# Path Configuration from tools.preprocess import * # Processing context trait = "Bipolar_disorder" cohort = "GSE67311" # Input paths in_trait_dir = "../DATA/GEO/Bipolar_disorder" in_cohort_dir = "../DATA/GEO/Bipolar_disorder/GSE67311" # Output paths out_data_file = "./output/preprocess/1/Bipolar_disorder/GSE67311.csv" out_gene_data_file = "./output/preprocess/1/Bipolar_disorder/gene_data/GSE67311.csv" out_clinical_data_file = "./output/preprocess/1/Bipolar_disorder/clinical_data/GSE67311.csv" json_path = "./output/preprocess/1/Bipolar_disorder/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability # Based on the background info, the dataset used Affymetrix Human Gene ST arrays, so it likely contains gene expression data. is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Identify the row keys (trait_row, age_row, gender_row) # From the provided sample characteristics dictionary: # Row 7: ['bipolar disorder: No', 'bipolar disorder: -', 'bipolar disorder: Yes'] # No row references age or gender. trait_row = 7 age_row = None gender_row = None # 2.2 Define conversion functions for each variable def convert_trait(value: str): # Extract the substring after the colon. # Map 'Yes' -> 1, 'No' -> 0. Otherwise return None. # Example: "bipolar disorder: Yes" -> "Yes" -> 1 # "bipolar disorder: No" -> "No" -> 0 # "bipolar disorder: -" -> None if not isinstance(value, str): return None parts = value.split(':', 1) if len(parts) < 2: return None val = parts[1].strip().lower() if val == 'yes': return 1 elif val == 'no': return 0 else: return None # For completeness, though they won't be used since age_row and gender_row are None: def convert_age(value: str): return None def convert_gender(value: str): return None # 3. Save Metadata (initial filtering) using validate_and_save_cohort_info is_trait_available = trait_row is not None is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction (only if trait_row is not None) if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_data, # "clinical_data" is assumed to be available from previous steps trait=trait, # "Bipolar_disorder" trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the resulting DataFrame preview = preview_df(selected_clinical_df) print("Preview of extracted clinical features:", preview) # Save the clinical features to CSV selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # These numeric IDs are not standard human gene symbols. They likely correspond to probe identifiers # that require mapping to gene symbols. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP6: Gene Identifier Mapping # 1. Identify the columns in gene_annotation that match the expression data IDs and store gene symbol information. # From the preview, 'ID' corresponds to the same numeric probe identifiers in gene_data, # and 'gene_assignment' contains the gene symbol info (OR4F16, OR4F29, etc.) among other annotations. probe_col = "ID" symbol_col = "gene_assignment" # 2. Get the gene mapping dataframe from the annotation dataframe. mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=symbol_col) # 3. Apply this mapping to convert the probe-level expression data into a gene-level expression dataframe. gene_data = apply_gene_mapping(gene_data, mapping_df) print("Gene mapping and aggregation complete. Final gene_data shape:", gene_data.shape) # STEP7 # 1. Normalize the obtained gene data using the NCBI Gene synonym database normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link the clinical and genetic data # Use the correct variable name from previous steps: "selected_clinical_df" linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values systematically using the actual trait name linked_data_processed = handle_missing_values(linked_data, trait_col=trait) # 4. Check for biased trait and remove any biased demographic features trait_biased, linked_data_final = judge_and_remove_biased_features(linked_data_processed, trait) # 5. Final quality validation and metadata saving is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data_final, note="Dataset processed with GEO pipeline. Checked for missing values and bias." ) # 6. If dataset is usable, save the final linked data if is_usable: linked_data_final.to_csv(out_data_file)