# Path Configuration from tools.preprocess import * # Processing context trait = "Bipolar_disorder" cohort = "GSE53987" # Input paths in_trait_dir = "../DATA/GEO/Bipolar_disorder" in_cohort_dir = "../DATA/GEO/Bipolar_disorder/GSE53987" # Output paths out_data_file = "./output/preprocess/1/Bipolar_disorder/GSE53987.csv" out_gene_data_file = "./output/preprocess/1/Bipolar_disorder/gene_data/GSE53987.csv" out_clinical_data_file = "./output/preprocess/1/Bipolar_disorder/clinical_data/GSE53987.csv" json_path = "./output/preprocess/1/Bipolar_disorder/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # Step 1: Decide if gene expression data is available is_gene_available = True # Affymetrix microarray expression data is mentioned # Step 2: Identify data availability and define row keys for trait, age, and gender trait_row = 7 # "disease state: bipolar disorder" is found under key 7 age_row = 0 # "age: X" is found under key 0 gender_row = 1 # "gender: M/F" is found under key 1 # 2.2 Define data type conversion functions def convert_trait(value: str): # Extract the substring after the colon val = value.split(':')[-1].strip().lower() # Convert "bipolar disorder" to 1, everything else (control, MDD, schizophrenia) to 0 if val == "bipolar disorder": return 1 elif val in ["control", "major depressive disorder", "schizophrenia"]: return 0 return None def convert_age(value: str): # Extract the substring after the colon and convert to float val = value.split(':')[-1].strip() try: return float(val) except: return None def convert_gender(value: str): # Extract the substring after the colon, convert M->1, F->0 val = value.split(':')[-1].strip().lower() if val == "m": return 1 elif val == "f": return 0 return None # Step 3: Conduct initial filtering and save metadata is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # Step 4: If trait data is available, extract clinical features if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) preview = preview_df(selected_clinical_df) print("Preview of selected clinical features:", preview) selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on the observed gene identifiers (e.g., 1007_s_at, 1053_at, 1255_g_at), these are likely Affymetrix probe set IDs # and not standard human gene symbols. # Therefore, they require mapping to gene symbols. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. We observe that "ID" in the gene_annotation dataframe matches the probe identifiers (e.g., "1007_s_at"), # and "Gene Symbol" contains the gene symbols. prob_col = "ID" gene_col = "Gene Symbol" # 2. Get a gene mapping dataframe mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col) # 3. Convert probe-level data to gene-level data gene_data = apply_gene_mapping(gene_data, mapping_df) # Check the result print("Gene data shape after mapping:", gene_data.shape) print("First 20 gene symbols in the mapped data:\n", gene_data.index[:20]) # STEP7 # 1. Normalize the obtained gene data using the NCBI Gene synonym database normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link the clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values systematically using the actual column name (stored in variable trait) linked_data_processed = handle_missing_values(linked_data, trait_col=trait) # 4. Check for biased trait and remove any biased demographic features trait_biased, linked_data_final = judge_and_remove_biased_features(linked_data_processed, trait) # 5. Final quality validation and metadata saving is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data_final, note="Dataset processed with GEO pipeline. Checked for missing values and bias." ) # 6. If dataset is usable, save the final linked data if is_usable: linked_data_final.to_csv(out_data_file)