# Path Configuration from tools.preprocess import * # Processing context trait = "Bipolar_disorder" cohort = "GSE92538" # Input paths in_trait_dir = "../DATA/GEO/Bipolar_disorder" in_cohort_dir = "../DATA/GEO/Bipolar_disorder/GSE92538" # Output paths out_data_file = "./output/preprocess/1/Bipolar_disorder/GSE92538.csv" out_gene_data_file = "./output/preprocess/1/Bipolar_disorder/gene_data/GSE92538.csv" out_clinical_data_file = "./output/preprocess/1/Bipolar_disorder/clinical_data/GSE92538.csv" json_path = "./output/preprocess/1/Bipolar_disorder/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1) Determine if gene expression data is available is_gene_available = True # Based on the background information (Affymetrix microarray), set True. # 2) Identify rows for trait, age, gender trait_row = 2 # "diagnosis: Bipolar Disorder" is found here age_row = 8 # "age: XX" is found here gender_row = 6 # "gender: M/F" is found here # 2) Define conversion functions def convert_trait(x: str): if not x or ':' not in x: return None val = x.split(':', 1)[1].strip().lower() # Convert "Bipolar Disorder" to 1, else 0 return 1 if val == 'bipolar disorder' else 0 def convert_age(x: str): if not x or ':' not in x: return None val = x.split(':', 1)[1].strip().lower() if val == 'na': return None try: return float(val) except ValueError: return None def convert_gender(x: str): if not x or ':' not in x: return None val = x.split(':', 1)[1].strip().lower() if val == 'm': return 1 elif val == 'f': return 0 return None # 3) Conduct initial filtering and save metadata is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4) If trait data is available, extract clinical features if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_data, trait, trait_row, convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview extracted clinical data preview_result = preview_df(selected_clinical_df, n=5) print("Preview of extracted clinical features:", preview_result) # Save clinical features to CSV selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Observing the gene identifiers in the gene expression data: # They appear to be Affymetrix probe identifiers, not standard human gene symbols. # Therefore, they need to be mapped to gene symbols. print("") print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Decide which columns correspond to probe identifiers and gene symbols. # From our preview, the 'ID' column has probe IDs matching gene_data.index # and 'SYMBOL' contains the gene symbols. # 2. Get a gene mapping dataframe using get_gene_mapping mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="SYMBOL") # 3. Convert the probe-level measurements to gene-level measurements gene_data = apply_gene_mapping(gene_data, mapping_df) # Let's preview the resulting gene_data to verify it was mapped print("Mapped gene_data shape:", gene_data.shape) print("First 10 genes after mapping:", gene_data.index[:10].tolist()) # STEP7 # 1. Normalize the obtained gene data using the NCBI Gene synonym database normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link the clinical and genetic data # Use the correct variable name from previous steps: "selected_clinical_df" linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values systematically using the actual trait name linked_data_processed = handle_missing_values(linked_data, trait_col=trait) # 4. Check for biased trait and remove any biased demographic features trait_biased, linked_data_final = judge_and_remove_biased_features(linked_data_processed, trait) # 5. Final quality validation and metadata saving is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data_final, note="Dataset processed with GEO pipeline. Checked for missing values and bias." ) # 6. If dataset is usable, save the final linked data if is_usable: linked_data_final.to_csv(out_data_file)