, etc. pass # If the dataset were usable, we would save the final linked data. # With no trait available, 'is_usable' should be False, so nothing further is done.