# Path Configuration from tools.preprocess import * # Processing context trait = "Bipolar_disorder" cohort = "GSE46416" # Input paths in_trait_dir = "../DATA/GEO/Bipolar_disorder" in_cohort_dir = "../DATA/GEO/Bipolar_disorder/GSE46416" # Output paths out_data_file = "./output/preprocess/1/Bipolar_disorder/GSE46416.csv" out_gene_data_file = "./output/preprocess/1/Bipolar_disorder/gene_data/GSE46416.csv" out_clinical_data_file = "./output/preprocess/1/Bipolar_disorder/clinical_data/GSE46416.csv" json_path = "./output/preprocess/1/Bipolar_disorder/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1) Gene Expression Data Availability is_gene_available = True # Based on the background info, this dataset likely contains gene expression data. # 2) Variable Availability trait_row = 1 # Row where disease status (bipolar disorder vs. control) is stored. age_row = None # No age information found. gender_row = None # No gender information found. # 2.2) Data Type Conversion Functions def convert_trait(raw_value: str): """ Convert the raw trait value to a binary indicator (case=1, control=0). Extract the substring after the colon and compare. """ parts = raw_value.split(":", 1) if len(parts) < 2: return None val = parts[1].strip().lower() if "bipolar disorder" in val: return 1 elif "control" in val: return 0 return None def convert_age(raw_value: str): """ Since age data is not available (age_row=None), this function is defined but won't be used. """ return None def convert_gender(raw_value: str): """ Since gender data is not available (gender_row=None), this function is defined but won't be used. """ return None # 3) Save Metadata (Initial filtering) using validate_and_save_cohort_info is_trait_available = (trait_row is not None) validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4) Clinical Feature Extraction (only if trait_row is not None) if is_trait_available: selected_clinical_df = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) preview = preview_df(selected_clinical_df) print("Preview of extracted clinical data:", preview) selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) print("These gene identifiers appear to be numeric probe IDs, not standard human gene symbols.") print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Based on the annotation preview, it appears that the 'ID' column in gene_annotation matches # the gene expression data's row identifiers, while 'gene_symbol' holds the symbols (though # many are NaN in the preview subset). # 2. Get the gene mapping dataframe by extracting the two columns: 'ID' and 'gene_symbol'. mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_symbol') # 3. Convert probe-level measurements to gene-level expression using the mapping. # Apply the many-to-many mapping scheme. gene_data = apply_gene_mapping(gene_data, mapping_df) print("Mapping completed. The gene_data now contains gene-level expression values.") print("Preview of gene_data:", preview_df(gene_data)) # STEP7 # 1. Normalize the obtained gene data using the NCBI Gene synonym database normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link the clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values systematically using the actual column name (stored in variable trait) linked_data_processed = handle_missing_values(linked_data, trait_col=trait) # 4. Check for biased trait and remove any biased demographic features trait_biased, linked_data_final = judge_and_remove_biased_features(linked_data_processed, trait) # 5. Final quality validation and metadata saving is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data_final, note="Dataset processed with GEO pipeline. Checked for missing values and bias." ) # 6. If dataset is usable, save the final linked data if is_usable: linked_data_final.to_csv(out_data_file)