# Path Configuration from tools.preprocess import * # Processing context trait = "Chronic_Fatigue_Syndrome" # Input paths tcga_root_dir = "../DATA/TCGA" # Output paths out_data_file = "./output/preprocess/1/Chronic_Fatigue_Syndrome/TCGA.csv" out_gene_data_file = "./output/preprocess/1/Chronic_Fatigue_Syndrome/gene_data/TCGA.csv" out_clinical_data_file = "./output/preprocess/1/Chronic_Fatigue_Syndrome/clinical_data/TCGA.csv" json_path = "./output/preprocess/1/Chronic_Fatigue_Syndrome/cohort_info.json" import os import pandas as pd # Step 1: Check directories in tcga_root_dir for anything relevant to "Chronic_Fatigue_Syndrome" search_terms = [ "chronic_fatigue_syndrome", "chronic fatigue syndrome", "myalgic encephalomyelitis", "cfs" ] dir_list = os.listdir(tcga_root_dir) matching_dir = None for d in dir_list: d_lower = d.lower() if any(term in d_lower for term in search_terms): matching_dir = d break if matching_dir is None: # No matching directory found for Chronic Fatigue Syndrome, so mark the dataset as skipped. validate_and_save_cohort_info( is_final=False, cohort="TCGA_Chronic_Fatigue_Syndrome", info_path=json_path, is_gene_available=False, is_trait_available=False ) else: # 2. Identify the clinicalMatrix and PANCAN files cohort_dir = os.path.join(tcga_root_dir, matching_dir) clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir) # 3. Load both data files clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t') genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t') # 4. Print the column names of the clinical data print("Clinical Data Columns:") print(clinical_df.columns.tolist())