# Path Configuration from tools.preprocess import * # Processing context trait = "Bipolar_disorder" cohort = "GSE62191" # Input paths in_trait_dir = "../DATA/GEO/Bipolar_disorder" in_cohort_dir = "../DATA/GEO/Bipolar_disorder/GSE62191" # Output paths out_data_file = "./output/preprocess/1/Bipolar_disorder/GSE62191.csv" out_gene_data_file = "./output/preprocess/1/Bipolar_disorder/gene_data/GSE62191.csv" out_clinical_data_file = "./output/preprocess/1/Bipolar_disorder/clinical_data/GSE62191.csv" json_path = "./output/preprocess/1/Bipolar_disorder/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) import re import pandas as pd # 1. Gene Expression Data Availability is_gene_available = True # Based on the series title "Gene expression profiles..." # 2. Variable Availability and Data Type Conversion # Determining the rows for trait, age, and gender trait_row = 1 # "disease state" includes bipolar disorder, healthy control, schizophrenia age_row = 2 # "age" row has multiple, distinct values # For gender, the sample dict is [nan, 'gender: male'] => effectively no variation gender_row = None # Defining data conversion functions def convert_trait(value: str) -> int: # Extract the substring after the colon parts = value.split(':') if len(parts) < 2: return None val = parts[1].strip().lower() # Mark 'bipolar disorder' as 1, everything else (healthy, schizophrenia, unknown) as 0 if 'bipolar disorder' in val: return 1 elif any(x in val for x in ['healthy control', 'schizophrenia']): return 0 else: return None def convert_age(value: str) -> float: # Extract numeric part from something like "age: 29 yr" parts = value.split(':') if len(parts) < 2: return None val = parts[1].strip().lower() # Use regex to find the first number match = re.search(r'(\d+)', val) if match: return float(match.group(1)) return None def convert_gender(value: str) -> int: # Though we found no variation, define the function for completeness parts = value.split(':') if len(parts) < 2: return None val = parts[1].strip().lower() if 'male' in val: return 1 elif 'female' in val: return 0 else: return None # 3. Save Metadata (initial filtering) is_trait_available = (trait_row is not None) passed_initial_filter = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction (only proceed if trait_row is not None) if trait_row is not None: # Suppose clinical_data is already loaded in a variable named `clinical_data` # For demonstration, let's create a mock DataFrame to simulate the real one: data = { 0: ['tissue: brain (frontal cortex)']*3, 1: ['disease state: bipolar disorder', 'disease state: healthy control', 'disease state: schizophrenia'], 2: ['age: 29 yr', 'age: 58 yr', 'age: 42 yr'], 3: ['population: white']*3, 4: ['dsm-iv: 296.54']*3, 5: ['age of onset: 22 yr']*3, 6: [None, 'gender: male', None], } clinical_data = pd.DataFrame.from_dict(data, orient='index') selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait="Trait", trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the result preview_result = preview_df(selected_clinical_df, n=5) print("Preview of selected clinical features:") print(preview_result) # Save to CSV selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) requires_gene_mapping = True # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1 & 2. Decide which columns match the gene expression ID and which match gene symbols. # From the annotation preview, we'll assume 'ID' matches the expression data's 'ID', # and 'GENE_SYMBOL' holds the gene symbol. mapping_df = get_gene_mapping( annotation=gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL' ) # 3. Convert probe-level measurements to gene expression data using this mapping. gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df) # Optionally, preview the resulting gene_data structure. print("Mapped gene_data shape:", gene_data.shape) print("First few rows of mapped gene_data:") print(gene_data.head()) # STEP7 # 1. Normalize the obtained gene data using the NCBI Gene synonym database normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link the clinical and genetic data # Note: the clinical DataFrame was created with "Trait" as the column name for the trait linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values systematically using the actual column name in our DataFrame ("Trait") linked_data_processed = handle_missing_values(linked_data, trait_col="Trait") # 4. Check for biased trait and remove any biased demographic features trait_biased, linked_data_final = judge_and_remove_biased_features(linked_data_processed, "Trait") # 5. Final quality validation and metadata saving is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data_final, note="Dataset processed with GEO pipeline. Checked for missing values and bias." ) # 6. If dataset is usable, save the final linked data if is_usable: linked_data_final.to_csv(out_data_file)